Accelerating Applications of RF Superconductivity

- Success Stories

Hasan Padamsee, Cornell University Accelerating Applications of RF Superconductivity - Success Stories Hasan Padamsee, Cornell University

- Introduction: Basics of RF superconductivity for Acceleration
 - Superconducting Structures
- Completed Applications.... Success Story #1
 - Particle Physics, Light Sources, Nuclear Physics
- Dramatic Progress in Performance: Success Story #2
 - Short version (Matthais Long Version)
- New applications Take Off- Success Story #3
 - Spallation Neutron Source
 - New Light Sources: XFEL, ERL...
 - Electron cooling for RHIC, electron-ion collisions
 - Rare Isotope Accelerator
 - Proton Drivers
 - International Linear Collider
- Far Future Possibilities
 - Neutrino Factory... Muon Collider

RF Acceleration With Superconducting Cavities

Electric Field Positive Surface Charge Surface Current Phase Magnetic Field Negative Surface Charge E **RF** accelerator 0 cavity fields $\pi/2$ E π B 3π/2

Important Figures of Merit of Superconducting Accelerating Cavities

- Accelerating voltage V_c
- Accelerating field $E_{acc} = V_c/d$
- Dissipated power in cavity wall $P_{\rm c} = \frac{1}{2} R_{\rm s} \int_{\Omega} |\mathbf{H}|^2 \, ds$
- Stored energy

$$U = \frac{1}{2}\mu_0 \int_{\mathcal{V}} |\mathbf{H}|^2 \, dt$$

- Surface fields
 - E_{pk}/E_{acc} typically 2 2.6

Most Important Cavity Performance Characterization Q vs E curve

6

Cavity Design is a Work of Art and Science Calling for Imagination, Calculation, Symmetry.....

There are a variety of designs for accelerating charged particles moving at velocities from c to 0.01 c

We move from high velocity to low velocity acceleration

M. Duchamps, Nude Descending a Staircase

High and Medium Velocity Structure Examples $\beta = v/c = 1 \rightarrow 0.5$

Basic Principle, v/c = 1

Multi-Cell Cavity

Single Cell

b = 1b = 0.81b = 0.61

= 0.47

Squeezed Cells for v/c = 0.5

Low Velocity Structures, $\beta = v/c = 0.001$ to 0.2

Split -Ring

Completed Applications Success Story #1

- High Energy
 - Energy Frontier
 - Flavor Physics (e.g. B-factory, CESR-C)
- Medium Energy
 - Quark-Gluon Nuclear Structure
 - Light Sources : IR-UV-Xray
- Low Energy
 - Nuclear Physics
 - RadioIsotope Beams for Nuclear Astrophysics

High Energy Physics

Total Installation > 1000 m Provided > 5 GV

1995-2000, 3500 MVolts installed to raise LEP energy from 65 to 105 GeV

350 MHz Nb-Cu Cavities for LEP-II

Major LEP-II studies & discoveries

Predicted from Unification of Weak and em forces

SRF in Storage Rings

Electron - Positron

- TRISTAN Japan
- HERA Germany
- LEP-II CERN (Europe)
- CESR-III USA
- KEK-B Japan
- 5 8 MV/m

Proton-Proton

• LHC- CERN

マー宇宙と物質の お源と構造を探る~ Cornell-KEK-B Collaboration

K

SRF Modules Installed in LHC

- 16 Nb-Cu Cavities
- 4 Cryomodules
- 16 MV per beam
- 10 MV/m

Medium Energy Nuclear Physics

- Understanding the quarkgluon structure of nucleus
- Distribution of nuclear spin

6 GeV Re-circulating Linear Accelerator for Nuclear Physics

SOUTH LINAC CRYOMODULES

Light Sources From IR-UV-Xrays X-ACTLY SO ! The Roentgen Rays, the Roentgen Rays

What is this craze?

The town's ablaze

With the new phase

Of X-ray's ways

A Christmas present to civilization at the turn of the 20th century

SRF in Electron Storage Rings (X-Rays) Installed

- CESR/CHESS USA
- Canadian Light Source
- Taiwan Light Source
- DIAMOND Light Source (UK)
- Shangai Light Source

- SOLEIL (France)
- Beijing Tau-Charm Factory
- Swiss Light Source
 - For life time increase
- ELETTRA (Italy)
 - For life time increase

CESR SRF => Taiwan, Canada, U.K, Shangai (via ACCEL co.)

Lasers : Infra red, UV, X-ray

Optical Cavity FELs

- Jlab FEL/ERL
 - IR, UV upgrade
 - 14kW beam power
- JAERI FEL
 - IR

SASE-FELs VUV => X-Rays

27

Based on TESLA Technology Developed by TESLA Collaboration

• 9-cell Nb, 1.3 GHz cavities

1276 mm

TTF- TESLA Test Facility Collaboration Preparation of TESLA Cavities

Large experience base, > 12 cryomodules assembled (100 meters active).....Integrated cold time: 10 module-years

8-Cavity Module

module length 12.2 m

Low Energy Nuclear Physics,

What's it good for?

Understanding nuclear structure, nuclear shape, spin, vibration, rotation

Year

Superconducting Accelerating Structures

10 Heavy Ion Linacs Completed

- ATLAS (Argonne) US
- Stony Brook
- U. of Washington
- Florida State U
- Kansas State U
- Delhi U
- JAERI (Japan)
- ALPI (Italy)
- ANU (Australia)
- ISAC-II (TRIUMF-Canada)

- > 270 SC structures
- 3-5 MV/m
Success Story #2 (short version)

How SRF Technology Evolved Over Last Few Years

Solution to Multipacting

Improve Bulk Thermal Conductivity (and RRR) by raising purity to avoid Ouench

.

100 Bar High Pressure Rinsing

Class 10 – 100, Clean Room

3rd Cavity Production - BCP

There is more good news !

- Electropolishing and Baking 120 C
 - Smooth Surfaces
- Baking
 - Heals the rf surface of ??
 - (Romanenko Talk)

But Low Yield of Cavities > 25 MV/m

- Quench limitations
- Field emission limitations

Yield Due to Field Emission Limitations

Gradient Distribution of Field Emission Limited Cavities

Yield Due to Quench

Distribution of "Quench Only" Gradients DESY 9-cell Cavities

Z83-Z111, Z50, and A16, A63, A70 – A81

Success Story #3

Spallation Neutron Source at Oak Ridge

In-Line Performance - SNS

Nuclear Astrophysics - Rare Isotope Accelerator - RIA

Exploration of structure and reactions involving radioactive nuclei far from the valley of stability. These nuclei participate in explosive nucleo-synthesis in novae, x-ray bursts, and supernovae via rapid proton and neutron capture

High Intensity Proton Linacs Beam Power 1 – 5 MW

- Installed
- SNS Oak Ridge (US)
- 15 MV/m

- Anticipated
- ESS
- European Spallation Source
- Proton Driver Project X (Fermilab)
- SPL (CERN)
- XADS (Europe)
- Joint Project Upgrade (Japan- JPARC)

New Generation of Light Sources

- X-Ray FELs and ERLs
 - Single molecule processes
 - Nanoscale objects
 - Biological systems
 - Magnetic spin/semiconductors
 - Crigins of life, extraterrestrial science
 - Coherence phenomena, quantum information
 - Attosecond electronic processes
 - Superfluidity, Bose and Fermi statistics
 - Molecular electronics

time dynamics will occupy a central role many of in these investigations

ERL: A New Class of Light Source

Cornell ERL Layout

Started the Injector SC Cavity String

Other ERL Projects Forseen ERL in France

ERLs at BNL

 ERL for electron cooling the RHIC beam

• ERL for e-ion collider.

Revolutionary X-Ray Source @ DESY

X--EEL

20 GeV

Peak Brilliance 8 Orders of Magnitude Higher than ESRF !

100 Cryomodules

TTF Cavity-Module Performance (Pulsed Operation)

Performance of Accelerator Modules

Particle Physics Is Entering An Exciting New Era

ILC Tunnel Layout

Main Advantages of SC - LC

- SC Cavity => Fill energy slowly Strong Reduction of Peak RF Power
- SC => Low Frequency, Large beam hole => Lower Wake fields
- Higher conversion efficiency
 - AC power to beam power
- Long RF pulse length
 - Large spacing between bunches
 - Wakefields die out
 - Feedback between bunches

You've got 60 seconds to explain What's it good for?

Does it make oil?

No! But it might make Dark Matter !

"6 billion bucks! What's this thing for?"

Neil Calder

Far Future Projects

- Neutrino Factory
- (20 GeV Muon accelerator)
- Muon Collider

-3-5 TeV

The Road to 50 MV/m is Now Open !

• See talks by Liepe, Eremeev and Romanenko