Homework #4 Due Feb 16

Read Griffiths chapters 6 and 7

- 1. Griffiths 7.8
- 2. Griffiths 7.9
- 3. Griffiths 7.22
- 4. The parity operator may be given by γ^0 , see Griffiths Eqn 7.61 and references.
 - (a) What is the parity eigenvalue of the particle state $u^{(1)}(p=0)$?
 - (b) What is the parity eigenvalue of the anti-particle state $v^{(1)}(p=0)$?
 - (c) We could equally as well used $-\gamma^0$ as the parity operator, what would you have found for parts a) and b) in that case?
 - (d) Find the behavior under Parity of the five bilinear combinations $\bar{\psi}\psi$, $\bar{\psi}\gamma^5\psi$, $\bar{\psi}\gamma^\mu\psi$, $\bar{\psi}\gamma^\mu\gamma^5\psi$ and $\bar{\psi}\sigma^{\mu\nu}\psi$. Hint: the pseudoscalar case is done for you in Griffiths.
- 5. Find the angular cross-section $\frac{d\sigma}{d\Omega}$ for $e^+e^- \to \mu^+\mu^-$ in the limit that the outgoing μ are non-relativistic.