PROSPECTS FOR XD@LHC EXTRA DIMENSIONS

Flip Tanedo Cornell

Cornell CMS mini-Workshop, January 19, 2012

Outline

Focus: Randall-Sundrum (many local experts)

- | Motivation one slide
- II Definition: Theorist RS vs. Experimentalist RS
- III Signatures: spin-2, spin-1, spin-0
- IV Breadth: comments on RS variants

Omissions: rigorous equations, model-building, electroweak precision observables, flavor, current collider constraints, references (see notes)

Motivation: AdS/CFT, why XD isn't so far-fetched

Modern models have different phenomenology! Not in this talk: ADD, UED, and $RS+(\cdots)$

Flip Tanedo pt267@cornell.edu

Flip's Beamer Theme

/22

Original RSI Model: Hierarchy problem

RSI with bulk gauge bosons: unification, ...

RSI with bulk fermions: S parameter, ...

RSI with bulk fermions: FCNC, anarchic flavor

Realistic (custodial) RSI: *T*-parameter

Other developments

Even with 'realistic models,' there is a little Hierarchy between the IR scale (TeV) and the electroweak breaking scale (100 GeV).

- Embed within a little Higgs model
- Little RS, for small Hierarchies
- Higgsless model, EWSB by boundary conditions

Other signals include additional reggeon states from a realization of Randall-Sundrum within string theory.

Original RSI: only gravitons in the bulk. Signature: $G^{(1)}
ightarrow \gamma\gamma$, $\ell\ell$

Image from CMS: EXO-10-019

But $G \rightarrow \gamma \gamma$, $\ell \ell$ is no good in realistic models with bulk fields!

- $G^{(1)} \rightarrow \gamma \gamma$ vanishes by orthogonality of 5D profiles
- $G^{(1)} \rightarrow \ell \ell$ exponentially small $m_{\ell}/M_{\rm KK}$ suppression

- Production: Gluon fusion (subdominant: W fusion)
- Decay: IR localized, decays to t_R and H (narrow width)

Signal: boosted top resonance Expect: ~ 2 TeV with 100/fb Some BG from KK gluons, can use angular distribution. **Signal:** $G^{(1)} \rightarrow 2Z_L \rightarrow 4\ell$ Expect: ~ 2 TeV with 300/fb

Spin-I: KK gluons, resonances

Likely first signal of RS: $q\overline{q}
ightarrow g^{(1)}
ightarrow t_R \overline{t}_R$

- No $ggg^{(1)}$ coupling by orthogonality of profile
- Profile peaked on IR, couples dominantly to t_R
- Need boosted top tagging (substructure, b/ℓ sep., invt. mass)

From hep-ph/0701166; Expect $\sim 5 TeV$ with 100/fb

Spin-I: KK gluons, spin determination

From: hep-ph/0701166; BG is forward peaked. High p_T cut helps. Can play similar games with spin-2, spin-0.

Spin-I: KK gluons, spin correlation

Large boost, $t_R \approx$ helicity state. Measure A_{FB} of ℓ^+ .

From: hep-ph/0612015. Just like A_{FB} from Z in SM.

Flip Tanedo pt267@cornell.edu

Spin-I: KK electroweak gauge bosons

- Much lower production rates and more model dependent
- Coupling to *H*: allow vector fusion production of KK modes
- $Z^{(1)}$ contribution to A_{FB} , opposite sign as Z in SM
- In custodial models: Z' and W' gauge bosons See Peter's talk for W'

Spin-1/2: KK fermions

- Lower production and typically heavier than spin-I excitations
- Custodial fermions can have exotic charges, same-sign dilepton

Spin-0: the radion/dilaton

Radion: fluctuation in the size of the 5th dimension, couples to the breaking of scale invariance.

- Classically: couples to trace of energy-momentum tensor. These couplings looks just like those of the Higgs.
- Quantum'ly: couples to gauge bosons via trace anomaly, $\propto\beta$ Additional tree-level coupling if gauge bosons in the bulk

Flip Tanedo pt267@cornell.edu

/ 22

Remarks on RS variants

Higgsless models

Take Higgs vev $ightarrow \infty$, decouple Higgs; repel gauge profiles

Unitarity of WW scattering from exchange of KK gauge bosons. W' and Z' resonances with weak couplings to SM fermions

Remarks on RS variants

Little Higgs

Strong dynamics at $\sim 10~{\rm TeV}$ with collective symmetry breaking. Higgs as a pseudo-Goldstone boson.

Electroweak precision constraints: *T*-parity Search for T-odd quarks. Can retrofit SUSY jet+MET search.

Conclusions

- Modern RS: richer phenomenology, many variants
- Priority: boosted top tagging
- Lots of local hep-ph interest and expertise

Notes and references

Slides and TeX'd notes for this talk with references are available on my web page under 'Talks.'

Image Credits and Colophon

- Evolution illustration from Smithsonian.com (19 Nov 2010)
- Low energy resonance graph from A. Golutvin, La Thuile 2011
- Beamer theme Flip, available online http://www.lepp.cornell.edu/~pt267/docs.html
- All other images by Flip using TikZ, Photoshop, and Illustrator