Qualitative plots of bound-state wave functions

The wave function of the ground state has, in the classically allowed region with E > V, the smallest possible "curvature":

$$
\Phi^{\prime}(x) / \Phi(x)=-\frac{2 m(E-V)}{\hbar^{2}}
$$

The wave function of the ground state has, in the classically forbidden region with $E<V$, the fastest exponential falloff:

$$
\Phi^{\prime \prime}(x) / \Phi(x)=\frac{2 m(V-E)}{\hbar^{2}}
$$

For continuous potentials, the wave function is continuous in its first 2 derivatives.The stationary state n has n nodes:

$$
\Phi\left(x_{\text {node }}\right)=0
$$

Smoothness at center:

$\left.\begin{array}{l}\Phi(c)=A_{L} \sin \left(k_{L} c+\varphi_{L}\right)=A_{R} \sin \left(k_{R} c+\varphi_{R}\right) \\ \Phi^{\prime}(c)=k_{L} A_{L} \cos \left(k_{L} c+\varphi_{L}\right)=k_{R} A_{R} \cos \left(k_{R} c+\varphi_{R}\right)\end{array}\right\} \frac{A_{R}^{2}}{A_{L}^{2}}=\frac{\Phi(c)^{2}+\frac{\Phi(c)^{2}}{k_{R}^{2}}}{\Phi(c)^{2}+\frac{\Phi(c)^{2}}{k_{L}^{2}}}$

Correspondence principle:
The probability to find a particle with small velocity is larger since it spends more time.

Regions of smaller \mathbf{k} have larger maximum values of the amplitude than adjacent regions of larger \mathbf{k}.

$$
\begin{aligned}
& -\frac{\hbar^{2}}{2 m} \frac{\partial}{\partial x} \frac{\partial}{\partial x} \Phi(x)+V(x) \Phi(x)=E \Phi(x) \\
& V(x)=V(-x)
\end{aligned}
$$

If $f(x)$ is a stationary solution of the Schrödinger equation for energy E , then so is $f(-x)$

One can use this function to find a symmetric and an anti symmetric wave function, except if $f(x)$ is already symmetric or anti-symmetric.

$$
\Phi(x)=\left\{\begin{array}{l}
\Phi_{s} \propto f(x)+f(-x) \\
\Phi_{a} \propto f(x)-f(-x)
\end{array}\right.
$$

But for each E there is only one solution, and thus $f(x)$ has to be symmetric or anti-symmetric.
Odd parity: $\Phi(x)=-\Phi(-x) \quad \rightarrow \quad \Phi(0)=0$
Even parity: $\Phi(x)=\Phi(-x) \quad \rightarrow \quad \Phi^{\prime}(0)=0$
When searching for wave functions to a symmetric potential, it is helpful that it suffices to start the search with either

$$
\Phi(0)=0 \quad \text { or } \quad \Phi^{\prime}(0)=0
$$

Summary for the qualitative determination of wave functions

1. Odd or even symmetry in the case of a symmetric potential.
2. The correct number \mathbf{n} of nodes for the nth energy level above the ground state.
3. The correct relative wavelengths (shorter or longer) for different values of the potential at different places inside the potential well, shorter where the well is deeper and shorter for states of higher energy.

4. The correct relative maximum values of amplitudes at adjacent points of different potential inside the well. Amplitudes get larger where the well gets shallower.
5. The correct relative rate of decrease (more or less gradual) of the wave function with distance outside the well. The decrease is more gradual for a shallower potential and for a state of higher energy.

4) Solutions of Schrödinger's equation in one dimension

The square well

Used as approximation for a neutron in a nucleus or for states of an electron in a linear molecule.

Stationary solutions:

$-\frac{\hbar^{2}}{2 m} \frac{\partial^{2}}{\partial x^{2}} \Phi(x)+V(x) \Phi(x)=E \Phi(x)$

Right: $\frac{\partial^{2}}{\partial x^{2}} \Phi_{R}(x)=\alpha^{2} \Phi_{R}(x), \quad \alpha=\sqrt{\frac{2 m}{\hbar^{2}}\left(V_{0}-E\right)}$

$$
\Phi_{R}=A e^{-\alpha x}+\sqrt{\alpha x}, \quad \Phi_{R}^{\prime}=-A \alpha e^{-\alpha x}
$$

Center: $\frac{\partial^{2}}{\partial x^{2}} \Phi(x)=-k^{2} \Phi(x), \quad k=\sqrt{\frac{2 m}{\hbar^{2}} E}$

$$
\begin{aligned}
& \Phi_{C}=B \sin (k x+\varphi) \\
& \Phi_{C}^{\prime}=B k \cos (k x+\varphi)
\end{aligned} \quad, \quad \varphi=\left\{\begin{array}{l}
0 \text { for } \Phi(-x)=-\Phi(x) \\
\frac{\pi}{2} \text { for } \Phi(-x)=\Phi(x)
\end{array}\right.
$$

