Orthogonality for different Energies

It is a feature of the wave functions of any potential $\mathrm{V}(\mathrm{x})$ that the stationary wave functions are orthogonal to each other. $-\frac{\hbar^{2}}{2 m} \frac{\partial^{2}}{\partial x^{2}} \Phi_{E}+V(x) \Phi_{E}=E \Phi_{E}$

$$
\begin{gathered}
\int_{-\infty}^{\infty} E_{2} \Phi_{E_{1}}^{*} \Phi_{E_{2}} d x=\int_{-\infty}^{\infty} \Phi_{E_{1}}^{*}\left[-\frac{\hbar^{2}}{2 m} \frac{\partial^{2}}{\partial x^{2}} \Phi_{E_{2}}+V(x) \Phi_{E_{2}}\right] d x \\
\int_{-\infty}^{\infty} \Phi_{E_{1}}^{*} \frac{\partial^{2}}{\partial x^{2}} \Phi_{E_{2}} d x=\underbrace{\left[\Phi_{E_{1}}^{*} \frac{\partial}{\partial x} \Phi_{E_{2}}\right]_{-\infty}^{\infty}}_{o}-\int_{-\infty}^{\infty} \frac{\partial}{\partial x} \Phi_{E_{1}}^{*} \frac{\partial}{\partial x} \Phi_{E_{2}} d x \\
\int_{-\infty}^{\infty} E_{2} \Phi_{E_{1}}^{*} \Phi_{E_{2}} d x=\int_{-\infty}^{\infty}\left[\frac{\hbar^{2}}{2 m} \frac{\partial}{\partial x} \Phi_{E_{1}}^{*} \frac{\partial}{\partial x} \Phi_{E_{2}}+\Phi_{E_{1}}^{*} V(x) \Phi_{E_{2}}\right] d x \\
\int_{-\infty}^{\infty} E_{1} \Phi_{E_{1}}^{*} \Phi_{E_{2}} d x=\int_{-\infty}^{\infty}\left[\frac{\hbar^{2}}{2 m} \frac{\partial}{\partial x} \Phi_{E_{1}}^{*} \frac{\partial}{\partial x} \Phi_{E_{2}}+\Phi_{E_{1}}^{*} V(x) \Phi_{E_{2}}\right] d x \\
\left(E_{1}-E_{2}\right) \int_{-\infty}^{\infty} \Phi_{E_{1}}^{*} \Phi_{E_{2}} d x=0 \rightarrow \int_{-\infty}^{\infty} \Phi_{E_{n}}^{*} \Phi_{E_{m}} d x=\delta_{n m}= \begin{cases}0 & \text { if } E_{n} \neq E_{m} \\
1 & \text { if } E_{n}=E_{m}\end{cases}
\end{gathered}
$$

6 Photons and quantum states

A electromagnetic plain wave can be uniquely defined by specifying four things:

1. Frequency
2. Direction of propagation
3. Polarization
4. Amplitude of the electric field (and thereby the energy in the field)

Similarly the state of a photon is uniquely defined by specifying three things:

1. Frequency (and therefore the energy of the photon $\mathbf{h} v$)
2. Direction of motion
3. Polarization state

The energy in the wave is then determined by the number of photons.

The state of a photon completely determines a photon in the following sense:
Everything that can be known about a photon is specified.

Linearly polarized waves

A beam of light is linearly polarized if its electric Vector lies in a single plane that includes the beam (the plane of polarization). The polarization axis is parallel to direction of the electric field.

$$
\begin{aligned}
\vec{E} & =\vec{E}_{p o l} \cos \left(k z-\omega t+\varphi_{0}\right) \\
& =\operatorname{Re}\left[\vec{E}_{p o l} e^{i \varphi_{0}} e^{i(k z-\omega t)}\right]
\end{aligned}
$$

Any plane wave with wave number $k=\frac{2 \pi}{\lambda}$ and angular frequency $\omega=2 \pi \nu=c k$ can be described by a superposition of two orthogonally polarized waves:

$$
\begin{aligned}
\vec{E} & =\operatorname{Re}\left[\vec{a} e^{i(k z-\omega t+\alpha)}+\vec{b} e^{i(k z-\omega t+\beta)}+\vec{c} e^{i(k z-\omega t+\chi)}+\ldots\right] \\
& =\vec{e}_{x} \operatorname{Re}\left[\left(a_{1} e^{i \alpha}+b_{1} e^{i \beta}+c_{1} e^{i \chi}+\ldots\right) e^{i(k z-\omega t)}\right] \\
& +\vec{e}_{y} \operatorname{Re}\left[\left(a_{2} e^{i \alpha}+b_{2} e^{i \beta}+c_{2} e^{i \chi}+\ldots\right) e^{i(k z-\omega t)}\right] \\
& =\operatorname{Re}\left[\vec{e}_{x} a_{x} e^{i \varphi_{x}} e^{i(k z-\omega t)}+\vec{e}_{y} a_{y} e^{i \varphi_{y}} e^{i(k z-\omega t)}\right]
\end{aligned}
$$

Production of linearly polarized states

Passing of an arbitrary beam of light through a polarizer produces a polarized beam with a polarization axis parallel to the transmission axis.

2) A calcite crystal has a different refractive index for different polarization directions and therefore splits an arbitrary beam into two beams with two perpendicular polarization directions.

These polarizers can also be used to determine whether a beam is in a linearly polarized state and the polarization direction can be found.

