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Accelerating Applications of RF 
Superconductivity  - Success Stories

Hasan Padamsee, Cornell University

• Introduction: Basics of RF superconductivity for Acceleration
– Superconducting Structures

• Completed Applications…. Success Story #1
– Particle Physics, Light Sources, Nuclear Physics

• Dramatic Progress in Performance: Success Story #2
– Short version (Matthais – Long Version)

• New applications Take Off- Success Story #3
– Spallation Neutron Source
– New Light Sources: XFEL, ERL…
– Electron cooling for RHIC, electron-ion collisions
– Rare Isotope Accelerator 
– Proton Drivers
– International Linear Collider 

• Far Future Possibilities
– Neutrino Factory… Muon Collider
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RF Acceleration With Superconducting Cavities

10 cm

E

Vc = One Million 
Volts

Copper
Q ≈ 104

One million watts CW

Superconductor
E.g. Niobium 2K
Q ≈ 1010

One watt !
Into Liquid Helium 

≈ 1kW AC power
CW

Enter Exit
E

time
Freq = 1.5 GHz

E

Gap = d
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RF accelerator 
cavity fields



5

Important Figures of Merit of Superconducting 
Accelerating Cavities

• Accelerating voltage Vc

• Accelerating field Eacc = Vc/d
• Dissipated power in cavity wall
• Stored energy

• Q value

• Surface fields 
– Epk/Eacc typically 2 – 2.6 
– Hpk/Eacc typically 40 - 50 

Oe/MV/m



6

11

10

9

8

0 25 50 MV/m

Accelerating Field

Residual losses

Multipacting

Field emission

Thermal breakdown

Quench
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Q vs E curve
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There are a variety of designs for accelerating charged 
particles moving at velocities from c to 0.01 c

We move from high velocity to low velocity acceleration
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High and Medium Velocity Structure Examples 
β = v/c = 1 -> 0.5

Single Cell 

RF Power In Beam Induced Power Out

Multi-Cell Cavity

Squeezed Cells for v/c = 0.5

Basic Principle, v/c = 1

λ/2

βλ/2
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Low Velocity Structures, β = v/c = 0.001 to 0.2

Quarter Wave

Half-Wave SpokeSplit -Ring

Inter-Digital
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Completed Applications
Success Story #1

• High Energy
– Energy Frontier
– Flavor Physics (e.g. B-factory, CESR-C)

• Medium Energy
– Quark-Gluon Nuclear Structure
– Light Sources : IR-UV-Xray

• Low Energy
– Nuclear Physics
– RadioIsotope Beams for Nuclear Astrophysics
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LEP-II

SC Cavites in 

TRISTAN

HERA

LEP-II

CESR

KEK-B

LHC
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1995- 2000, 3500 MVolts installed

to raise LEP energy from 65 to 105 GeV
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350 MHz Nb-Cu Cavities for LEP-II

300 cavities

70 modules
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Major LEP-II studies & discoveries

Predicted from Unification of Weak and em forces

a
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SRF in Storage Rings 

• TRISTAN - Japan

• HERA - Germany
• LEP-II - CERN 

(Europe)

• CESR-III - USA

• KEK-B Japan
• 5 - 8 MV/m

• LHC- CERN
Electron - Positron Proton-Proton
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Cornell-KEK-B Collaboration
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SRF Modules Installed in LHC

• 16 Nb-Cu Cavities
• 4 Cryomodules

• 16 MV per beam
• 10 MV/m
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Medium Energy Nuclear Physics

• Understanding the quark-
gluon structure of nucleus 

• Distribution of nuclear spin
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42Cryomodules 
Inside the tunnel

380 accelerating structures for 
Jefferson Lab

6 GeV Re-circulating Linear 
Accelerator for Nuclear Physics

�30,000 cavity-
hours of operation

�Now Upgrade 

�to 12 GeV

�18 MV/m

7 MV/m
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Light Sources 

From IR-UV-Xrays

X-ACTLY SO !

The Roentgen Rays, the Roentgen 
Rays

What is this craze?

The town’s ablaze 

With the new phase 

Of X-ray’s ways

A Christmas present to 
civilization at the turn 
of the 20th century
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SRF in Electron Storage Rings (X-Rays)
Installed

• CESR/CHESS - USA

• Canadian Light Source

• Taiwan Light Source

• DIAMOND Light Source 
(UK)

• Shangai Light Source

• SOLEIL (France)

• Beijing Tau-Charm 
Factory 

• Swiss Light Source
– For life time increase

• ELETTRA (Italy)
– For life time increase
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CESR Technology Transfer to Industry

TurnTurnTurnTurn----Key SystemsKey SystemsKey SystemsKey Systems

CESR SRF => Taiwan, Canada, U.K, Shangai (via ACCEL co.)
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Lasers : Infra red, UV, X-ray
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Optical Cavity FELs

• Jlab FEL/ERL
– IR, UV 

upgrade

– 14kW beam 
power

• JAERI FEL
– IR

Injector 

Beam dump 

IR wiggler 

Superconducting  rf  linac 

UV wiggler 

Injector 

Beam dump 

IR wiggler 

Superconducting  rf  linac 

UV wiggler 
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FEL at TTF 1 (1999 - 2002)
Proof-of-Principle for SASE in the VUV
First Lasing 2/2001, Saturation 9/2002

TTF-II

2004:
VUV FEL at TTF 2
VUV to Soft X-rays
: 100 - 6 nm 
User facility

SASE-FELs VUV => X-Rays
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Based on TESLA Technology
Developed by TESLA Collaboration

• 9-cell Nb, 1.3 
GHz cavities
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TTF- TESLA Test Facility Collaboration
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Cavity String mounted on Cavity String mounted on 
300 mm He Gas Return Pipe300 mm He Gas Return Pipe

Large experience base, > 12 cryomodules assembled (100 meters 
active)……..Integrated cold time: 10 module-years
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8-Cavity Module
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TTF-I

&

TTF-II
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Low Energy Nuclear Physics, 

Understanding nuclear structure, nuclear shape, spin, vibration, rotation

What’s it good for?
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100,000 + hours of 
operating 
experience since 
1978

Superconducting Accelerating Structures
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10 Heavy Ion Linacs Completed

• ATLAS (Argonne) US
• Stony Brook
• U. of Washington
• Florida State U
• Kansas State U
• Delhi U
• JAERI (Japan)
• ALPI (Italy)
• ANU (Australia)
• ISAC-II (TRIUMF-Canada)

• > 270 SC structures
• 3-5 MV/m
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Success Story #2
(short version)

How SRF Technology Evolved Over 
Last Few Years
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Gradients have 
been improving 
steadily due to 
understanding of 
limiting 
phenomena and 
invention of 
effective curesMultipacting

Thermal breakdown

Field Emission
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1 4log(∆T [mK])
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Improve Bulk Thermal Conductivity (and RRR) by raising purity 
to  avoid Quench
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1200 mK0

Electron field emission

50 µµµµm grain 1 - 2 µm, C

Increased Losses

Lower Q
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100 atm jet water rinsing

100 Bar High Pressure Rinsing
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Class 10 – 100, Clean Room
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1991≈ 10 MV/m

Limited by Field 
Emission

2000 -

25 MV/m

9-cell Cavities

DESY

X 3 !
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There is more good news !
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• Electropolishing and 
Baking 120 C
– Smooth Surfaces

• Baking 
– Heals the rf surface of ??

– (Romanenko Talk)

There is more good news !
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EP + Bake  > 35 MV/m Proof-of-Principle

DESY-KEK 12 best cavities, 9-cell TTF cavities 
Vertical Tests

Eacc= 

35 MV/m !!
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But Low Yield of Cavities
> 25 MV/m 

• Quench limitations 

• Field emission limitations
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Quench
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oImprovements 
o Niobium Sheet Scanning
o High Pressure Water Rinsing
o Clean Room Assembly
o Electropolishing
o Mild Bake

2005
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Yield Due to Field Emission Limitations

9-cell Success Rate Comparison
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Gradient Distribution of Field Emission 
Limited Cavities

Percent Max Fields (9-cell FE DESY)
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Yield Due to Quench

Percent Success (9-cell DESY quench cavities: Z83-Z 111, Z50,  
and A16, A63, A70 – A81)
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Distribution of “Quench Only”Gradients
DESY 9-cell Cavities

Z83-Z111, Z50,  and A16, A63, A70 – A81
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Success Story #3 

• Improved 
Performance of 

Cavities 

• Explosion in 
Applications
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Spallation Neutron Source at Oak Ridge
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In-Line Performance - SNS
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Nuclear Astrophysics - Rare Isotope Accelerator - RIA
Exploration of structure and reactions involving radioactive nuclei far from the valley of stability.

These nuclei participate in explosive nucleo-synthesis in novae, x-ray bursts, and supernovae via 
rapid proton and neutron capture
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   ECR  
        RFQ   Low β SRF  St. 1      

         
        q=28,29 
     
12 keV/u  160 keV/u                          Medium β SRF       St. 2 
                                     9.3 MeV/u                  q=69,70,71,72,73 

           
                                      80.3 MeV/u   
  
400 MeV/u  Beam     

                q=87,88,89,90 
 

   High β SRF  
 

  β=0.81       β=0.61      β=0.49  beta = 0.81                   beta = 0.61               beta = 0.5

Superconducting Structures for RIB TRIUMF
ISAC-II

MSU

Prototype

Re-Accelerator

Argonne

Prototype: 
Advanced Exotic 
Beam Laboratory

EURISOL

Rare Isotope 
Beams
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High Intensity Proton Linacs
Beam Power 1 – 5 MW

• Installed

• SNS - Oak Ridge (US)

• 15 MV/m

• Anticipated
• ESS 
• European Spallation Source

• Proton Driver –
Project X (Fermilab)

• SPL (CERN)
• XADS (Europe)
• Joint Project Upgrade 

(Japan- JPARC)
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New Generation of Light Sources
• X-Ray FELs and ERLs
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ERL:
A New Class of Light Source

1960

1970

1980

1990

2000

2010

1965: M. Tigner
Nuovo Cimento
37 (1965) 1228

1986: Stanford SCA

1990: S-DALINAC
(Darmstadt)

1999: JLAB DEMO-FEL

IR 
Wiggler

Beam
Transport

10 m

Injector

Linac

Optical
System

2002: JAERI FEL

2004: JLAB FEL Upgrade

1 MW Energy Recovery
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Cornell ERL Layout
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Started the Injector SC Cavity String
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Other ERL Projects Forseen
ERL in France
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ERLs at BNL

• ERL for 
electron 
cooling the 
RHIC 
beam 

• ERL for  
e-ion 
collider. 

from RHIC
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to RHIC

PHENIX

STAR

e-
cooling

Four e-beam 
passes

e+ storage ring
5 GeV
1/4 RHIC 
circumference

Main ERL (3.9 GeV per pass)

Low energy

e-beam pass

PHENIX

STAR

e-
cooling

Four e-beam 
passes

e+ storage ring
5 GeV
1/4 RHIC 
circumference

Main ERL (3.9 GeV per pass)

PHENIX

STAR

e-
cooling

Four e-beam 
passes

e+ storage ring
5 GeV
1/4 RHIC 
circumference

Main ERL (3.9 GeV per pass)

Low energy

e-beam pass
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Revolutionary X-Ray Source @ DESY

20 GeV

Peak Brilliance 
8 Orders of 
Magnitude 
Higher than 
ESRF !

1000

100 Cryomodules
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TTF Cavity-Module Performance (Pulsed Operation)
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Particle Physics Is Entering An 
Exciting New Era

• Cosmology and 
particle physics point 
to new physics at the 
TeV

• Astrophysics 
cosmology and theory 
provide clues, but we 
will need accelerators

• LHC and linear 
collider – to sort it all 
out

• And reveal the 
physics that is yet to 
come …
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Excitement About Linear Collider

20,000 Cavities

500 tons of high 
purity niobium

20 kW 
refrigeration at 

2K
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ILC Tunnel Layout
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• SC Cavity => Fill energy slowly
Strong Reduction of Peak RF Power

• SC => Low Frequency, Large beam hole => 
Lower Wake fields

• Higher conversion efficiency 
AC power to beam power

• Long RF pulse length
Large spacing between bunches
Wakefields die out
Feedback between bunches

Main Advantages of SC - LC 
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You’ve got 60 seconds to explain
What’s it good for?

Neil Calder

Does it make 
oil?

No! But it 
might make 

Dark Matter !
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Far Future Projects

• Neutrino Factory 

• (20 GeV Muon accelerator)

• Muon Collider
– 3 – 5 TeV
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The Road to 50 MV/m is Now Open !

• See talks by Liepe, Eremeev and 
Romanenko


