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A brief review of the history of the classical equations of motion of charged particles is given
leading up to the present time. Emphasis is placed on the important role of the validity limits of the
theory. The little known relativistic equations of motion of a surface-charged sphere are presented.
Their proof and validity limits are discussed. An appendix gives the history and eventual solution
of the stability problem~the ‘‘4/3 problem’’!. The emphasis is on understanding rather than on
technical details. ©1997 American Association of Physics Teachers.
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I. PURPOSE OF THIS PAPER

This year is the centennial of the discovery of the elect
by J. J. Thomson. It is therefore most appropriate to rev
the attempts at a dynamics for this particle as it has b
developed during the past 100 years. In the context of a v
brief historical survey, two lessons learned from that tortuo
history are the main topics. The first lesson is of a gene
nature. It elaborates on the fact that in a strict sense
notion of a ‘‘classical point charge’’ is an oxymoron becau
‘‘classical’’ and ‘‘point’’ contradict one another: classica
physics ceases to be valid at sizes at or below a Com
wavelength and thus cannot possibly be valid for a po
object. The lesson is thus:

The dynamics of point charges is an excellent exampl
the importance of obeying the validity limits of a physic
theory. When these limits are exceeded the predictions o
theory may be incorrect or even patently absurd. In t
present case, theclassical equations of motion have the
validity limits where quantum mechanics becomes imp
tant: they can no longer be trusted at distances of the or
of (or below) the Compton wavelength.

The second lesson refers to the equations of motion o
extended particle~rather than a point particle!, a sphere with
a uniformly distributed surface charge. In their nonrelativ
tic form, they have been written down almost 80 years a
in their relativistic form, over 40 years ago.
The relativistic equations of motion of a surface-charg
sphere are in excellent approximation a set of nonline
first-order differential-difference equations. In the limit whe
the radius vanishes, they become the Lorentz–Abraham–
Dirac equations.

The title of the present paper is purposely ambiguous
can mean either~the dynamics of a charged sphere! and the
electron, or the dynamics of~a charged sphere and an ele
tron!. If we heed the first of the above lessons, the first me
ing is correct: An electron is a quantum mechanical part
and can therefore—strictly speaking—not be described
the dynamics of a classical object, a charged sphere. H
ever, the dynamics has been used in the second sense
this is justified if the distances involved are all large co
pared to quantum mechanical distances; the classical th
for point charges will then be an excellent approximatio
Also, when the distances involved are large compared to
radiusa of a charged sphere, the results will be independ
of a; they will then be the same as those from a point cha
theory. In fact, the equations of motion for a charged sph
reduce to the equations of motion for a point charge in
1051 Am. J. Phys.65 ~11!, November 1997
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limit as a goes to zero. But one cannot use classical dyna
ics for a point charge when quantum mechanical distan
are involved: quantum dynamics then becomes necessa

It should be clear that in a short review like the present
is impossible to do justice to the many papers written on
subject over the years. Many important papers must, un
tunately, remain unmentioned.

II. THE POINT CHARGE DYNAMICS

The electromagnetic force density on a volume elemen
charge,r~x!, was first given by Lorentz1 in 1892,

fL5r~E1v3B!. ~2.1!

It was later2 applied by him to the electron discovered b
Thomson3 in 1897, which he assumed to be a point of to
chargee,

FL5e~E1v3B!. ~2.2!

This is the Lorentz force on a point charge.4 But he argued
that when the charge is accelerated, there are additi
forces acting due to the charge’s own electromagnetic fi
The equation of motion for the electron, he argued, is the
fore in first approximation,

mv̇5FL1 2
3e

2v̈ ~2.3!

where a dot indicates a time derivative. This equation
known as the Lorentz equation.

In the same year in which the electron was discover
Larmor5 provided the formula for the radiation rate of a
accelerated charge,

dER

dt
5

2

3
e2v̇2. ~2.4!

This formula was soon generalized to the relativistic case
Heaviside,6

dER

dt
5

2

3
e2v̇av̇a . ~2.5!

It is written here in relativistic notation:v05g, vk5(gv)k

~a50,1,2,3, k51,2,3, metric tensor trh512!, and t de-
notes the proper time,dt5dt/g andg5(12v2)21/2. In this
as in all covariant equations, the dot indicates differentiat
with respect tot.

Heaviside derived~2.5! before the theory of relativity was
available because he used the Maxwell equations which
relativistic. Note that~2.5! is a Lorentz scalar. Furthe
progress was made by Abraham7 when he derived therate of
1051© 1997 American Association of Physics Teachers
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momentum carried away from the charge by radiation. N
relativistically, it is just the radiation rate~2.4! times the
velocity v. Its relativistic generalization, when combine
with ~2.5! gives the four-vector

dPm

dt
5

2

3
e2v̇av̇avm. ~2.6!

This four-vector represents the rate at which energy and
mentum is carried away from the charge by radiation.
negative is theradiation reaction, and it will necessarily play
an important role in the equations of motion. Note that
0-component of~2.6! is just g times ~2.5!.

Abraham8 then succeeded in deducing the equations
motion of a rigid sphere of chargee and radiusa in the
approximation of smalla. Assuming a bare mass,m, which
he assumed to vanish, his equations can be written

m
d

dt
~gv!5FL2med

d

dt
~gv!1G, ~2.7a!

G5 2
3e

2g2$@ v̈13g2v• v̇v̇1g2@v–v̈13g2~v–v̇!2#v#%.
~2.7b!

Heremed is the electrodynamic energy

med5
2e2

3a
~2.8!

The term containingmed is an inertial term and, when s
interpreted, can be combined with the left-hand side. T
sum m1med5m0 is then identified with the observed re
mass of the sphere.

The massm involves a bare mass of unknown size as w
as, in the case of a macroscopic charged sphere, the ma
the uncharged insulator. The mass of the latter, which m
of course, always be included on the left side of the eq
tions of motion will play no further role in the later discu
sion and will not be explicitly mentioned below.

Before discussing the complicated result~2.7b!, let us
jump ahead historically and give the result found by v
Laue.9 He showed thatG is just the relativistic generalizatio
of the last term in the Lorentz equation~2.3! and can be
identified with the space part~times 1/g! of the four-vector

Gm5 2
3e

2~ v̈m2 v̇av̇avm!. ~2.9!

One sees that the von Laue vectorGm consists of two terms
of which the second one is just the radiation reaction~2.6!.
The first one is sometimes called the Schott term; its sp
part has a nonrelativistic limit which is~apart from a factor
g! just the last term of the Lorentz equation~2.3!. Unfortu-
nately, in the earlier literature thewholeexpressionGm has at
times been called ‘‘radiation reaction,’’ this has caused mu
confusion in understanding and resulted in incorrect pap
in the literature.

In addition to the rate of momentum change which yie
~2.7!, Abraham also derived the rate of energy change.10 As-
suming a bare mass, his equation becomes

m
dg

dt
5

dE

dt
5FL•v2med

d

dt S g2
1

4g D
1

2

3
e2g4@v–v̈13g2~v–v̇!2#. ~2.10!
1052 Am. J. Phys., Vol. 65, No. 11, November 1997
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The last term together with the last term of~2.7a! is ~except
for a factorg! just the four-vectorGm in ~2.9!. But themed

term does not form a four-vector with themed term of ~2.7a!.
In the nonrelativistic limit, these twomed terms are the time
derivatives ofmes and 4/3mesv, respectively, where

mes5
1

2

e2

a
~2.11!

is the electrostatic energy of a surface-charged sphere.
cause these are the correct expressions for the rest en
and the kinetic energy except for the factor 4/3, this is kno
as the ‘‘4/3 problem.’’ It has a long history that extend
throughout most of the last 90 years. The main point
correcting the problem is the observation first made by Po
caréthat one must take into account the forces that hold
~otherwise exploding! charged sphere together. These a
called the ‘‘Poincare´ stresses,’’ or, for a classical sphere, t
‘‘binding forces’’ that hold the surface charge to the insu
tor. I shall sketch the history and solution to the 4/3 proble
in the Appendix. It yields the Lorentz invariant combinatio
of ~2.7! and ~2.10!,

mv̇m5FL
m2mesv̇

m1Gm, FL
m5eFmava , ~2.12!

with Gm given by ~2.9!. This is the relativistic equation o
motion of a surface-charged sphere as it results from
work of Abraham, Lorentz, and Poincare´.

Much later, in 1939, after the development of quantu
mechanics, Dirac11 derived this same classical equatio
~2.12! for point charges using the Maxwell equations, t
conservation laws, and simplicity~read: neglecting highe
order terms!. His derivation is manifestly covariant through
out. But he did it for a point charge so that themes term12 is
necessarily infinite (a→0). Equation~2.12! should therefore
be appropriately called theLorentz–Abraham–Dirac equa-
tion.

It is instructive to derive this equation by a very simp
argument. Starting with the relativistic form of Newton
equations for a particle of bare massm subject to the Lorentz
force, mv̇m5FL

m , one observes that both sides of this equ
tion are orthogonal tovm. Thus, if one wants to guess wha
extra term must be added in order to account for the effe
of the self-field, one can write that term as

Xm5PmnYn , Pmn5hmn1vmvn. ~2.13!

Pmn is the projection into the hyper-plane orthogonal tovm.
Now the simplest choice forYm, restricting oneself to linear
terms, is

Ym5avm1bv̇m1cv̈m.

The first term vanishes becausePmnvn50, the rest gives
Xm5bv̇m1c(vm2vmv̇av̇a) becausevav̈a52 v̇av̇a . The
first term is an inertial term so thatb is identified with the
rest energy of the charge, which for our sphere is justmes. It
can be combined with the left-hand side~this process can be
called ‘‘renormalization’’! to yield the empirical rest mas
m05m1mes. The coefficientc is determined by the require
ment that the radiation rate four-vector~2.6! must appear as
a radiation reaction~hence the minus sign! in the equation of
motion; thusc52e2/3. The result is~2.12!. This must surely
be the simplest possible argument leading to the Loren
Abraham–Dirac equation. A similar argument will play
role again later on.
1052F. Rohrlich
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The Lorentz–Abraham–Dirac equation~2.12! as well as
its nonrelativistic limit, the Lorentz equation~2.3!, have so-
lutions that are pathological. These solutions include
force-free case (FL50) which, in addition to the physica
solutionv5constant, has a solution according to which t
particle accelerates indefinitely~the so-called runaway solu
tions!; and there are also solutions whichanticipatea change
in the external force and according to which the particle
celerates in advance of the application of a force~preaccel-
eration solutions!. These solutions are discussed in vario
texts.

As emphasized earlier, the appearance of pathologica
lutions is not surprising since~except for the self-energy! all
powers ofa have been neglected in the derivation so that t
classicalequation describes effectively apoint particle. We
shall see in Sec. III that whenall higher order terms are
included, pathological solutions indeed do not occur. Ho
ever, for the Lorentz–Abraham–Dirac equation~2.12! the
problem of the pathological solutions can be solved with
going to the higher, size-dependent terms in the expans
For the runaway solutions, one can simply impo
asymptotic conditions to the effect that in the distant futu
the acceleration ceases.13 This preserves only the physica
solutionv5constant in the force-free case. For preaccele
tion, the problem can be solved by removing its origin. T
was done by Yaghjian.14

He observed that the expansion made in the deriva
requires the function that is expanded to be analytic. Si
one integrates over the retarded time, this analyticity is v
lated when the force changes too quickly~within a time short
compared to the time it takes a light ray to cross the partic!.
The step function onset is an extreme example of this.
problem can be solved by introducing a smooth funct
h~t!, which vanishes fort,0 and becomesl at aboutt
52a. Equation~2.12! should then be written as

mv̇m5FL
m2mesv̇

m1hGm.
(2.12)Y

This equation has no preacceleration solutions. I must r
to the excellent book by Yaghjian for details.

Of considerable interest is the fact that so many effo
have been made to propose substantial modifications of
classical Lorentz–Abraham–Dirac equation in order to
move the pathological solutions. These attempts were
replacements of the classical equations by quantum e
tions, as should have been expected after quantum mech
became well established. Nor did these authors argue tha
solutions of a classical equation cannot be valid for sm
distances and certainly not forpoint particles in compliance
with the first lesson given above. Rather, they wrote many
ingenious paper suggesting modifications of~2.12! by re-
placing thev̈m term by terms involving fewer derivatives, o
even suggesting modifications of the Maxwell equations.

III. THE CHARGED SPHERE

The fact that the electromagnetic self-energy of a char
sphere diverges in the limit to a point charge,a→0, has
persuaded Abraham and others since the beginning of
century to attempt a derivation of the equations of motion
which the finite size is fully taken into account. An excelle
review of charged particle dynamics including these attem
1053 Am. J. Phys., Vol. 65, No. 11, November 1997
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was given by Erber.15 Other valuable reviews emphasiz
nonradiating solutions,16 point particles with spin17 and with
multipole moments.18

Particularly extensive work on extended charges was
ried out by Sommerfeld.19 I shall limit the discussion here to
the sphere with uniform surface charge; the case of a volu
charge is considerably more complicated and adds nothin
the understanding of the problem. Sommerfeld showed
in the nonrelativistic case, such a sphere obeys in good
proximation the equation20

mv̇5FL1med

1

2a
@v~ t22a!2v~ t !#. ~3.1!

It is not difficult to derive this equation. The equation
motion can be written

mv̇5FL1FS , ~3.2!

whereFS is the self-force. As shown in Jackson,21 Sec. 17.3,
if one neglects nonlinear terms,FS is given by an infinite
series, Eq.~17.28!. Each term of that series contains an int
gral that is easily evaluated for a surface-charged sphere

E E d3xd3x8r~x!ux2x8un21r~x8!52e2
~2a!n21

n11
,

~3.3!

so that the infinite series becomes

FS5
2

3
e2

1

a (
~21!n

n!

1

n11 S 2a]

]t D n

v~ t !. ~3.4!

This series can be summed and the result is~3.1!.
Equation~3.1! is a first-order differential-difference equa

tion of the retarded type.22 It implies that the electromagneti
field attached to the charge causes a self-force which h
delayed effect on its motion. The delay time is exactly t
time it takes a light ray to cross the diameter of the sphere
one expands~3.1! for small a ~which is actually an expan
sion in powers of the derivativead/dt!, one finds

mv̇5FL2medv̇1 2
3e

2v̈1O~a!, ~3.5!

which is, of course, just the Lorentz equation but with t
med term instead of themes term that occurs in the Lorentz–
Abraham–Dirac equation~2.12!. But what matters dynami-
cally is only the renormalized equation,

~m02med!v̇5FL1med

1

2a
@v~ t22a!2v~ t !#, (3.1)8

and that agrees, when expanded, with the renormalized
entz equation. Both the inertial term as well as the Sch
term arise from the expansion of the square bracket on
right side. These two terms are therefore both the resul
the surrounding field, and are of dynamic origin; they hint
the delay effect explicit only in~3.1!.

Since the Lorentz equation has pathological solutions,
wonders whether Eq.~3.1! also has these undesirable sol
tions. The answer was given by Moniz and Sharp.23 They
proved thatboth the self-acceleration solutionsand the pre-
acceleration solutions are absent provided the radius of
spherea.t0 , wheret0 is 2/3 the classical electron radiu
e2/m0 . Equivalently, this condition can also be stated as

m0.med. ~3.6!

Note that the preacceleration solutions are absent becausall
orders ofa have been included here within the linear a
1053F. Rohrlich
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proximation. No expansion that requires analyticity is
flected in~3.1!. An example of how the solutions of Eq.~3.1!
compare with those of the Lorentz–Abraham–Dirac eq
tion was given by Levine, Moniz, and Sharp.24

Thus one sees that within the validity limits~3.6!, the
equations of motion~3.1! of a finite size sphere provide
fully acceptable classical nonrelativistic dynamics. Is ther
relativistic generalization of these equations that correspo
to the relativistic generalization of the Lorentz equation
the Lorentz–Abraham–Dirac equation? The answer to
question was first given more than 40 years ago
Caldirola.25 He conjectured the equation~here written in
slightly different form!

mv̇m5FL
m1med

1

2a
@vm~t22a!

1vm~t!va~t!va~t22a!#. ~3.7!

But he could not prove it. The proof was given much later
Yaghjian ~see Ref. 14, Appendix D!.

His proof starts from first principles: the Maxwell equ
tions and the conservation laws. The approximations m
are the same as those in the derivation of Jackson’s~17.28!:
the nonlinear terms are neglected, except that here the
relativistic nature of the theory is kept. The same trick
working in the instantaneous rest frame of the sphere is
used. This yields for the self-force

FS~ t !5E E dE~x,t !r~x!d3x

52
2

3 E E v~ t2R!

R
r~x8!d3x8r~x!d3x,

whereR5ux(t)2x8(t)u. It is now easy to expandv(t2R) in
powers ofR. After integration over a surface charge o
obtains an infinite series forFs(t) which—fortunately—can
be summed. The result is the simple expression

FS~ t !5med

1

2a
v~ t22a!. ~3.8!

This is the relativistic self-force in the instantaneous r
frame in the linear approximation. One can Lorentz tra
form it to a general frame. Alternatively, one can apply t
argument used near the end of Sec. II to derive the Loren
Abraham–Dirac equation. Note that the projection ten
Pmn in the instantaneous rest frame is just the identity ten
for the space part and zero for the time part:Pkl5dkl, Pm0

50. Therefore~3.8! generalizes to

FS
mn~t!5med

1

2a
Pmn~t!vn~t22a!

5med

1

2a
@vm~t22a!1vm~t!vn~t!vn~t22a!#,

~3.9!

which is exactly what is needed to yield the Caldirola eq
tion ~3.7!.

In order to interpret the Caldirola equation, it is desirab
to write it in the form

mv̇m5FL
m1FC

m1FR
m , ~3.10a!
1054 Am. J. Phys., Vol. 65, No. 11, November 1997
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FC
m5med

1

2a
@vm~t22a!2vm~t!#, ~3.10b!

FR
m5med

1

2a
@vm~t!1vm~t!vn~t!vn~t22a!#. ~3.10c!

The forceFC
m is due to the comoving~nonradiative! field. In

the point limit, it reduces to the electromagnetic inertial te
and the Schott term; these terms now receive an explana
they are part of the self-force due to the comoving field.
Lorentz predicted a long time ago, hisvm is only the first
approximation of something much more complicated. T
force FR

m is due to radiation leaving the sphere and is pro
erly called radiation reaction; it is a generalization of~2.6!.

Equation~3.7! can be renormalized,

~m02med!v̇
m5FL

m1med

1

2a
@vm~t22a!

1vm~t!va~t!va~t22a!#.
(3.7)8

Caldirola showed that this equation has the correct limits
reduces to the Lorentz–Abraham–Dirac equation in the li
a→0 and to~3.1! in the nonrelativistic limit. He also showe
that his equation has no pathological solutions, no runaw
and no preacceleration solutions. This is, of course, not
prising because these same pathologies would already ap
in the nonrelativistic case~3.1!, and for that case it has al
ready been shown that they are absent.23

The validity limits of the Caldirola equation are dete
mined by the fact that~1! it is a classical equation and there
fore is not valid for quantum mechanical sizes of the radiua
~from the analysis of the pathological solutions23 this means
m0.med or a.2r 0/3, wherer 0 is the classical electron ra
dius, r 05e2/m0!, and ~2! because of the approximation
made in its derivation, it is valid only whenever nonline
terms in the instantaneous rest frame are negligible.

IV. CONCLUDING REMARKS

If the dynamics of aclassical surface-charged sphere
not valid in the quantum domain, what is thecorrectdynam-
ics at a very small radius or even at zero radius? To ans
this question, a nonrelativistic calculation was carried out
Moniz and Sharp.23 They derived equations of motion for
finite sizequantum mechanicalcharge. They found an infi-
nite order differential equation, i.e., an infinite series of d
rivatives that apparently cannot be summed. The first term
that series is a finite electromagnetic inertial term cor
sponding to a finite~nondivergent! massmMS. If, for a finite
a one takes the limit of that term to classical physi
(\→0), one obtainsmMS5med of ~2.8!. But if one takes the
point particle limit of thesequantum mechanicalequations,
the expression formMS doesnot diverge. In fact, in the point
particle limit the result ismMS50! A nonrelativisticquan-
tum point particle hasno electromagnetic mass.26

Parenthetically, it is good to know that the nonrelativis
quantum dynamics for a charged sphere is also free of pa
logical solutions23 as long as the fine structure constant s
isfiesa,1.

Returning to the overview of classical charged particle d
namics, one can summarize the present situation as very
isfactory: for a charged sphere there now exist equation
1054F. Rohrlich
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motion both relativistically and nonrelativistically that mak
sense and that are free of the problems that have plague
theory for most of this century; these equations have no
physical solution, no runaways, and no preaccelerations.
the electron which is physically a point charge, quantum m
chanics must be used~and gives satisfactory results!. Only
when all distances involved are in the classical domain
classical dynamics acceptable for electrons.
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APPENDIX

The force equation~2.7! and the power equation~2.10!
each contain contributions from the self-field~the last two
terms in these equations!. In order to make these equation
frame independent, special relativity requires force a
power to form a four-vector~when derivatives are taken wit
respect tot rather thant!. In addition, this four-vector mus
be orthogonal tovm as was pointed out preceding Eq.~2.13!.
Since the last terms of~2.7! and~2.10! form Gm, ~2.9!, which
is a four-vector and whichis orthogonal tovm, the remaining
concern is with the inertial termsdPA /dt and dEA /dt,
where

PA5medgv EA5medg@121/~4g2!# ~A.1!

are the momentum and energy due to the massmed. PA and
EA do not form a four-vector. In the nonrelativistic limit the
are

PA5medv54/3mesv, EA5mes ~A1!NR

The offending factor of 4/3 gave this problem its name, ‘‘t
4/3 problem.’’ But the four-vector character was not a pro
lem for Abraham when he derived his equations before r
tivity.

The key to its solutionas well as a solutionhad been
provided some 90 years ago. It was given by Poincare´ in
1906.27 He pointed out that a spherical shell of charge is
stable and would explode unless it is stabilized by centrip
forces~Poincare´ stresses!. For a macroscopic charged ins
lator these are the forces that hold the surface charge to
insulator. There is also an associated binding energy. In
rest frame, the Poincare´ binding force per unit surface charg
is

fP52~r /r !e/~8pa2!. ~A.2!

For a moving frame, the sphere becomes a spheroid and
must integratefP and the work done by it over that surfac
That calculation was carried out by Yaghjian~Ref. 14, Sec.
4.1! in the spirit of Abraham and Lorentz. But there can b
in addition, a binding energy that is already present in
rest frame, EP(0). Thus, one findsPP50, EP5EP(0)
1(1/4)med(1/g21). When this is added to~A.1!, one ob-
tains a four-vector

Ptotal
m 5Mvm ~A.3!

with M5med, providedEP(0) is chosen to bemed/4.
The physical relationship between the stability of t

charged sphere~or electron! and the frame independence
the expression for energy and momentum is reflected m
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ematically in the relationship between the vanishing of
divergence of the energy–momentum–stress tensor o
closed system and the four-vector character of its integ
the energy–momentum:Pm5*Tmndsn is independent of the
surface s and is therefore a four-vector, if and only
]nTmn50.

More than 30 years after Abraham, Poincare´, and Lorentz,
a calculation was made by Dirac that was manifestly cov
ant throughout. Diraccompletely ignoredthe stabilizing
force and still found a covariant answer! This answer was
result of the manifest covariance which he preserv
throughout his calculation. Proceeding in this way, a cova
ant result is thus guaranteed even when the physical con
erations~stability of the charged object! are ignored. Note,
however, that he obtained~A.3! with M5mes rather than
med; his inertial term is thus just the Lorentz boosted ele
trostatic energy of a spherical shell in the rest fram
PD

0 (0)5mes.
Dirac’s work teaches two things:~1! stabilizing forces are

not necessary for obtaining a covariant result~though they
are, of course, physically necessary for stability!; and~2! the
separation into electromagnetic and stabilizing forces can
done either noncovariantly~as was done by Abraham an
Poincare´ above! or covariantly. A noncovariant separatio
makes good sense because the stabilizing forces are p
cally complicated atomic and molecular forces that hold
tra electrons to neutral atoms and molecules, or that h
positive ions to the neutral solid substrate. They are not n
essarily all of classical electromagnetic origin—they cou
be of quantum mechanical nature such as covalent bonds
example—and they are therefore physically not cleanly se
rable from classical electromagnetic forces. But if one is p
marily interested in covariant relativistic equations of moti
and one is willing to ignore the problem of how the charge
attached to the spherical insulator, acovariantformulation of
the charged shell is preferable. And that is exactly w
Dirac has done in 1938~in the limit of a point charge! and
what was adopted in~2.12! above.28

If one doeswant to include the stabilizing forces, one ca
proceedeither noncovariantlyor manifestly covariant. The
former has the advantage of permitting detailed phys
considerations more easily, the latter is mathematically s
pler. Both have been used in the literature and they lead
course, to identical results. Also, one must realize that
Poincare´ choice ~A.2! is not unique; physically, one migh
expect the cohesive forces to be associated with an energ
was observed by Abraham. Depending on whether the co
ence energy is chosen to be zero or nonzero, the result
Ptotal

m will differ. But both ways of computing give a four
vector if the calculation is done covariantly~see below!.

Noncovariantcalculations of the electromagnetic mome
tum and energy forstabilized charged spheres~and other
charged objects! have been made for several differe
models.29 All models yield covariant results, i.e., four
vectors for the total energy–momentum,Ptotal

m 5Mvm. But
the value ofM depends on the model.

Similarly, manifestly covariantcalculations have been
made for different models. Again, the value ofM in Ptotal

m

depends on the model; but for a given model they are
sameas obtained for a noncovariant separation.30

An instructive example is the manifestly covariant calc
1055F. Rohrlich
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lation made by Schwinger.31 He constructed energy–
momentum–stress tensors that assure stability: he obse
that there are two possible choices,

1Ts
mn5Pmnt, 2Ts

mn5hmnt, t5
e2

8pa4 u~a22x'
2 !,

~A.4!

wheret corresponds to~A.2!, u is the step function, andx'
m

5Pmnxn , and Pmn is defined in~2.13!. That tensor can be
added to the electromagnetic tensor and one finds withdsn

5vnds,

Ptotal
m 5E ~Tem

mn1Ts
mn!vnds5Mvm. ~A.5!

The result is either1M5mes or 2M5med. In the first case,
the stabilizing tensor contributes nothing becausePmn is or-
thogonal tovm. That is the case whereEP50. In the second
case, EP5mes/3 in the rest frame. One can, of cours
choose the coherence energy density to be only a fractiof ,
of t. In that case,Ts

mn5(12 f )1Ts
mn1 f 2Ts

mn , and one finds
M5(11 f /4)mes. The argument over whethermes or med

54mes/3 is the ‘‘right’’ answer is thus resolved: again,
depends on the model; either value as well as any valu
between is possible. But in all cases, one obtains a fo
vector for the stabilized charged sphere.
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1H. A. Lorentz, ‘‘La théorie élecromagnetique de Maxwell et son applic
tion aux corps mouvemants,’’ Arch. Ne´erl. Sci. Exactes Nat.25, 363–552
~1892!.

2H. A. Lorentz, ‘‘Weiterbildung der Maxwellschen Theorie,’’ Encyk
Mathe. Wiss. V2, 145–280~1904!.

3J. J. Thomson, ‘‘Cathode rays,’’ Philos. Mag.44, 294–316~1897!.
4The units chosen in the following will be Gaussian units with the spee
light, c, chosen to be 1. These choices ensure that the equations ar
cluttered with irrelevant factors.

5J. Larmor, ‘‘On the theory of the magnetic influence on spectra; and on
radiation from moving ions,’’ Philos. Mag.44, 503–512~1897!.

6O. Heaviside, ‘‘The waste of energy from a moving electron,’’ Nature67,
6–7 ~1902!.

7M. Abraham, ‘‘Prinzipien der Dynamik des Elektrons,’’ Ann. Phys.10,
105–179~1903!.

8M. Abraham,Theorie der Elektrizita¨t, ~Teubner, Leipzig, 1905! Vol. II.
9M. Von Laue, ‘‘Die Wellenstrahlung einer bewegten Punktladung na
dem Relativita¨tsprinzip,’’ Ann. Phys.28, 436–442~1909!.

10M. Abraham, ‘‘Zur Theorie der Strahliung,’’ Ann. Phys.14, 236–287
~1904!.
1056 Am. J. Phys., Vol. 65, No. 11, November 1997
ed

,

in
r-

-

f
not

e

h

11P. A. M. Dirac, ‘‘Classical Theory of Radiating Electrons,’’ Proc. R. So
London Ser. A167, 148–169~1938!.

12Note that he obtainedmes and notmed for the inertial term.
13F. Rohrlich, Classical Charged Particles~Addison-Wesley, Redwood

City, CA, 1965 and 1990!.
14A. D. Yaghjian,Relativistic Dynamics of a Charged Sphere, Lecture Notes

in Physics m11~Springer-Verlag, Berlin, 1992!. See especially Chap. 8.
15T. Erber, ‘‘The classical theory of radiation reaction,’’ Fortschr. Phys.9,

343–392~1961!.
16P. Pearle, ‘‘Classical Electron Models,’’Electromagnetism, edited by D.

Teplitz ~Plenum, New York, 1982!, pp. 211–295.
17F. Rohrlich, ‘‘The Electron: Development of the First Elementary Parti

Theory,’’ in The Physicist’s Conception of Nature, edited by J. Mehra
~Reidel, Dordrecht, 1973!, pp. 331–369.

18C. Teitelboim, D. Villarroel, and Ch. G. van Weert, ‘‘Classical Electrod
namics of Retarded Fields and Point Particles,’’ Rev. Nuovo Cimento3,
1–64 ~1980!.

19A. Sommerfeld, ‘‘Simplified deduction of the field and the forces of
electron, moving in any given way,’’ Akad. Van Wetensch. Amsterda
13, 346–367~1904!. See also Ref. 8, paragraph 26.

20L. Page, ‘‘Is a moving mass retarded by the action of its own radiation
Phys. Rev.11, 377–400~1918!.

21J. D. Jackson,Classical Electrodynamics~Wiley, New York, 1975!, 2nd
ed.

22See, for example, R. Bellman and K. L. Cooke,Differential-Difference
Equations~Academic, New York, 1963!.

23E. J. Moniz and D. H. Sharp, ‘‘Radiation reaction in nonrelativistic qua
tum electrodynamics,’’ Phys. Rev.15, 2850–2865~1977!.

24H. E. Levine, J. Moniz, and D. H. Sharp, ‘‘Motion of extended charges
classical electrodynamics,’’ Am. J. Phys.45, 75–78~1977!.

25P. Caldirola, ‘‘A new model of the classical electron,’’ Nuovo Cimento3,
Suppl. 2, 297–343~1956!.

26This result was obtained only because no expansion in the fine struc
constant was made~as is customary in quantum electrodynamics!. Had
that been done,mMS would have been divergent in the point limit.

27H. Poincare´, ‘‘On the dynamics of the electron,’’ Rend. Circolo Ma
Palermo21, 129–176~1906!.

28This is also one reason why I wanted to formulate the electromagn
four-momentum in a manifestly covariant way. The actual value ofM is
here unimportant. See my book, Ref. 13, p 90, and my ‘‘Electromagn
energy, momentum, and mass,’’ Am. J. Phys.38, 1310–1316~1970!.

29See, for example, T. H. Boyer, ‘‘Classical model of the electron and
definition of the electromagnetic field momentum,’’ Phys. Rev. D25,
3246–3250~1982!; E. Comay, ‘‘Lorentz transformation of electromag
netic systems and the 4/3 problem,’’ Z. Natuforschlung46a 377–383
~1991!; I. Bialynicki-Birula, ‘‘Classical model of the electron; exactly
solvable example,’’ Phys. Rev. D28, 2114–2117~1983!. The very recent
paper by V. Hnizdo, ‘‘Hidden momentum and the electromagnetic mas
a charge and current carrying body,’’ Am. J. Phys.65, 55–65~1997!, is
especially instructive.

30F. Rohrlich, ‘‘Comment on the preceding paper by T. H. Boyer,’’ Phy
Rev. D25, 3251–3255~1982!.

31J. Schwinger, ‘‘Electromagnetic mass revisited,’’ Found. Phys.13, 373–
383 ~1983!.
NEWTON, FORGIVE ME

Enough of this. Newton, forgive me; you found the only way which, in your age, was just about
possible for a man of highest thought- and creative power. The concepts, which you created, are
even today still guiding our thinking in physics, although we now know that they will have to be
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profounder understanding of relationships.
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