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The example of a charged point particle in uniform
circular motion is treated from a pedagogical point of view
within classical electrodynamics. The elementary analysis
18 of interest because it clearly separates out the finite radia-
tion reaction force from the divergent mass renormalization
term, and also because the particle is always treated as a
point charge with the self-force found from evaluating the
point charge fields over a surrounding spherical surface.
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Fic. 1. Forces on a point charge in uniform circular motion.,

A classical charged particle in uniform cireular
motion provides a convenient and elementary
example of some aspects of mass renormalization
and radiation damping in classical electromag-
netism. The ideas required for the analysis are
available to students of course in intermediate-
level electromagnetism. In this note, we will
sketch one possible approach to this problem
which very clearly separates out a finite radiation
damping force from the divergent mass renormali-
zation force. For uniform circular motion, these
two forces are at right angles to each other.

Furthermore, the approach appears surprising
to some instructors in electromagnetism. The
account works with a point charge and averages
the fields due to that point charge over a small
surrounding surface so as to define the self-force.
This procedure using a point charge is quite
different from the traditional textbook approach
through a charge distribution of finite size whose
various parts interact so as to give a self-force on
the distribution.

NEWTON’S LAWS, ENERGY CONSERVATION,
AND FORCES.

External centripetal force. We consider a particle
of mass m and charge ¢ moving with uniform
angular velocity w in a circle of radius R, and ask
what are the external forces required to maintain
this motion. The initial response from any student
of mechanics is simply a centripetal force

Fr e =—moR,

(1)

required to provide the centripetal acceleration
—~w’R=—v*/R.

External tangential force. However, we now
remark that the charged particle, because it is
accelerated, must radiate away energy into the
electromagnetic field. What external source pro-
vides this energy? Clearly the centripetal force
F, exy can not supply energy because it is always
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radial and hence perpendicular to the motion of
the particle. Thus energy conservation requires
that there be an external force Fyex; in the direction
of particle motion.

Radiation damping force. The argument is still
not complete because a moment’s reflection
reminds us that an external force Fgext in the
direction of particle motion will try to accelerate
the particle in the direction of motion. However,
we assume that the particle was in uniform circular
motion. Hence the net acceleration in the direction
of motion must vanish, and also the net force on
the particle in the direction of motion must vanish.
We must have a further force Fpom which holds
the particle back and balances Fy ext,

Fﬁem=_F0eXt- (2)
This additional force Fy o, is the radiation damp-

ing force provided by the electromagnetic field to
which the charged particle is tied.

RADIATION DAMPING AND MASS RENOR-
MALIZATION RELATED TO THE
LORENTZ SELF-FORCE

Electromagnetic and mnonelectromagnetic forces.
Having found the necessity of a radiation damping
force Fgem, we now attempt to understand the
force in an elementary way. First of all, we remark
that the external force given by the radial and
centripetal components, F, o and Fy .z, may be
thought of as nonelectromagnetic in origin, and
even imagined in terms of little men pushing the
particle toward the center of the circle and along
its circumference. However, all electromagnetic
forces are specified in terms of the Lorentz force,

F=¢(E+v xB). (3)

The radiation damping force is clearly. an elec-
tromagnetic force; how can we reconcile it with the
Lorentz force?

Electromagnetic field at the particle as an average.
In order to use the Lorentz force, we must know
the value of the electric and magnetic fields E and
B at the position of the charge e. Now a point
charge involves fields falling off as 2 where r is
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the distance from the charge. These fields diverge
as r—0, and so do not provide meaningful answers
at r=0. However, intuition suggests that one
should average the fields surrounding the particle,
and define this average value as the field at the
particle. The Lorentz force then follows just as in
Eq. (3). This intuitive procedure can indeed be
carried out in a rigorous way! and is equivalent to
the more familiar treatments of self-forces and
mass renormalization.

Averaging the electric field over a sphere. Return-
ing to the specific problem of a charge in uniform
circular motion, we may, in the nonrelativistic
approximation, average the electromagnetic ficlds
over a small sphere surrounding the charge. (The
fields are taken as those given by the retarded
Green’s function.) The actual calculations are
provided in a short appendix at the end of this
note.

Calculated electromagnetic retarding force. The 8
component of the electric field at the charged
particle, obtained by averaging over a sphere of
radius e and allowing ¢—0, is just

Eg se11= —2ew®R /3.

(4)

(See the last equation in the appendix). Thus
the component in the direction of particle motion
for the Lorentz force on the charge due to its own
electric fields is

Foem=eEs g1t
=~} (FR/c?)

=3¢ (%)o/c%,

(5)

which is the familiar radiation damping force
appearing in electromagnetism textbooks.? Since
Newton’s second law required the relationship
between the external force and the radiation
damping given in Eq. (2), we have that the power
expended by the external force is just

P =FyxewR = %e2*R2/c2. (6)

The power radiated by a charged particle into the



electromagnetic field appears in textbooks as?

P=%(e*/c*) (%)

=%(e*/c*) (FR)™ )
Thus indeed the external force in the direction of
motion provides the power radiated away by the
charge.

In the case that the external force Fj exy is not
present, then the self-force Fyeom will slow the
particle motion. This is the case for realistic
situations involving a charged particle moving in
a uniform magnetic field, or a charged particle in
an attractive central potential. The energy loss
due to radiation is compensated by the change in
particle potential and kinetic energy.

Calculated electromagnetic centrifugal force. The
radial component of the electric field when
averaged over a sphere of radius ¢ is of the form

E, 1= (ew?/€) const+0 (1)

where the constant is positive. Thus the field
E, s11 at the position of the particle is divergent,
and the Lorentz self-force is divergent. It is
precisely this divergent self-force which is in-
volved in the concept of mass renormalization.
The self-force behaves as w?, and hence as a term
involving the particle acceleration %. The (di-
vergent) centripetal self-force is regarded as
combined with a (divergent) negative bare mass
for the particle to give a finite renormalized mass
m which responds to the external force F, o as in
Eq. (1).
Energy “and momentum singularities and the
self-forces. On -an .intuitive level, it seems clear
* why the self-force Fy oy is finite for this example,
while F, o, diverges. The energy in the electro-
magnetic field has a singularity at-the point charge.
However, since the speed of the particle is con-
stant, there are no changes in this singular energy,
but only in the radiated energy which involves no
singularities. Thus Fj . is finite and is tied to
finite energy changes. However, the acceleration
of the point charge involves changes in the direc-
tion of the electromagnetic momentum which is
singular at the position of the point charge. The
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divergent self-force F, o, is required to account
for the change in the direction of the singular
electromagnetic momentum.

CONCLUSION

The example of a point charge in uniform
circular motion is a convenient souree of illustra-
tions for some of the concepts and complications
of radiation damping and mass renormalization in
classical electromagnetism.

APPENDIX

Averaging the Self-Field Over a Small Sphere
Around the Charged Particle

In this appendix, we will sketch an unsophisti-
cated calculation of the self-fields of a point
charge in uniform circular motion. The electric
field of a point charge is given by*

E (x, t) =e[ (i—B) (1—£2)/K*? Joes
+ (e/e)L(A/K?r) % { (A—B) % B} Jres

where K=1—#-B, and the expressions are
evaluated at the retarded time. We wish to evalu-
ate this expression for the case of a charge in
uniform circular motion when the field point
(z, y, ) is very close to the point charge. Referring
to Fig. 1 indicating the point charge at time {=0,
we will take the y axis as upwards and the z axis to
the right so that the particle position r, at time ¢ is

z,=R coswt—R,
Ye=R sinwt,

2,=0.

Since the field point (z, y, 2) is a small distance ¢
from the charge, we will expand the expression for
the field at time ¢ =0 in terms of e = (x4 y2+22)'2.
Although it is not difficult, (only tedious), to
carry all terms in (v/¢) for the fields, it is not
instructive for this note. Hence we will make the
second approximation that we will keep only the
lowest contributing terms in the particle fre-
quency w.
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Expanding the sine and cosine functions about
t=0, we require for the velocity fields

1= (—w*Rt*/2)i+wRt),
B=— (w*Rt/c)i+ (wR/c)].
Then
ii=(x—r.)/| x—T.|,

h—B=[(x—32RE)i+17+2k]/ (—ct),
and the velocity field is
e[ (i—B) /1 Jee=ec" ([ — («*Re?/2¢*) Ji+y]+2k}

where we have approximated the retarded time ¢
by

~ct =r=e.
For the radiation fields it is sufficient to take

= (at+yf+ek)/(—ct),
B= (—w*Rit—u’RI7)/c

1 The idea of defining the fields at a charged particle by
averaging the self-fields has occurred to a number of
persons before the present author. Recently an analysis
has been published by C. Teitelboim [Phys. Rev. D 4, 345
(1971) ], which gives references to several people who
published similar ideas still earlier.
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giving
(e/e)[fi % (i % B)/7 Jret
_ ¢ {(62—x2)w2R ;
¢ c

i [—xya;”R i (yz——ez)aﬁRe]y

c c?

n (——xisz n yzuc::Re) ic} .

Both contributions to the electric field diverge
as e—0. However, when averaged over the sphere
of radius e centered on the particle at time {=0,
then all terms which are odd in z, y, or z vanish.
Recalling that 22 or 2 or 2?2 gives the value 3¢
when averaged over the sphere of radius ¢, we
have

ek, 2es’R

Esit= ’66—26 G g"c;“ J

just as required in the note.

2 See, for example, J. D. Jackson, Classical Electrody-
namics (Wiley, New York, 1962), p. 582, Eq. (17.8).

3 See Ref. 2, p. 469, Eq. (14.22), or J. R. Reitz and F. J.
Milford, Foundations of Electromagnetic Theory (Addison-
Wesley, Reading, Mass., 1967), 2nd ed., p. 354, Eq. (16-161).

4+ See Ref. 2, p. 467, Eq. (14.14).



