Physics 3318, Spring 2013

i
Assignment 7 |

1. H&F 6.2 ‘
2. H&F 6.6
3. H&F 6.8

|
\
|
4. H&F 6.10
5. H&F 6.14

6. Consider the most general “point transformation” for one degree of fr}eedom, Q=
®(g,t). Show that the form of the Euler-Lagrange equation is unchanged by such a
general transformation. Specifically, starting from

a(ory oL ‘
dt\oq) g’

and the definition of the transformed Lagrangian,

L(g,4,t) = L'(Q,Q, 1),

d (oL oL |
dt\aQ) 9Q° ;

Be sure to exercise great discipline in your application of the rules of c}alculus!

show that
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{ b) Find the new Hamiltonian H and solve Hamilton’s equations of rrLtion.

¢) Interpret the new canonically conjugate variables 0, P geometrically in q. p phase
1:ip,33) space.

d) Check whether the requirement § F 1 = 0 at the end points of the time integral for
the action is equivalent to p 8q — P 3Q = 0 at the end points.

- ¢) Find generating functions of the other three types that will gené‘rate this same
canonical transformation. !

CProblem 2; {Generating function produces a canonical transformﬂtion) You are

. given the generating function Fy(p, Q) = —(e? — 1)*tan p. Prove that it generates
) ' the canonical transformation

Q =log (1 + /g cos p),
P =2(1+ /g cos p),/q sin p.

(6.115)

(From Goldstein, 1980.)

Problem 3: (Motion in an arbitrary reference frame solved with a caiizonical trans-
Sformation) Let 7 be the position of a particle (mass m) in an inertial frame, and Z be
the position measured from the origin of a possibly noninertial frame di placed by the
function D(¢) from the origin of the inertial frame. Then Z = 7 — D(¢).|In the inertial
frame, the Hamiltonian is
), x(1:ip) »?
H(z, p) = o T V(2). (6.116)

3

Find an explicit form for the generating function F,(z, P, t) that generates the trans-
formation from z, p to Z, P. What is the canonical transformation Z(z p), P(z, p)?
Find H(Z, P, t) and Hamilton’s equations of motion in terms of Z, P, ¢. Show that,
in this case, there is a problem with converting F, into F by the usual method of a
_egendre transformation and explain why this occurs.

2 ) (From Percival and Richards.)

'roblem 4: (Solve the freely Jalling body with a canonical transfo tion) The
lamiltonian of a freely falling body is, in one dimension (neglect x, y motion),

2
4
mbl H= - +mgz. 6.117)
nd a time-independent generating function F4(p, P) such that & (Q, P) = P. De-
mine the explicit form of the canonical transformation: Q(z, p) and P(z, p). Solve
'z(p, P). Prove that Q is the time.
(From Percival and Richards.)

blem 5: (Jacobians and canonical transformations) For the case of 1 degree of
dom, the determinant of the Jacobian of dynamical variables related by a canonical

1ip,3)



1:ip,3D).
D}
),x(1:ip)
3

2

mbl

1ip,J)

* Advanced Calculus, 31d ed., by Kaplan, pp. 106ff,

transformation is

a(P, Q)
det| ——| =1. (6.118)
a(p,q)
For any functions F(x, ), G(x, y), the Jacobian is defined by
AF,G) (% &\
( )E(gg S (6.119)
a(x, y) 3y

Prove that Equation (6.118) holds for any canonical traﬁsformation generated by a
generating function of the type Fi(g, Q) with q, Q considered to be independent
variables. Since we can always produce a generating function of this type by aLegendre
transformation or series of transformations from F,, F;, F,, proving Equation (6.118)
for Fy-generated transformations is completely general. |

One consequence of (6.118) is that a closed curve in ﬁ, q space encloses the same
area that the image of that curve encloses in P, Q space. An application of (6.118) is
used in the proof of the canonical invariance of Poisson btackets in Problem 8.
Hints: The general chain rule holds for Jacobian matrices® if we transform from the
independent variables x, y to the new independent variables u, v, which are functions
u(x, y), vx, y): |

IF,G)  O(F,G) d(u,v) '

= . (6.120)
ax,y) 0, v) 3(x,y)
N
matrix multiplication |
As a special case of the general chain rule: |
5 ‘
0w, v) 0. 7) _ identity matrix = I. (6.121)

a(x,y) o(u,v) ‘

Problem 6: {Possible generating functions) Use (6.118) to prove whether or not the
two Tanctions below can be used as generating functions:

Fi(g, Q) =qe¢°, Fi(q,Q)=q" w‘L 0*. (6.122)

If it is a possible generating function, determine the trar‘}sformation g.p > Q,P
explicitly. ‘

(Adapted from Percival and Richards.)
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Problem 7*: (Dynamics on a rotating turntable using p(}lar coordinates) This is a
follow-up to Problem 14 in Chapter 5. Consider a generating function of the Fy(q, P, t)
type: F; = rip P + (¢ — 0(2)) P, The old coordinates p, g are the lab coordinates of
the bug, and the new coordinates P, Q are the rotating coordinates of the bug. There
are two degrees of freedom, so F, contains the sum over/these. Using the relations
in Table 6.1 and the rules for finding the new Hamiltonian H, show that the relations
between coordinates (7, ¢) and (ia, Pran) are correct and H lis the Hamiltonian (5.102).
This demonstrates a link between this type of canonical transformation and a change
of coordinate systems. |

1:ip,33)

General Properties of Poisson Brackets

p >y . . . .| .
~PTob 8 (Poisson brackets are invariant under canonical transformations) Prove

at any canonical transformation leaves the Poisson brackets [F, G] invariant. That
is, if P and Q are obtained from g and p by a canonical transformation, then

dFIG 9FIG dF3dG dFIG,
F.Glop=— 222 2222 277 (F.Gl,. 6.123
[F, Glo.r 309P 9P3Q dq dp 9p dq, L7, Glq.p (6.123)
|

Hints: For one degree of freedom, the Poisson bracket can ;be regarded as the determi-
nant of a Jacobian (6.119). The determinant of a product of|two matrices is the product

of their determinants.
. /‘

), x(L:ip) Problem 9*: (How to test when a transformation is canoﬁical )

a) First prove that Equation (6.39) is necessary for canonical transformations.
Sufficiency means that (6.39) is a litmus test for the canonical equivalence of
two sets of dynamical variables. To prove this, we have to show that (6.39)
implies the existence of a generating function that ieﬁnes the transformation.
This problem also provides a method for finding generating functions, at least in
principle. ‘

b) Explain, using (6.123) for one degree of freedom, why the areas enclosed by cor-
responding closed curves in (g, p) or (Q, P) phase s‘paces are the same. Also
explain why this implies |

(3

?gpdq =?§PdQ. (6.124)
mbl |

(The symbol ¢ stands for an integral around a closed‘curve.) Hint: Use Stokes’
theorem. ! i

¢) Now take the point of view that Q, g are the independent variables, and p, P are
dependent variables, as with F;-type generating functions. Then Equation (6.124)

T See Kaplan, Advanced Calculus, 3rd ed., p. 328.

1ip,3)
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|

implies that around any closed curve in (g, Q) space

fp(q, Q)dq — fP(q, 0)dQ =0. - (6.125)

Imagine a closed curve in (¢, Q) space. Explain why (6.125) means that any path
integral in this space between fixed end points is independent of the péth taken,
so can be considered a perfect differential of a function of ¢, Q. Stated as an
equation, this is

/ pdq—PdQ = / dFy(g, 0). (6126

d) Using (6.126), prove that (6.39) implies the correct relationships for generatmg
functions (p = aF‘ and P = —£0), :
i

Problem 10: (Finding generating functions) Suppose you try the contact tra;nsforma-

tion | I

0 =log (S‘“P>, P =gcotp. (6.127) -
q

a) Find [Q, P],, ,. Is (6.127) canonical?
b) Now show that

pdq — PdQ = d(pq + q cot p). (6.128)

¢) Find Fy(g, Q) explicitly. Useful information: fsin™" x dx = +/1 — x+x sin™" x.

Problem 11: (. Posstble canonical transformation) Is the transformation beloM canon-

ical? i
|

Q =log(l1+./g cosp), P =(1+./qcosp)/qsinp (6.129)

Problem 12*: (Poisson brackets for many degrees of freedom)

a) Prove, using Hamilton’séquations of motion and the definition of the Poisson
brackets (6.36), that the total time derivative of any function D(gy,....p1,...)of
the ps and gs obeys the equation

D aD
— =[D, H]+ —, 6.130
7 [ 1 2 ( )
where H is the Hamiltonian of the system. Equation (6.130) can be regarded as
the most general and canonically invariant way to state Hamilton’s equations of
motion. Explain.




1:ip,30)

), x(1:ip)

3

mbl

:ip,3)
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b) For the I; defined by (5.14), if the Lagrangian is invariant ljnnder transformations
that generate [;, show [I;, H] = 0. Notice that I ; does|not contain the time

explicitly. This in known as the Hamiltonian form of Noeth%zr’s Theorem.
|

Problem 13*: (Landau’s proof) In their book Mechanics, Lanhau and Lifshitz give
a proof of the important relation (6.123) as follows (our notation and our formula
references have been used below): ‘

First of all, it may be noticed that the time appears as 4 parameter in the
canonical transformation(s). .. It is therefore sufficient to Iprove (6.123) for
quantities which do not depend explicitly on time. Let us now formally regard

G as the Hamiltonian of some fictitious system. Then, by formula (6.130),

[F.Gl,q = %. The derivative ‘fi—f can depend only on the properties of the

motion of the fictitious system, and not on the particular choice of variables.
Hence the Poisson bracket [F, G] is unaltered by the passage from one set of
canonical variables to another. 1

Comment on whether or not you think this is a valid and completely general proof
of (6.123). |

(Problem 142 (Poisson brackets of constants of the motion cai‘z generate new con-
stants of the motion) Consider the uniform motion of a free part‘icle of mass m. The
Hamiltonian is a constant of the motion and so is the quantity F defined as

Flx,p,t) =x — %t. ‘ 6.131)

a) Compare [H, F] with %—f Prove from (6.130) that F is also 4 constant.

b) Prove that the Poisson bracket of two constants of the motio,Ln is itself a constant
of the motion, even if the constants F (x, p,t)and G(x, p, 1) hepend explicitly on
the time. (Part a is one example of this.) ‘

¢) Show in general that if the Hamiltonian and a quantity F are constants of the
motion then %—’: is a constant of the motion also.

Problem 15: (Poisson brackets with angular momentum )

a) Angular momentum is defined as | = 7 x p. Prove that [1,, ,] = I, for all cyclic
permutations of /,,, [, I,.

b) Calculate all the Poisson brackets of the components of 7 and p with the compo-
nents of the angular momentum (for example, [x, L1 [px, 11, ete).

Problem 16: (Poisson brackets and spherical symmetry) Let o(7, p) be any function
that is spherically symmetric about the origin (invariant under rotations).

a) ¢ can depend only on the components of 7 and p through the dombinations r?, p?,
and 7 - p. Why is this true?

b) Evaluate the Poisson bracket [¢, ,] (I, is the z component of the angular momen-
tum) and show that it vanishes.
(Adapted from Landau and Lifshitz, 1986.)
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