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A brief review of the history of the classical equations of motion of charged particles is given
leading up to the present time. Emphasis is placed on the important role of the validity limits of the
theory. The little known relativistic equations of motion of a surface-charged sphere are presented.
Their proof and validity limits are discussed. An appendix gives the history and eventual solution
of the stability problem(the “4/3 problem”). The emphasis is on understanding rather than on
technical details. ©1997 American Association of Physics Teachers.

I. PURPOSE OF THIS PAPER limit as a goes to zero. But one cannot use classical dynam-
ics for a point charge when quantum mechanical distances

This year is the centennial of the discovery of the electrorare involved: quantum dynamics then becomes necessary.
by J. J. Thomson. It is therefore most appropriate to review It should be clear that in a short review like the present, it
the attempts at a dynamics for this particle as it has beei$ impossible to do justice to the many papers written on the
developed during the past 100 years. In the context of a ver§ubject over the years. Many important papers must, unfor-
brief historical survey, two lessons learned from that tortuougunately, remain unmentioned.
history are the main topics. The first lesson is of a general
nature. It elaborates on the fact that in a strict sense thg. THE POINT CHARGE DYNAMICS
notion of a “classical point charge” is an oxymoron because
“classical” and “point” contradict one another: classical ~ The electromagnetic force density on a volume element of
physics ceases to be valid at sizes at or below a Comptogharge p(x), was first given by Lorentzin 1892,
wavelength and thus cannot possibly be valid for a point f,=p(E+VxB). 2.1)
object. The lesson is thus: _ _ _

The dynamics of point charges is an excellent example df Was latef applied by him to the electron discovered by
the importance of obeying the validity limits of a physical Thomsori in 1897, which he assumed to be a point of total
theory. When these limits are exceeded the predictions of trHeéhargee,
theory may be incorrgct or even patently' absurd. In '.che F =e(E+VxB). 2.2
present case, thelassical equations of motion have their
validity limits where quantum mechanics becomes imporThis is the Lorentz force on a point chary8ut he argued
tant: they can no longer be trusted at distances of the ordethat when the charge is accelerated, there are additional
of (or below) the Compton wavelength. forces acting due to the charge’s own electromagnetic field.

The second lesson refers to the equations of motion of ahhe equation of motion for the electron, he argued, is there-
extended particl¢rather than a point particlea sphere with ~ fore in first approximation,

a uniformly distributed surche charge. In their nonrelativis- v — FL+ 262V 2.3
tic form, they have been written down almost 80 years ago; o _ o ) o
in their relativistic form, over 40 years ago. where a dot indicates a time derivative. This equation is

The relativistic equations of motion of a surface-chargedknown as the Lorentz equation. )

sphere are in excellent approximation a set of nonlinear In the same year in which the electron was discovered,
first-order differential-difference equations. In the limit when Larmor® provided the formula for the radiation rate of an
the radius vanishes, they become the LoreAtraham-  accelerated charge,

Dirac equations. dEx 2

— 2y,2
The title of the present paper is purposely ambiguous. It gf ~ 3¢V~ 2.4

can mean eithefthe dynamics of a charged spheend the _ ) L
electron, or the dynamics @& charged sphere and an elec- This f_o_rmgla was soon generalized to the relativistic case by
tron). If we heed the first of the above lessons, the first meanti€aviside;

ing is correct: An electron is a quantum mechanical particle  dg, 2 . |

and can therefore—strictly speaking—not be described by gt 3 e%0,. (2.5

the dynamics of a classical object, a charged sphere. How-

ever, the dynamics has been used in the second sense. Ands written here in relativistic notatioro®=y, vk=(yv)¥

this is justified if the distances involved are all large com-(«=0,1,2,3,k=1,2,3, metric tensor tp=+2), and 7 de-
pared to quantum mechanical distances; the classical theofbtes the proper timejr=dt/y and y=(1—v?) ~ 2 In this

for point charges will then be an excellent approximation. a5 in all covariant equations, the dot indicates differentiation
Also, when the distances involved are large compared to thgiith respect tor.

radiusa of a charged sphere, the results will be independent Heaviside derived2.5) before the theory of relativity was

of a; they will then be the same as those from a point chargavailable because he used the Maxwell equations which are
theory. In fact, the equations of motion for a charged sphereelativistic. Note that(2.5 is a Lorentz scalar. Further
reduce to the equations of motion for a point charge in theprogress was made by Abrahamhen he derived theate of
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momentum carried away from the charge by radiation. NonThe last term together with the last term (@73 is (except
relativistically, it is just the radiation rat€2.4) times the for a factory) just the four-vectol* in (2.9). But themgq
velocity v. Its relativistic generalization, when combined term does not form a four-vector with the., term of (2.7a.

with (2.5 gives the four-vector In the nonrelativistic limit, these twon.g terms are the time
dpr 2 derivatives ofmgsand 4/3n.y, respectively, where
= — @2, u
i ~3 e‘v vt (2.6 1 e2
meszz a (211

This four-vector represents the rate at which energy and mo-
mentum is carried away from the charge by radiation. Itss the electrostatic energy of a surface-charged sphere. Be-
negative is theadiation reaction and it will necessarily play cause these are the correct expressions for the rest energy
an important role in the equations of motion. Note that theand the kinetic energy except for the factor 4/3, this is known
0-component of2.6) is just y times (2.5). as the “4/3 problem.” It has a long history that extends
Abrahanf then succeeded in deducing the equations ofhroughout most of the last 90 years. The main point for
motion of a rigid sphere of charge and radiusa in the  correcting the problem is the observation first made by Poin-
approximation of smalh. Assuming a bare mass), which  carethat one must take into account the forces that hold the
he assumed to vanish, his equations can be written (otherwise exploding charged sphere together. These are
called the “Poincarestresses,” or, for a classical sphere, the

d “binding forces” that hold the surface charge to the insula-
m gt (W) =FL=Mea gp (YW +T, (273 {51 | shall sketch the history and solution to the 4/3 problem
) N ) ) in the Appendix. It yields the Lorentz invariant combination
I'=2e2y?{[V+3y?v-w+ y?[v-V+3y2(v-v)2]v]}. of (2.7) and(2.10,
2.7 . .
.79 mu*=F{-—meo*+TI'#, Fl'=eF,, (2.12
Heremeg is the electrodynamic energy with T'#* given by (2.9). This is the relativistic equation of
262 motion of a surface-charged sphere as it results from the

(2.8 work of Abraham, Lorentz, and Poincare

Much later, in 1939, after the development of quantum
mechanics, Dirdd derived this same classical equation
d2.12) for point charges using the Maxwell equations, the
conservation laws, and simplicitfread: neglecting higher
order term His derivation is manifestly covariant through-

The massn involves a bare mass of unknown size as weIIOUt' But he did it for a point charge so that thig, term'? is

as, in the case of a macroscopic charged sphere, the massr}ﬁcessarily_infinitez{—>0). Equation(2.12 shoul_d therefore
the uncharged insulator. The mass of the latter, which musFe appropriately called theorentz-Abraham-Dirac equa-

of course, always be included on the left side of the equat®™. . . . . .
tions of motion will play no further role in the later discus- It IS instructive to derive this equation by a very simple
sion and will not be explicitly mentioned below. argument. Startlng_wnh the relat|V|st|c_ form of Newton's
Before discussing the complicated res(@.7b), let us equations for a particle of bare masssubject to the Lorentz

jump ahead historically and give the result found by vonforce,mv*=F{', one observes that both sides of this equa-
Laue® He showed thaF is just the relativistic generalization tion are orthogonal te*. Thus, if one wants to guess what
of the last term in the Lorentz equatid2.3) and can be extra term must be added in order to account for the effects
identified with the space paftimes 1/) of the four-vector  of the self-field, one can write that term as

m — —

ed 3a
The term containingngg is an inertial term and, when so
interpreted, can be combined with the left-hand side. Th
sum m+mgg=mq is then identified with the observed rest
mass of the sphere.

T”=§e2(i}“—i)“i)av”). (2.9 XE=PLYY  PF'=pltr+pHp”. (2.13

P#” is the projection into the hyper-plane orthogonabtb
Now the simplest choice for#, restricting oneself to linear
erms, is

One sees that the von Laue vecldt consists of two terms
of which the second one is just the radiation reacti®1®).
The first one is sometimes called the Schott term; its spac
part has a nonrelativistic limit which i@part from a factor YA=av*+ bv#+cot.
v) just the last term of the Lorentz equati¢23). Unfortu- . . .
nately, in the earlier literature theholeexpressiom™* has at 1 he first term vams_rle_s becaus¥'"v v 0, th(_aar_est gives
times been called “radiation reaction,” this has caused much<" = bPv*+ c(v*—v*v®v,) becausev®v,=—v“,. The
confusion in understanding and resulted in incorrect paperfirst term is an inertial term so that is identified with the
in the literature. rest energy of the charge, which for our sphere isugt It
In addition to the rate of momentum change which yieldscan be combined with the left-hand sitthis process can be
(2.7), Abraham also derived the rate of energy challges-  called “renormalization’) to yield the empirical rest mass

suming a bare mass, his equation becomes my=m+ mgs. The coefficient is determined by the require-
ment that the radiation rate four-vect@®.6) must appear as
d_7_ d_E —F .v_ i 1 a radiation reactiohence the minus sigrin the equation of
Mgt~ gt vV Medge |77 2, motion; thusc= 2€?/3. The result i$2.12). This must surely

5 be the simplest possible argument leading to the Lorentz—
4 2 0204y U+ 3v2(vv)2]. ' Abraham—Dlrac equation. A similar argument will play a
3 ey Lv-vi3y(v-v)] (2.19 role again later on.
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The Lorentz—Abraham—Dirac equati¢®.1? as well as was given by Erbel® Other valuable reviews emphasize
its nonrelativistic limit, the Lorentz equatia®.3), have so- nonradiating solution& point particles with spif and with
lutions that are pathological. These solutions include thenultipole moments®
force-free case K =0) which, in addition to the physical Particularly extensive work on extended charges was car-
solutionv = constant, has a solution according to which theried out by Sommerfeld? | shall limit the discussion here to
particle accelerates indefinitelyhe so-called runaway solu- the sphere with uniform surface charge; the case of a volume
tions); and there are also solutions whiahticipatea change ~ charge is considerably more complicated and adds nothing to
in the external force and according to which the particle acthe understanding of the problem. Sommerfeld showed that
celerates in advance of the application of a fofeeaccel- in the nonrelativistic case, such a sphere obeys in good ap-
eration solutions These solutions are discussed in variousProximation the equatidfl
texts.

As emphasized earlier, the appearance of pathological so- mv=F _+ medi [v(t—2a)—v(t)]. (3.1
lutions is not surprising sinc@xcept for the self-energyll 2a

powers ofa have been neglected in the derivation so that thigt is not difficult to derive this equation. The equation of
classicalequation describes effectivelypint particle. We  motion can be written

shall see in Sec. Ill that wheall higher order terms are .

included, pathological solutions indeed do not occur. How- mv="F +Fs, (3.2
ever, for the Lorentz—Abraham—Dirac equatith1d the  whereFg s the self-force. As shown in JackstnSec. 17.3,
problem of the pathological solutions can be solved without one neglects nonlinear termsg is given by an infinite
going to the higher, size-dependent terms in the expansioReries, Eq(17.28. Each term of that series contains an inte-

For the runaway solutions, one can simply imposeyry) that is easily evaluated for a surface-charged sphere,
asymptotic conditions to the effect that in the distant future (2a)" 1
a

the acceleration ceasEsThis preserves only the physical J J 30 B Snel s a2
solutionv =constant in the force-free case. For preaccelera- dxdX () [x=xX|"p(x") = 2e n+1 '’
tion, the problem can}?e solved by removing its origin. This 3.3
was done by Yaghjian: Lo ;

He observed that the expansion made in the derivatior“]\'0 that the infinite series becomes
requires the function that is expanded to be analytic. Since 2 ,1 (=" 1 [2a¢
one integrates over the retarded time, this analyticity is vio- FS=§ € 3 > nl n+1\ ot
lated when the force changes too quickhithin a time short _ ] )
compared to the time it takes a light ray to cross the pajticle This series can be summed and the resu(Bis).
The step function onset is an extreme example of this. The Equation(3.1) is a first-order differential-difference equa-

problem can be solved by introducing a smooth functiontion of the retarded typ& It implies that the electromagnetic
7(7), which vanishes forr<0 and become$ at aboutr field attached to the charge causes a self-force which has a

=2a. Equation(2.12 should then be written as dglayed effect on its motion. The dglay time is exactly the
time it takes a light ray to cross the diameter of the sphere. If
my#=F—meg#+ . one expand$3.1) for smalla (which is actually an expan-
(2.12),  sion in powers of the derivativad/dt), one finds

n

v(t). (3.9

This equation has no preacceleration solutions. | must refer mv=F_—myy+ 2e*V+0(a), (3.5

to the excellent book by Yaghjian for details. L . . .
Of considerable inte)r/est |gs ]the fact that so many effortsWhICh 'S’.Of course, just the Lorentz equa-tlon but with the
oq term instead of then,term that occurs in the Lorentz—

have been made to propose substantial modifications of t brah Di i 12, B h d )
classical Lorentz—Abraham—Dirac equation in order to re’\Praham-Dbirac equatio2.12. But what matters dynami-
ally is only the renormalized equation,

move the pathological solutions. These attempts were ndt
replacements of the classical equations by quantum equa- ] 1

tions, as should have been expected after quantum mechanics (My—MeyV=F + medz_a [v(t—2a)—v(t)], (3.1)
became well established. Nor did these authors argue that thed that h ded. with th lized Lor-
solutions of a classical equation cannot be valid for smalfiNd that agrees, when expanded, wi € renormalized Lor
distances and certainly not foint particles in compliance entz equation. Both the inertial term as well as the Schott

: . ; ise from the expansion of the square bracket on the
with the first lesson given above. Rather, they wrote many afgrm arise
ingenious paper suggesting modifications (812 by re- right side. These two terms are therefore both the result of

placing thep# term by terms involving fewer derivatives, or the surrounding field, and are of dynamic origin; they hint at

. e : the delay effect explicit only iri3.1).
even suggesting modifications of the Maxwell equations. Since the Lorentz equation has pathological solutions, one

wonders whether E¢3.1) also has these undesirable solu-

tions. The answer was given by Moniz and Sh&rfrhey
ll. THE CHARGED SPHERE proved thatboth the self-acceleration solutiorzd the pre-

acceleration solutions are absent provided the radius of the

The fact that the electromagnetic self-energy of a charge@pherea>7,, wherer, is 2/3 the classical electron radius

sphere diverges in the limit to a point charge:~0, has e?/my. Equivalently, this condition can also be stated as
persuaded Abraham and others since the beginning of the ma>m (3.6)
century to attempt a derivation of the equations of motion in 0~ Ted: '
which the finite size is fully taken into account. An excellent Note that the preacceleration solutions are absent beedluse
review of charged particle dynamics including these attemptserders ofa have been included here within the linear ap-
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proximation. No expansion that requires analyticity is re- 1
flected in(3.1). An example of how the solutions of E.1) FE=mgy 5g LV (r=28)—vH(7)], (3.10b
compare with those of the Lorentz—Abraham-Dirac equa-
tion was given by Levine, Moniz, and Sh&. 1

Thus one sees that within the validity [imi(8.6), the ngmedﬁ [v#(7)+v*(T)v"(7)v,(7—2a)]. (3.100
equations of motion3.1) of a finite size sphere provide a
fully acceptable classical nonrelativistic dynamics. Is there & he forceF£ is due to the comovingnonradiative field. In
relativistic generalization of these equations that correspondsie point limit, it reduces to the electromagnetic inertial term
to the relativistic generalization of the Lorentz equation toand the Schott term; these terms now receive an explanation:
the Lorentz—Abraham-Dirac equation? The answer to thighey are part of the self-force due to the comoving field. As
question was first given more than 40 years ago by orentz predicted a long time ago, hig¢' is only the first
Caldirola®® He conjectured the equatiothere written in  approximation of something much more complicated. The

slightly different form force F# is due to radiation leaving the sphere and is prop-
1 erly called radiation reaction; it is a generalization(df6).
Mok =F£+ Mgy >3 [v*(7—2a) Equation(3.7) can be renormalized,
. 1
ToH(nvi(Tvl(T-28)]. (3.7 (Mo—Megv#=F{'+Meq 5 [v*(7—2a)
But he could not prove it. The proof was given much later by +oH(PY(T)v (17— 2a)].

Yaghjian(see Ref. 14, Appendix D ,
His proof starts from first principles: the Maxwell equa- (3.7

tions and the conservation laws. The approximations mad€aldirola showed that this equation has the correct limits: it

are the same as those in the derivation of Jacksdi’£8: reduces to the Lorentz—Abraham-Dirac equation in the limit

the nonlinear terms are neglected, except that here the fully— 0 and to(3.1) in the nonrelativistic limit. He also showed

relativistic nature of the theory is kept. The same trick ofthat his equation has no pathological solutions, no runaway,

working in the instantaneous rest frame of the sphere is alsand no preacceleration solutions. This is, of course, not sur-

used. This yields for the self-force prising because these same pathologies would already appear
in the nonrelativistic casé3.1), and fogér that case it has al-
Fo(t)= dE(x,t) p(x)d3x ready been .shoyvr! that they are gb nt. _
s(t f f (x)p(x) The validity limits of the Caldirola equation are deter-

> V(t—R) mine_d by the .fact thatl) it is a classic_al eq.uation and thgre-
S f j p(x")d3x’ p(x)d3x, fore is not valid for guantum mechanical sizes of the radius

3 R (from the analysis of the pathological solutiéhthis means
Mo> Mgy OF a>>2r /3, wherer, is the classical electron ra-
dius, ro=e%/my), and (2) because of the approximations
made in its derivation, it is valid only whenever nonlinear
terms in the instantaneous rest frame are negligible.

whereR=|x(t) —x’(t)|. Itis now easy to expand(t—R) in
powers ofR. After integration over a surface charge one
obtains an infinite series fd¥(t) which—fortunately—can
be summed. The result is the simple expression

1 IV. CONCLUDING REMARKS
Fs(t)=med£ v(t—2a). (3.8

If the dynamics of aclassical surface-charged sphere is
This is the relativistic self-force in the instantaneous restot valid in the quantum domain, what is tberrectdynam-
frame in the linear approximation. One can Lorentz transics at a very small radius or even at zero radius? To answer
form it to a general frame. Alternatively, one can apply thethis question, a nonrelativistic calculation was carried out by
argument used near the end of Sec. Il to derive the LorentzMoniz and Shar3® They derived equations of motion for a
Abraham—Dirac equation. Note that the projection tensofinite sizequantum mechanicatharge. They found an infi-
P~ in the instantaneous rest frame is just the identity tensoﬂite prder differential equation, i.e., an infinite ser.ies of de-
for the space part and zero for the time p@f'=s*, p+0  rivatives that apparently cannot be summed. The first term of
=0. Therefore(3.9) generalizes to that series is a finite electromagnetic inertial term corre-
sponding to a finiténondivergentmassmys. If, for a finite
v 1 v a one takes the limit of that term to classical physics
Fs (T):medﬁ P#*(1)v,(1—22) (A—0), one obtaingnys= Mgy of (2.8). But if one takes the
point particle limit of thesequantum mechanicaquations,
the expression fomy,s doesnot diverge. In fact, in the point
particle limit the result ismys=0! A nonrelativistic quan-
3.9 tum point payticle hagm electromagnetic mags. o
Parenthetically, it is good to know that the nonrelativistic
which is exactly what is needed to yield the Caldirola equa-quantum dynamics for a charged sphere is also free of patho-

:medZ_];';l [vA(7—2a)+v*(T)v"(T)v,(T—2a)],

tion (3.7). logical solution$® as long as the fine structure constant sat-
In order to interpret the Caldirola equation, it is desirableisfies a<<1.
to write it in the form Returning to the overview of classical charged particle dy-
_ namics, one can summarize the present situation as very sat-
mu#=F{+Fe+Fg, (3.108  sfactory: for a charged sphere there now exist equations of
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motion both relativistically and nonrelativistically that make ematically in the relationship between the vanishing of the
sense and that are free of the problems that have plagued thsergence of the energy—momentum-—stress tensor of a
theory for most of this century; these equations have no urelosed system and the four-vector character of its integral,
physical solution, no runaways, and no preaccelerations. Fqpe energy—momentun®*= [ T#*de, is independent of the
the electron which is physically a point charge, quantum meyrface o and is therefore a four-vector, if and only if
chanics must be use@nd gives satisfactory resylt€Only 9. TH=0

when all distances involved are in the classical domain is” i

. ; More than 30 years after Abraham, Poingamed Lorentz,
classical dynamics acceptable for electrons.

a calculation was made by Dirac that was manifestly covari-
ant throughout. Diraccompletely ignoredthe stabilizing
ACKNOWLEDGMENT force and still found a covariant answer! This answer was the
result of the manifest covariance which he preserved
throughout his calculation. Proceeding in this way, a covari-
ant result is thus guaranteed even when the physical consid-
erations(stability of the charged objectre ignored. Note,
APPENDIX however, that he obtainetA.3) with M =m. rather than

The force equatior(2.7) and the power equatiof2.10 Meg; h.is inertial term is thus j.ust the Lor'entz boosted elec-
each contain contributions from the self-figlthe last two ~ trostatic energy of a spherical shell in the rest frame,
terms in these equationdn order to make these equations Pg(0)=mes.
frame independent, special relativity requires force and Dirac’s work teaches two thing$l) stabilizing forces are
power to form a four-vectofwhen derivatives are taken with not necessary for obtaining a covariant regthiough they
respect tor rather thart). In addition, this four-vector must are, of course, physically necessary for stabjijignd(2) the
be orthogonal t@# as was pointed out preceding Eg.13.  separation into electromagnetic and stabilizing forces can be
Since the last terms ¢2.7) and(2.10 formI'#, (2.9), which  done either noncovariantlfas was done by Abraham and
is a four-vector and whicks orthogonal tav#, the remaining  Poincareabove or covariantly. A noncovariant separation
concern is with the inertial termgP,/d7 and dE,/d7, =~ makes good sense because the stabilizing forces are physi-
where cally complicated atomic and molecular forces that hold ex-

tra electrons to neutral atoms and molecules, or that hold
PA=MeqV  Ea=Meqy{1-1/(477)] (A1) positive ions to the neutral solid substrate. They are not nec-
are the momentum and energy due to the nmags P, and  essarily all of classical electromagnetic origin—they could
Ea do not form a four-vector. In the nonrelativistic limit they be of quantum mechanical nature such as covalent bonds, for
are example—and they are therefore physically not cleanly sepa-
rable from classical electromagnetic forces. But if one is pri-
marily interested in covariant relativistic equations of motion
The offending factor of 4/3 gave this problem its name, “theand one is willing to ignore the problem of how the charge is
4/3 problem.” But the four-vector character was not a prob-attached to the spherical insulatog@variantformulation of
lem for Abraham when he derived his equations before relathe charged shell is preferable. And that is exactly what
tivity. Dirac has done in 1938n the limit of a point chargeand

The key to its solutioras well as a solutiorhad been what was adopted if2.12 above?®
provided some 90 years ago. It was given by Poindare If one doeswant to include the stabilizing forces, one can
19062’ He pointed out that a spherical shell of charge is notproceedeither noncovariantlyor manifestly covariant. The
stable and would explode unless it is stabilized by centripetaformer has the advantage of permitting detailed physical
forces (Poincarestresses For a macroscopic charged insu- considerations more easily, the latter is mathematically sim-
lator these are the forces that hold the surface charge to thfler. Both have been used in the literature and they lead, of
insulator. There is also an associated binding energy. In thgoyrse, to identical results. Also, one must realize that the
rest frame, the Poincatending force per unit surface charge poincarechoice (A.2) is not unique; physically, one might
IS expect the cohesive forces to be associated with an energy as

fo=—(r/r)e/(8ma?). (A.2)  was observed by Abraham. Depending on whether the coher-
ence energy is chosen to be zero or nonzero, the results for
foa Will differ. But both ways of computing give a four-
vector if the calculation is done covariantlgee below.

Valuable conversations with Arthur Yaghjian are grate-
fully acknowledged.

Pa=Mev=4/3Mey, Ex=mMgg (AD)NR

For a moving frame, the sphere becomes a spheroid and o
must integratd, and the work done by it over that surface.
That calculation was carried out by YaghjiéiRef. 14, Sec.

4.1) in the spirit of Abraham and Lorentz. But there can be Noncovariantcalculations of the electromagnetic momen-
in addition, a binding energy that is already present in thdum and energy fostabilizedcharged sphere&and other

rest frame, Ep(0). Thus, one findsPp=0, Ep=Ep(0) charged objecjs have been made for several different

T (14)me{1/y~1). When this is added t6A.1). one ob- models?® All models yield covariant results, i.e., four-
tains a four-vector vectors for the total energy—momentu,,=Muv#. But
the value ofM depends on the model.
Plota=Muv* (A3) Similarly, manifestly covariantcalculations have been

with M=m,q, providedEp(0) is chosen to ben. /4. made for different models. Again, the value M in Pf,

The physical relationship between the stability of thedepends on the model; but for a given model they are the
charged spheréor electron and the frame independence of sameas obtained for a noncovariant separafibn.
the expression for energy and momentum is reflected math- An instructive example is the manifestly covariant calcu-
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lation made by Schwingelt He constructed energy—

p. A. M. Dirac, “Classical Theory of Radiating Electrons,” Proc. R. Soc.

momentum-—stress tensors that assure stability: he observefondon Ser. A167, 148-169(1938.

that there are two possible choices,
2

lTpv_ puv
T "=P*#", Ry

ZTgV: 7, t=

8(a?—x?),
(A.4)

wheret corresponds tdA.2), 6 is the step function, ang/’
=P#"x,, andP*” is defined in(2.13. That tensor can be
added to the electromagnetic tensor and one finds dith
=v,do,

P{gw:f (TEp+TE v do=Muv*. (A.5)
The result is eithetM =mg or M =m.q. In the first case,

the stabilizing tensor contributes nothing becaB4é is or-
thogonal tov*. That is the case whefe,=0. In the second

case,Ep=m.J3 in the rest frame. One can, of course,

choose the coherence energy density to be only a fradtjon,
of t. In that caseT#"=(1—f )!T#"+f2T~#", and one finds
M=(1+f/4)mg. The argument over whethen, or mgyy
=4myd3 is the “right” answer is thus resolved: again, it

2Note that he obtaineth,s and notm,, for the inertial term.
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NEWTON, FORGIVE ME

Enough of this. Newton, forgive me; you found the only way which, in your age, was just apout
possible for a man of highest thought- and creative power. The concepts, which you created, are
even today still guiding our thinking in physics, although we now know that they will have to be
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replaced by others farther removed from the sphere of immediate experience, if we aim at a
profounder understanding of relationships.
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