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 The NRQCD approach:

 CLEO played a major role in 
validating the NRQCD approach 

• !, !’ and !’’ confirmed

Spectroscopy
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Introduction

! Context:  Late 1970’s, J/! had been discovered in Nov. 
1974, we knew about open charm & ", but not about 
existence of b, t, W or Z !

! Idea: explore e+e- collisions in 8 -16 GeV center-of-mass 
range, hope for something new

! Competition: PEP/Petra at higher energy (up to 32 GeV) at 
SLAC & DESY, later ARGUS at DESY

! CESR proposal May 1975 for single                                 
ring collider with L=1032 cm-1s-1

! Surprise – After detector design started                                
discovery of b quark 1977 (Lederman) at                               
FNAL via Y(1S) & Y(2S) (hint of Y(3S)).                        
Could there be a nice state for threshold                             
BB production like the !(3770) for  D’s?

Uneno et. al, FNAL µ+µ#, 

background subtracted  (1979)

American Physical Society, St. Louis, April 12, 2008 11

First Results (Narrow Upsilons)

Xmas card
1979

Y(1S)

Y(2S)

Y(3S)

L=0.4 pb-1
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Spin triplet states 

• !(4S)

• !(5S)

• "b(13PJ), "b(23PJ) 

• 13D2   

Consistency between       and      
systems validates NRQCD approach.

• masses
• spin splittings
• EM transitions
• hadronic transitions
• direct decays

4
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have a branching ratio an order of magnitude higher than the

expected signal rate. In fact, the branching ratio measured for

a subsample of events in which two !0 candidates can be

formed is consistent with the previous measurements "11#.
To suppress this background, we require the invariant mass

for any photon pair to be at least 2 standard deviations away

from the nominal !0 mass.

To look for $(1D) events, we constrain events to be
consistent with a photon cascade from the $(3S) to the
$(1S) via one of the %b(2PJ) and one of the %b(1PJ)

states. Only J!1 or 2 are used since the J!0 states have
small decay fractions for electromagnetic transitions. For

each J2P , J1P combination we calculate a chi-squared:

%1D ,J2P ,J1P
2 &M$(1D)'

!(
j!1

4 ! E) j"E) j
expected&M$(1D) ,J2P ,J1P'

*E) j

" 2,
where E) j are the measured photon energies; E) j

expected are

the expected photon energies calculated from the known

masses of the bb̄ states and the measured photon directions

in each event. The masses of the $(1D) states are not
known. Therefore, we minimize the above chi-squared with

respect to M$(1D) which is allowed to vary for each event.

The above formalism requires that we know how to order the

four photons in the cascade. While the highest energy photon

must be due to the fourth transition, and the second highest

energy photon must be due to the third transition, there is

sometimes an ambiguity in the assignment of the two lower

energy photons from the first two transitions, since the range

of photon energies in the $(3S)→)%b(2PJ) decay overlaps

the similar energy range in the %b(2PJ)→)$(1D) transi-
tion. We choose the combination that minimizes the above

chi-squared. There are four possible combinations of J2P ,

J1P values. We try all of them and choose the one that pro-

duces the smallest chi-squared, %1D
2 !min %1D,J2P ,J1P

2 .

In addition to the four-photon cascade via the $(1D)
states, our data contain events with the four-photon cascade

via the $(2S) state: $(3S)→)%b(2PJ), %b(2PJ)

→)$(2S), $(2S)→)%b(1PJ), %b(1PJ)→)$(1S),
$(1S)→l#l" &see Fig. 1'. The product branching ratio for
this entire decay sequence "including $(1S)→l#l"] is pre-

dicted by Godfrey and Rosner "7# to be 3.84$10"5, thus

comparable to the predicted $(1D) production rate. In these
events, the second highest energy photon is due to the second

photon transition &see Fig. 1'. Unfortunately, these events
can sometimes be confused with the $(1D) events due to
our limited experimental energy resolution. The second and

third photon transitions in the $(2S) cascade sequence can
be mistaken for the third and second transitions in the

$(1D) cascade sequence, respectively. Therefore, it is im-
portant to suppress the $(2S) cascades. We achieve this by
finding the J2P , J1P (!0,1 or 2' combination that minimizes
the associated chi-squared for the $(2S) hypothesis, %2S

2

!min %2S,J2P ,J1P
2 , where %2S

2 is exactly analogous to %1D
2 with

the M$(1D) replaced with M$(2S) . We then require %2S
2

%12. Notice that the masses of all intermediate states are
known for the $(2S) cascade, thus this variable is more
constraining than %1D

2 .

To further suppress the $(2S) cascade events, we con-
struct a quasi-chi-squared variable, %2S

2# , that sums in

quadrature only positive deviations of the measured photon

energies from their expected values. This variable is less sen-

sitive than %2S
2 to fluctuations in the longitudinal and trans-

verse energy leakage in photon showers that sometimes pro-

duce large negative energy deviations and correspondingly a

large %2S
2 value. With the additional criteria %2S

2#%3 and

%1D
2 &10, the cross-feed efficiency for $(2S) events is re-
duced to 0.3%, while the signal efficiency is 12%. The !0!0

background cross-feed efficiency is 0.02%. Monte Carlo

simulation of the signal events is based on the photon tran-

sition rate predicted for the J!2 $(1D) state by Godfrey
and Rosner "7#. We use the J!1 assumption to estimate the
model dependence of the signal efficiency. The proper angu-

lar distribution of the first photon in the cascade, $(3S)
→)%b(2P), is taken into account, resulting in a 4% relative

change of the efficiency compared to the uniform distribu-

tion. Angular correlations in the subsequent photon transi-

tions are neglected.

The data %1D
2 distribution after all these cuts is shown by

the solid histogram in Fig. 2a. A narrow peak near zero is

observed, just as expected for $(1D) events. The signal
Monte Carlo distribution for $(1D) events is shown by the
solid histogram in Fig. 2b. The background Monte Carlo

distribution for the $(2S) cascades, after a factor of 10 en-
hancement relative to the $(1D) normalization, is also
shown for comparison. The $(3S)→!0!0$(1S) Monte
Carlo distribution is shown without the !0 veto cuts to in-

crease the statistics. We conclude that the backgrounds can-

not produce as narrow a peak as observed in the data.

FIG. 1. The expected bb̄ mass levels. The four-photon transition

sequence from the $(3S) to the $(1S) via the $(1D) states is
shown &solid lines'. An alternative route for the four-photon cascade
via the $(2S) state is also displayed &dashed lines'.

FIRST OBSERVATION OF A $(1D) STATE PHYSICAL REVIEW D 70, 032001 &2004'

032001-3

Potential model
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 Below threshold for heavy flavor 
meson pair production

Narrow states allow precise 
experimental probes of the subtle 
nature of QCD.

Lattice QCD supports and will 
supplant potential models

A variety of lattice approaches
P
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Update on onium masses with three flavors of dynamical quarks Steven Gottlieb

Figure 3: Splitting between the hc(1P) and spin-
averaged 1S states.

Figure 4: Hyperfine splitting of the 1S states.

Figure 5: Summary of charmonium spectrum.

The !c2(1P) has only been studied on two ensembles so far. We have new results on one fine

ensemble. In Fig. 5, we summarize the results for all the states studied. Except for the !c2(1P),

we plot results from our linear chiral extrapolation for each lattice spacing. For the ground states,

if we focus our attention on the diamonds representing our smallest lattice spacing, we find the

most serious discrepancy between our results and experiment is for the !c1. We have seen that

our linear chiral extrapolation may be the culprit here, as the two more chiral ensembles are in

good agreement with the experimental value. The S wave first excited states are not that well

determined, but are rather heavy compared to the observed values. We have seen that on the finest

lattice spacing, the high slope of the chiral extrapolation is accentuating the difference between our

calculation and observations. Furthermore, the observed states are quite close to the DD̄ threshold,

which makes these states harder to calculate on the lattice without careful attention to finite volume

effects. Thus, we are not seriously concerned about the high masses we are seeing for the 2S states.

4
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QCD Static Energy

 Lattice calculation of the 
static energy between QQ 
versus R.

 Agrees with potential 
models. 

 Excitation of gluonic 
degrees of freedom 
(string) also calculable.

 Masses of low-lying 
states directly calculable 
by LQCD.
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SPECTROSCOPY
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Fig. 3.6: The singlet static energy (quenched and unquenched data) from Ref. [51], see also [143]

2.3.3 The QCD static spectrum and mechanism of confinement18

The spectrum of gluons in the presence of a static quark–antiquark pair has been extensively studied with

high precision using lattice simulations. Such studies involve the calculation of large sets of Wilson loops

with a variety of different spatial paths. Projections onto states of definite symmetries are done, and the

resulting energies are related to the static quark–antiquark potential and the static hybrids potentials. With

accurate results, such calculations provide an ideal testing ground for models of the QCD confinement

mechanism.

The singlet static energy

The singlet static energy is the singlet static potential V (0)
s .

In the plot3.6, we report simulation results both with and without light quark–antiquark pair cre-

ation. Such pair creation only slightly modifies the energies for separations below 1 fm, but dramatically

affects the results around 1.2 fm, at a distance which is too large with respect to the typical heavy quarko-

nium radius to be relevant for heavy quarkonium spectroscopy. At finite temperature, the so-called string

breaking occurs at a smaller distance (cf. corresponding Section in Chapter 7,Media).

One can study possible nonperturbative effects in the static potential at short distances. As it has

already been mentioned in the ”static QCD potential” subsection, the proper treatment of the renormalon

effects has made possible the agreement of perturbation theory with lattice simulations (and potential

models) [78,88–92]. Here we would like to quantify this agreement assigning errors to this comparison.

In particular, we would like to discern whether a linear potential with the usual slope could be added to

perturbation theory. In order to do so we follow here the analysis of Ref. [90, 144], where the potential

is computed within perturbation theory in the Renormalon Subtracted scheme defined in Ref. [81]. The

comparison with lattice simulations [145] in Fig. 3.7 shows that nonperturbative effects should be small

and compatible with zero, since perturbation theory is able to explain lattice data within errors. The

systematic and statistical errors of the lattice points are very small (smaller than the size of the points).

Therefore, the main sources of uncertainty of our (perturbative) evaluation come from the uncertainty in

the value of ΛMS (±0.48 r−1
0 ) obtained from the lattice [146] and from the uncertainty in higher orders

in perturbation theory. We show our results in Fig. 3.7. The inner band reflects the uncertainty in ΛMS
whereas the outer band is meant to estimate the uncertainty due to higher orders in perturbation theory.

We estimate the error due to perturbation theory by the difference between the NNLO and NNNLO

evaluation. The usual confining potential, δV = σr, goes with a slope σ = 0.21GeV2. In lattice units

18Authors: N. Brambilla, C. Morningstar, A. Pineda

91
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Heavy quark potential To O(1/m2)
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pNRQCD ←− Effective theory for the study of heavy quarkonium systems

Brambilla et al.

Multi-level algorithm allows lattice determination of potentials with unprecedented
precision
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Similarly good results are obtained for V (0)(r), V (1)(r), V (4)(r)

Koma et al.

Y. Koma, M. Koma and H. Wittig
[PRL 97 (2006) 122003]
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Spin Singlet States

8

 hc
    

Observation  E835, CLEO

Partial widths and decay 
modes: 

Spin -dependent forces:

M!hc" # 3526 MeV]. Another way is to specify that the
mass recoiling against the photon and !0 for the event
should be near the mass of "c. Both approaches are inves-
tigated, leading to consistent results, as detailed in
Ref. [14].

A combined sample of generic  !2S" decay and signal
Monte Carlo events is used to optimize the criteria for the
final event selection. The resulting selection criteria deter-
mined were E# $ 503% 35 MeV for hard photon accep-
tance in one approach and M!"c" $ 2980% 35 MeV in
the other. As a result of the Monte Carlo studies, a number
of selection criteria, in which the two approaches occa-
sionally differ, are made. These include requiring only one
!0 in the signal region, removing hard photons that recon-
struct " mesons with any other photon, accepting photons
in the calorimeter end caps, removing photons from the
cascade reaction  !2S" ! #$cJ ! ##J= , and the choice
of the background shape.

The recoil spectrum for the total Monte Carlo sample of
39:1& 106  !2S" (13 times the size of the data sample),
obtained in the E#-selection approach with its optimized
selection criteria, is shown in Fig. 2(a). A product branch-
ing fraction B Bh $ 4& 10'4 was assumed. The corre-
sponding plot from the other approach is very similar. The
hc signal is evident. The overall efficiencies determined
from the Monte Carlo sample are 13.4% and 14.6% for the
two inclusive approaches. Input values ofM!hc" and B Bh

are well reproduced. Results of Monte Carlo studies lead to
the conclusion that the resonance fits to the data may be
expected to have significance levels of (4%, statistical
error on the mass of (% 0:6 MeV, and central values of
the mass are reproduced within (% 0:6 MeV of the gen-
erated M!hc".

Figure 2(b) shows the data and the fit using the
Monte Carlo optimized criteria for the same inclusive
approach as in Fig. 2(a). Features in the Monte Carlo
scheme such as signal width, signal to background ratio,
and approximate background shape mirror the data faith-
fully. The recoil spectrum and the fit for the other inclusive
approach are very similar. Fit significance is approximately

3:8%. Results from the two inclusive approaches differ by
small amounts, with differences from the averages in
M!hc" of %0:5 MeV and in B Bh of %0:05& 10'4. The
average results are listed in Table I.

The hc yield from the recoil mass against !0 in the
inclusive analysis is studied as a function of the angular
distribution of the hc ! #"c photon. The hc yield, shown
in Fig. 3(a), is found to follow a 1) cos2& distribution
($2=degrees of freedom $ 1:7=2) as expected for an E1
transition from a spin 1 state. The background yield, shown
in Fig. 3(b), is uniform in cos&. The hc yield in the
exclusive analysis is not sufficient to draw any conclusions
regarding the corresponding angular distribution.

Systematic uncertainties in the two analyses due to
various possible sources have been estimated. Many
sources are common, such as choice of background pa-
rameterization, hc resonance intrinsic width (! $
0:5–1:5 MeV), !0 line shape, bin size, and fitting range.
The uncertainty in the branching ratio for  !2S" ! #"c
enters the systematic uncertainty for the exclusive analysis
only while the uncertainty on the number of  !2S" decays
applies to the inclusive analysis only. The estimated con-
tributions are listed in Table II. For the inclusive (exclu-
sive) analysis they sum in quadrature to %0:4!0:5" MeV in
M!hc" and %0:7!1:0" & 10'4 in B Bh. The largest sys-
tematic error for the exclusive analysis, B! !2S" ! #"c",
cancels in the ratio and we obtain B Bh=BD $ 0:178%
0:049% 0:018.

FIG. 2. Inclusive analysis: Recoil mass against !0 for
(a) Monte Carlo sample for 39:1& 106  !2S" and (b) data for
3& 106  !2S". See text for details.

TABLE I. Results for the inclusive and exclusive analyses for
the reaction  !2S" ! !0hc ! !0#"c. First errors are statistical,
and the second errors are systematic, as described in the text and
Table II.

Inclusive Exclusive

Counts 150% 40 17:5% 4:5
Significance (3:8% 6:1%
M!hc" (MeV) 3524:9% 0:7% 0:4 3523:6% 0:9% 0:5
B Bh !10'4" 3:5% 1:0% 0:7 5:3% 1:5% 1:0

FIG. 3. Inclusive analysis: Efficiency-corrected fit yields ver-
sus j cos&j for data with E# $ 503% 35 MeV; (a) for hc yield,
the curve corresponds to the best fit / !1) cos2&" and (b) for the
nearly isotropic background yield.

PRL 95, 102003 (2005) P H Y S I C A L R E V I E W L E T T E R S week ending
2 SEPTEMBER 2005

102003-4

To summarize, we have observed the hc state, the 1P1
state of charmonium, in the reaction  !2S" ! !0hc, hc !
"#c, in exclusive and inclusive analyses. The significance
of our observation is greater than 5$ under a variety of
methods to evaluate this quantity. We combine the results
of the exclusive and inclusive analyses to obtain M!hc" #
3524:4$ 0:6$ 0:4 MeV and B! !2S" ! !0hc" %
B!hc ! "#c" # !4:0 $ 0:8 $ 0:7" % 10&4. The fol-
lowing value is obtained for the hyperfine splitting:

!Mhf!hM!3PJ"i&M!1P1"" # '1:0$ 0:6$ 0:4 MeV:

Thus, the combined result for M!hc" is consistent with the
spin-weighted average of the %cJ states and with the (non-
relativstic) bound [18] !Mhf ( 0.

We gratefully acknowledge the effort of the CESR
staff in providing us with excellent luminosity and
running conditions. This work was supported by the
National Science Foundation and the U.S. Department of
Energy.
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#c width )0 )0 0.2 0.1
#c branching ratios )0 0.1
Sum in quadrature $0:4 $0:5 $0:7 $1:0
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Over the past 30 years charmonium spectroscopy has
provided valuable insight into the quark-antiquark interac-
tion of quantum chromodynamics (QCD). QCD-based po-
tential models have been quite successful in predicting
masses, widths, and dominant decays of several charmo-
nium states. The central potential in most of these calcu-
lations is assumed to be composed of a vector Coulombic
potential (!1=r) and a scalar confining potential (!r).
Under these assumptions, the spin-spin interaction in the
lowest order is finite only for L " 0 states. It leads to the
hyperfine splittings !Mhf#nS$ % M#n3S1$ &M#n1S0$ be-
tween spin-triplet and spin-singlet S-wave states of char-
monium, which have been measured as !Mhf#1S$ "
M#J= $ & M#!c$ " 115 ' 2 MeV [1], !Mhf#2S$ "
M! #2S$" & M#!0

c$ " 48 ' 5 MeV [1,2]. It also
leads to the prediction that the hyperfine splitting
!Mhf!hM#3PJ$i&M#1P1$" for P-wave states should be
zero. Higher-order corrections are expected to provide no
more than a few-MeV deviation from this result [3–5].
Lattice QCD calculations [6] predict !Mhf#1P$ " (1:5 to
(3:7 MeV, but with uncertainties at the few-MeV level.
Larger values of !Mhf#1P$ could result if the confinement
potential had a vector component or if coupled channel
effects were important. In order to discriminate between
these possibilities, it is necessary to identify the hc#1P1$
state and to measure its mass to O#1 MeV$ as the mass of
the 3PJ centroid is very well known, hM#3PJ$i "
3525:36' 0:06 MeV [7].

In this Letter we report the successful identification of hc
in the isospin-violating reaction

e(e& !  #2S$!"0hc; hc ! #!c; "0 ! ##: (1)

Two methods are used: one in which the !c decays are
reconstructed (exclusive), which has an advantage in sig-
nal purity, and the other in which the !c is measured
inclusively, which has larger signal yield. Together these
approaches provide a result of unambiguous significance,
and allow a precise determination of the mass of hc and
the branching fraction product B Bh, where B %
B! #2S$ ! "0hc" and Bh % B#hc ! #!c$. Theoretical
estimates of the product B Bh vary by nearly 2 orders
of magnitude, #0:5–40$ ) 10&4 [4,5].

The Crystal Ball Collaboration at SLAC searched for hc
using the reaction of Eq. (1) but were only able to set a 95%
confidence upper limit B Bh < 16) 10&4 in the mass
range M#hc$ " #3515–3535$ MeV [8]. The FNAL E760
Collaboration searched for hc in the reaction p "p! hc !
"0J= , J= ! e(e&, and reported a statistically signifi-
cant enhancement with M#hc$ " 3526:2' 0:15'
0:2 MeV, ##hc$ * 1:1 MeV [9]. The measurement was
repeated twice by the successor experiment E835 with
!2) and !3) larger luminosity, but no confirming signal
for hc was observed in hc ! "0J= decay [5].

A data sample consisting of 3:08) 106  #2S$ decays
was obtained with the CLEO III and CLEO-c detector

configurations [10–13] at the Cornell Electron Storage
Ring. The CLEO III detector features a solid angle cover-
age for charged and neutral particles of 93%. The charged
particle tracking system achieves a momentum resolution
of !0:6% at 1 GeV, and the calorimeter photon energy
resolution is 2.2% for E# " 1 GeV and 5% at 100 MeV.
Two particle identification systems, one based on energy
loss (dE=dx) in the drift chamber and the other a ring
imaging Cherenkov (RICH) detector, are used to distin-
guish pions from kaons.

Half of the  #2S$ data were accumulated with a newer
detector configuration, CLEO-c [13], in which the silicon
strip vertex detector was replaced with an all-stereo six-
layer wire chamber. The two detector configurations also
correspond to different accelerator lattices. Studies of
Monte Carlo simulations and the data reveal no significant
differences in the capabilities of the two detector configu-
rations; therefore the CLEO III and CLEO-c datasets are
analyzed together.

The inclusive and exclusive analyses share a com-
mon initial sample of events and numerous selection cri-
teria. Details of the analyses are provided in a companion
paper [14]. Event selection for both analyses requires at
least three electromagnetic showers and two charged
tracks, each selected with standard CLEO criteria. For
showers, E# > 30 MeV is required. Candidates for ##
decays of "0 or ! mesons satisfy the requirement that
M###$ be within 3 standard deviations ($) of the known
"0 or ! mass, respectively. These candidates are kinemati-
cally fit, constraining M###$ to the appropriate mass to
improve "0=! energy resolution. Charged tracks are re-
quired to have well-measured momenta and to satisfy
criteria based on the track fit quality. They must also be
consistent with originating from the interaction point in
three dimensions.

Both techniques identify hc as an enhancement in the
spectrum of neutral pions from the reaction  #2S$ ! "0hc
[15]. For this purpose, it is useful to remove neutral pions
originating from any other reaction. It is easy to remove
most of the "0 arising from  #2S$ ! "("&J= , with
J= ! "0 ( hadrons and "0"0J= , with J= ! any.
The recoil spectra against M#"("&$ (both analyses) and
M#"0"0$ (inclusive only) show prominent peaks for J= ;
these events are removed by appropriate selection around
M#J= $.

In the exclusive analysis, !c are reconstructed in
seven channels: K0

SK
'"+, K0

LK
'"+, K(K&"("&,

"("&"("&, K(K&"0, "("&!#! ##$, and
"("&!#! "("&"0$. The sum of the branching fractions
is #9:7' 2:7$% [7]. The decay chain in Eq. (1) as well as
these !c decays are identified from reconstructed charged
particles, "0 and ! mesons. For ! decays to "("&"0, the
three-pion invariant mass is required to be within 20 MeV
of the nominal ! mass. The K0

S candidates are selected
from pairs of oppositely charged and vertex-constrained

PRL 95, 102003 (2005) P H Y S I C A L R E V I E W L E T T E R S week ending
2 SEPTEMBER 2005

102003-2

M
tr

ip
le

t -
 M

si
n

g
le

t  
(M

eV
)

-25

-20

-15

-10

-5

0

5

10

cc (n=1)

QM: GI85

QM: PJF92

Lattice: CP-PACS00

QM: MR83
PQCD: HOOS92
PQCD: PT88
PQCD: PTN86

QM: MB83

Figure 1. Comparison of the measured and
predicted 13Pcog − 11P1(cc̄) mass splitting.
The horizontal lines show the 1-sigma bounds
using the CLEO hc mass measurement [2].
The theoretical predictions correspond to:
GI85 [10], CP-PACS00 [14], MR83 [15],
HOOS92 [17], PT88 [13], PTN86 [16], MB83
[11], PJF92 [12].

In quark potential models the 1-gluon-exchange spin-spin interaction is described by:

Hhyp
qq̄ =

32π

9

αs

mqmq̄

#Sq · #Sq̄ δ3(#r) (1)

The δ-function is short range but will be smeared out by relativistic effects. The Godfrey-Isgur
quark model [10] smeares the δ-function with a Gaussian and predicts M(3Pcog) > M(1P1).
In contrast, McClary and Byers [11] include spin-independent relativistic corrections and find
M(3Pcog) < M(1P1). Finally, Franzini [12] includes a Lorentz vector confining potential and
finds M(3Pcog) < M(1P1) with a large splitting.

Pantaleone and Tye [13] calculated the splitting using perturbative QCD and also found a
small splitting with M(3Pcog) < M(1P1) but noted that other contributions such as relativisitic
corrections and coupled channel effects could alter this result. Lattice QCD finds M(3Pcog) >
M(1P1) but with large errors [14]. Ultimately LQCD will provide the definetive result but more
precise results are needed.

The point of these examples is that there is a wide variation in the predictions. There is a
strong need for experimental data to test these results.

3. Production of Singlet P -wave States
There are a number of ways to produce and detect the singlet P -wave states. The hc was
recently observed in the reaction ψ′ → π0hc → (γγ)(γηc) by the CLEO collaboration [2]
and a less convincing signal was seen in p̄p → hc → ηcγ by E835 at FNAL [3]. It has been
suggested that the singlet P -waves states could also be produced in the radiative cascades

n3S1

M1
→ n′1S0 + γ

E1
→ (11P1) + γγ [5] and in B-meson decay, B → hc + X [6, 7, 8, 9].

In all cases the radiative decay hc,b → ηc,b + γ results in a clean final state. To estimate the
BR requires knowing all important partial decay widths. The E1 width for the hc is given by

 Confirms the short range nature of spin-spin 
and tensor potentials.  Phenomenological models 

which closely follow pert QCD are best.  
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A. Model predictions

Using the same (NR) model as used for the E1 transitions ( A nonrelativistic treatment

except for finite size corrections and κQ = 0) the M1 transition rates and overlap matrix

elementsM for c̄c and b̄b S state systems is shown in Table III

Numerous papers have considered these M1 transitions including full relativistic correc-

tions[? ? ? ? ? ? ? ].

The considerations for M1 transitions is particularly complicated. In addition to the

usual issues associated with the form of the long range potential there is the unknown

value for the anomalous magnetic moment for the quark (κQ). Furthermore, the results are

dependent explicitly on the quark mass and other details of the potential. (See Eqs. ??.)

For the models (RA) and (RB) used Eventually these uncertainties will be reduced by lattice

calculations of the J/ψ to ηc transition rate.

Γ(J/ψ → ηcγ) =
16

3
αe2

c

k3
γ

M2
J/ψ

(1 + κc)[1 + o(v2)] (7)

Γ(J/ψ → ηcγ) =
16

3
αe2

c

k3
γ

M2
J/ψ

[
1 + CF

αs(Mj/ψ/2)

π
κc)i +

2

[
3(CF αs(pJ/ψ))2

]
(8)

B. Comparison with experiment

C. Comparison with experiment

M1 transitions have only been observed in the c̄c system. The allowed transitions in the

c̄c system below threshold are shown in Fig. 1. The transitions within the 1P system are

tiny (≈ 1 eV). Only the J/ψ → ηc and ψ ′ → ηc are observed experimentally [? ].

For the b̄b system CLEO [? ] sees no evidence for the hindered M1 transition Υ(3S) →

ηb(1S). The 90% cl upper bound on the branching ratio varies from 4−6×10−4 depending on

the mass splitting. For the expected splitting ≈ 910MeV the bound is 5.3× 10−4[? ]. This

rules out a number of older models[? ? ]. A comparision of the experiment results with a

variety of more modern models is shown in Table IV. For each model the assumptions for the

mixture of scalar and vector confinement and the value of κQ is exhibited explicitly. For the

model of Lahde[? ] the results are also shown without including the exchange term (NEX).

7

TABLE I: Experimental results for E1 transitions n3S1 to m3PJ . The S state widths (in keV) used

are: Γ(Ψ(2S)) = 337± 13, Γ(Υ(2S)) = 29.0± 1.6 and Γ(Υ(3S) = 20.3± 2.1 .

Transition k BR Rate |Eif |

i
E1−→ f ( MeV) % ( keV) ( GeV−1)

cc̄

23S1 13P2 127 9.33± 0.14± 0.61 31.4± 2.5 2.53± 0.10

23S1 13P1 171 9.07± 0.11± 0.54 30.6± 2.3 2.06± 0.08

23S1 13P0 261 9.22± 0.11± 0.46 31.1± 2.1 1.91± 0.06

bb̄

23S1 13P2 110.6 7.24± 0.11± 0.40 2.10± 0.17 1.61± 0.06

23S1 13P1 129.6 6.93± 0.12± 0.41 2.01± 0.17 1.60± 0.07

23S1 13P0 162.6 3.75± 0.12± 0.47 1.09± 0.15 1.45± 0.10

33S1 23P2 86.0 15.79± 0.17± 0.73 3.21± 0.37 2.90± 0.16

33S1 23P1 99.2 14.54± 0.18± 0.73 2.95± 0.34 2.90± 0.16

33S1 23P0 121.6 6.77± 0.20± 0.65 1.37± 0.20 2.52± 0.17

33S1 13P0 483 0.30± 0.04± 0.10 0.061± 0.023 0.067± 0.011

where eQ is the quark charge, k is the photon energy, the statistical factor SE
if = SE

fi is

SE
if = max (Li, Lf )





Ji 1 Jf

Lf S Li






2

. (2)

.

The spin-flip radiative transition rate between an initial state (n2s+1!J), i, and a final

state (n′2s!+1SJ ′), f , is:

Γ(i
M1−→ f + γ) =

4αe2
Q

3m2
Q

(2Jf + 1)k3[Mif |]2 (3)

Mif =

∫
r2dr RniLi(r)j0(

rk

2
)RnfLf

(r) (4)

The widths (in keV) of the cc̄ and bs̄ S states assumed are: ‘Γ(Ψ(2S)) = 337 ± 13,

Γ(Υ(2S)) = 29.0± 1.6 and Γ(Υ(3S) = 20.3± 2.1 .
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k = 0 : Mif = 1 ni = nf ; Li = Lf

= 0 otherwise

Dudek, Edwards, Richards 
[PR D73:074507 (2007)]

! Basics  

! J/# -> $ + %c   M1 transition

! LQCD  

! pNRQCD

  Brambilla, Jia & Vairo 
[PR D73:054005 (2006)]

 Model independent - completely accessible by perturbation theory to o(v2)

No large anomalous magnetic moment 

No scalar long range interaction 

A. Model predictions

Using the same (NR) model as used for the E1 transitions ( A nonrelativistic treatment

except for finite size corrections and κQ = 0) the M1 transition rates and overlap matrix

elementsM for c̄c and b̄b S state systems is shown in Table III

Numerous papers have considered these M1 transitions including full relativistic correc-

tions[? ? ? ? ? ? ? ].

The considerations for M1 transitions is particularly complicated. In addition to the

usual issues associated with the form of the long range potential there is the unknown

value for the anomalous magnetic moment for the quark (κQ). Furthermore, the results are

dependent explicitly on the quark mass and other details of the potential. (See Eqs. ??.)

For the models (RA) and (RB) used Eventually these uncertainties will be reduced by lattice

calculations of the J/ψ to ηc transition rate.

Γ(J/ψ → ηcγ) =
16

3
αe2

c

k3
γ

M2
J/ψ

(1 + κc)[1 + o(v2)] (7)

Γ(J/ψ → ηcγ) =
16

3
αe2

c

k3
γ

M2
J/ψ

[
1 + CF

αs(Mj/ψ/2)

π
+

2

3
(CF αs(pJ/ψ))2

]
(8)
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tiny (≈ 1 eV). Only the J/ψ → ηc and ψ ′ → ηc are observed experimentally [? ].
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ηb(1S). The 90% cl upper bound on the branching ratio varies from 4−6×10−4 depending on

the mass splitting. For the expected splitting ≈ 910MeV the bound is 5.3× 10−4[? ]. This

rules out a number of older models[? ? ]. A comparision of the experiment results with a

variety of more modern models is shown in Table IV. For each model the assumptions for the

mixture of scalar and vector confinement and the value of κQ is exhibited explicitly. For the

model of Lahde[? ] the results are also shown without including the exchange term (NEX).
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1.19± 0.33 keV

J/ψ → ηcγ

Up to order v2 the transition J/ψ → ηcγ is completely accessible by perturbation theory.

Γ(J/ψ → ηcγ) =
16

3
αe2

c

k3
γ

M2
J/ψ

»

1 + CF
αs(MJ/ψ/2)

π
−

2

3
(CF αs(pJ/ψ))2

–

The normalization scale for the αs inherited from κc is the charm mass

(αs(MJ/ψ/2) ≈ 0.35 ∼ v2), and for the αs, which comes from the Coulomb potential, is

the typical momentum transfer pJ/ψ ≈ mCF αs(pJ/ψ)/2 ≈ 0.8 GeV ∼ mv.

Γ(J/ψ → ηcγ) = (1.5 ± 1.0) keV.

 Exp [CUSB] 

j0 = 1 - (kr)2/24 + ..., so in NR limit

9

half the naive theoretical result

 %c

M1 transition was a theoretical disaster 
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FIG. 1: Fits to the photon spectrum in exclusive J/ψ → γηc decays using Breit-Wigner (dotted)
and modified (solid) signal line shapes convolved with a 4.8 MeV wide resolution function. Total

background is given by the dashed line. The dot-dashed curves indicate two major background
components described in the text.

Fig. 3a. Several small nonlinear backgrounds below 560 MeV are apparent and are due
to a combination of (i) ψ(2S) → π0hc; hc → γηc; (ii) ψ(2S) → γχcJ ; χcJ → γJ/ψ; and
(iii) ψ(2S) → π0J/ψ. Based on detailed MC studies, all other backgrounds are linear, the
largest being ψ(2S) → π0Xi.

Fits to the ψ(2S) → γηc photon energy spectrum with a Breit-Wigner convolved with an
experimental resolution function (with a resolution of 5.1MeV after the kinematic fit) were
unsuccessful. For a hindered M1 transition the matrix element acquires terms proportional
to E2

γ , which, when combined with the usual E3
γ term for the allowed transitions, lead to

contributions in the radiative width proportional to E7
γ [2]. We find that if we assume a

linear background, as indicated by MC simulations, we are not able to obtain a good fit to
our Eγ spectrum for the sum of exclusive ψ(2S) → γηc modes with a pure E7

γ dependence.
We therefore use the empirical procedure described below to extract the ψ(2S) → γηc yield.

Extensive cross-checks have been performed to prove that the line shape asymmetry is
not an experimental artifact. Events selected without the aid of a kinematic fit indicate
an asymmetric line shape independently in both the photon energy and the hadronic mass.
The asymmetric line shape is not correlated with ηc decay modes that include π0, K0

S, or
η candidates. No indication of either asymmetry or peaking background has been found in
detailed MC studies, where all known decays in the charmonium and light quark systems
are simulated and unknown decays are modeled with the EvtGen generator [7]. The photon

5

New CLEO measurement solves the issue

Mass splittings  
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Update on onium masses with three flavors of dynamical quarks Steven Gottlieb

Figure 3: Splitting between the hc(1P) and spin-
averaged 1S states.

Figure 4: Hyperfine splitting of the 1S states.

Figure 5: Summary of charmonium spectrum.

The !c2(1P) has only been studied on two ensembles so far. We have new results on one fine

ensemble. In Fig. 5, we summarize the results for all the states studied. Except for the !c2(1P),

we plot results from our linear chiral extrapolation for each lattice spacing. For the ground states,

if we focus our attention on the diamonds representing our smallest lattice spacing, we find the

most serious discrepancy between our results and experiment is for the !c1. We have seen that

our linear chiral extrapolation may be the culprit here, as the two more chiral ensembles are in

good agreement with the experimental value. The S wave first excited states are not that well

determined, but are rather heavy compared to the observed values. We have seen that on the finest

lattice spacing, the high slope of the chiral extrapolation is accentuating the difference between our

calculation and observations. Furthermore, the observed states are quite close to the DD̄ threshold,

which makes these states harder to calculate on the lattice without careful attention to finite volume

effects. Thus, we are not seriously concerned about the high masses we are seeing for the 2S states.

4

 Breit-Wigner
Theory 

 long tail
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 %c’:

Spin splitting   

Effects of light quark loops 

It is of interest to compare the two-photon partial
width of !0

c to that of !c. The quantity that can be
directly obtained from the data is

R!!0
c=!c" #

!""!!0
c" $B!!0

c ! KSK#"
!""!!c" $B!!c ! KSK#"

:

In terms of the measured quantities

R!!0
c=!c" %

N!!0
c"

N!!c"
$"!m!c"

"!m!0
c
" $

$!!c"
$!!0

c"
:

"!m!c"="!m!0
c
" % 2:40& 0:05 is the ratio of the two-

photon fluxes at the !c and !0
c masses [22]. This leads to

results for R!!0
c=!c" given in Table I.

We have attempted to determine the uncertainty in
our mass measurements due to the calibration of our
mass scale by comparing the masses we measure
from our data for K0

S!! #'#(", D0!! K0
S#

&#)", and
D&!! K&#&#)" with their known values [2]. We esti-
mate this uncertainty to be * 1 MeV in the !c and !0

c
mass regions for both CLEO II and CLEO III data.
Systematic uncertainties may also arise due to the fit-

ting procedures for the invariant mass spectra. We find
that the different choices of the background parametri-
zation (polynomials, power law, or exponential) and peak
shape parametrization lead to variations in mass of
*0:5 MeV. It is also found that Monte Carlo events
have a reconstructed invariantK0

SK
&#) mass that differs

from the input mass at levels *1 MeV.
We consider the above contributions as being indepen-

dent of each other and, by combining them in quadrature,
we obtain a conservative estimate of possible systematic
bias in the !c and !0

c masses to be 1.5 MeV for both CLEO
II and CLEO III.

Using high statistics samples of D mesons and the
larger !c samples, we have checked that variations in
particle identification and event selection criteria do not
give rise to changes in our results in a statistically sig-
nificant way.

The dominant source of systematic uncertainty in the
determination of total widths, two-photon widths, and the
ratio R is found to be the choice of the background shape.

The present analysis of the CLEO II data (Table I),
including the systematic errors, yieldsM!!c" % 2984:2&
2:0& 1:5 MeV. In our earlier publication for the same
data, we reported [15] M!!c" % 2980:4& 2:3&
0:6 MeV. A careful examination of the event selection
used there has revealed that an algorithm used for
charged track identification led to the inclusion of some
(+13%) false and poorly measured events. Rejection of
these events is the main reason for the larger mass ob-
tained here. The present determination supersedes the
earlier reported mass value. The present analysis of
CLEO II data also yields !!!c" % 24:7& 5:1&
3:5 MeV and !""!!c" % 7:2& 0:8& 0:7& 2:2!br" keV
[the last error is due to the uncertainty in the branch-
ing ratio B!!c ! K0

SK
&#))], which are in agreement

with our previously reported values. The two-photon
width from CLEO III data is !""!!c" % 7:5& 0:5&
0:5& 2:3!br" keV. The average of the two results is
!""!!c" % 7:4& 0:4& 0:5& 2:3!br" keV.

In summary, in independent analyses of CLEO II and
CLEO III data sets for the reaction e'e( ! e'e(!""" !
e'e(!!0

c" ! e'e(!K0
SK

&#)", we see clear evidence for
the excitation of the !c (11S0), and another resonance
which we assign to !0

c (21S0). We combine the separate
results of CLEO II and CLEO III presented in Table I to
obtain the following as our final results

M!!c" % 2981:8& 1:3& 1:5 MeV; !!!c" % 24:8& 3:4& 3:5 MeV; R!!0
c=!c" % 0:18& 0:05& 0:02;

M!!0
c" % 3642:9& 3:1& 1:5 MeV; !!!0

c" % 6:3& 12:4& 4:0 MeV; or * 31 MeV !90% C:L:";
Using the known masses of the J= and  0 [2], and combining statistical and systematic errors in quadrature, these

correspond to #Mhf!1S" % 115:1& 2:0 MeV and #Mhf!2S" % 43:1& 3:4 MeV.
Assuming that the branching fractions for !c and !0

c decays to KSK# are equal [24], and using the average value of
!""!!c" as obtained above, our result for R leads to the first estimation of !""!!0

c" % 1:3& 0:6 keV.
As mentioned earlier, all new measurements contradict the earlier Crystal Ball identification of !0

c with a mass of
3594& 5 MeV, and therefore #Mhf!2S" % 92& 5 MeV. The present results reduce this hyperfine splitting by nearly a
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FIG. 1. Invariant mass distributions for K0
SK

&#) events from
(top) the CLEO II data and (bottom) the CLEO III data. The
curves in the figures are results of fits described in the text.
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Figure 13. Radial and orbital splittings in the Υ spectrum from lattice QCD in the

quenched approximation and including a realistic light quark vacuum polarisation. In

these plots the b quark mass was fixed from the Υ mass and the lattice spacing from

the splitting between the Υ′ and the Υ. Neither of these masses is predicted. (Top) The
spectrum of S, P andD levels in theΥ system obtained from coarse (filled red triangles)

and fine (open black triangles) quenched lattice calculations and from coarse (filled red

squares) and fine (open black squares) unquenched calculations. Experimental results

are shown as lines. (Bottom) Results for different splittings as a function of light u/d
quark mass. The leftmost points, at lightest u/d quark mass, are the ones included in the
top plot for the unquenched results. (Gray et al. 2003)

momentum transfer inside an Υ is larger than any of the u, d, or s masses and so we

expect these splittings simply to ‘count’ the presence of the light quarks. This lack of

variation with light quark mass is evident in Figure 13.

C. T. H. Davies et al. [HPQCD, Fermilab Lattice, MILC, 
and UKQCD Collaborations], PRL 92, 022001 (2004)  
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The masses resulting from a full coupled channel analysis [26] in the CCC model are shown in

the second column of Table 1. The parameters of the potential model sector, , must be readjusted to

fit the physical masses, , to the observed experimental values. To compute the induced splittings, the

bare centroid of the spin-triplet states is adjusted so that the physical centroid, after inclusion of coupled-

channel effects, matches the value in the middle column of Table 1. The centroid for the 1D masses is

determined by pegging the observed mass of the 1 D . For the 2P levels, the bare centroid is

adjusted so that the 2 P level lies at the centroid of a potential-model calculation. The assumed spin

splittings in the single-channel potential model are shown in the penultimate column and the induced

coupled channel spin splittings for initially unsplit multiplets are presented in the rightmost column of

Table 1. The shifts induced in the low-lying 1S and 1P levels are small. For the other known states in the

2S and 1D families, coupled-channel effects are noticeable and interesting.

In a simple potential picture, the S level lies below the S by the hyperfine splitting

given by

(4)

Using the observed 1S hyperfine splitting, MeV, one would find

MeV , which is larger than the observed MeV, as is typical for potential-model

calculations.

One important result of coupling the open-charm threshold is that the receives a downward shift

of the nearby , that the does not get, as this state does not couple to . This is implicitly present

in the early Cornell papers [11, 12], but the shift of spin singlets states was not explicitly calculated.

The effect was first mentioned by Martin and Richard [27, 28], who calculated the size of the effect.

Recent papers using the CCC model interaction [26, 29] have confirmed this behaviour. In fact, the 2S

induced shifts in Table 1 draw and closer by MeV, substantially improving the agreement

between theory and experiment. This suggests that the - splitting reflects the influence of virtual

decay channels.

If the observed is a charmonium state, it is most naturally interpreted as the 1 D or

1 D level [25,26]; if not, both these states remain to be observed and the dynamics of is significantly

richer. As shown in Table 1, the coupling to open-charm channels increases the 1 D -1 D splitting by

about MeV, but does not fully account for the observed MeV separation between and

. However the position of the 1 D level turns out to be very close to MeV.

1.3 Mixing and Physical State Properties

The physical states are not pure potential-model eigenstates but include components with two virtual

(real above threshold) open flavor meson states. Separating the physical state ( ) into ( ) and two

meson components ( ), the resulting separation by sector leads to an effective Hamiltonian for the

sector given by:

(5)

Solving Eq. 5 in the sector determines the mixing between the potential model states and

coupling to decay channels. This approach has been described in detail [11,12] for the CCC model with

(Eq. 1). An effective Hamiltonian approach has also been considered in the QPC model [30].

The results for the low-lying states is shown in Table2 for the CCC model. The overall prob-

ability for the physical state to be in the sector, denoted , decreases as open charm threshold is

approached. For states above threshold the mixing coefficients become complex. These mixing effects

contribute to observed S-D mixing as well as modifying radiative transition rates [31, 32]. A more de-

tailed discussion of these effects appear in the Decay section.
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χ′
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c
<< 1

ψ = ψ0 + ψ2
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Q̄1Q2 mQ >> ΛQCD

(
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<< 1

ψ = ψ0 + ψ2

cc̄

c̄c

where 

Phenomenological approach 
based on Cornell coupled 
channel model (CCCM):

Solve coupled-state system 
for & and #

Calculate pair-creation amplitudes, eg

13D2, 11D2, 13D3

3D3or 3D2

γχc1, γχc2

D0D̄0π0 , D0D̄0γ

<3 D2|HI |DD̄! >

12

Dual approach using heavy flavor mesons virtual/real pairs 

1. Coupling to Open-Charm Channels

1.1 Theoretical Models

Near the threshold for open heavy flavor pair production, there are significant non-perturbative contri-

butions from light quark pairs to the masses, wavefunctions and decay properties of physical states.

QCD sum rules [1,2] have been used to obtain some results [3–5] and lattice QCD calculations extended

into the flavor-threshold region should eventually give a firm basis for predictions. However, at present a

more phenomenological approach is required to provide a detailed description of these effects.

The effects of light quark pairs near open heavy flavor threshold can be described by coupling the

potential model states to nearby physical multibody states. In this threshold picture, the strong inter-

actions are broken into sectors defined by the number of valence quarks. This separation is reminiscent

of the Tamm-Dancoff approximation [6]. The dynamics of the states (with no valence light quarks,

) is described by the interaction . Nonrelativistic potential models are normally used to determine

the properties of the resulting bound states in this sector. In this framework excitations of the gluonic

degrees of freedom would also be contained the spectrum of .

The two meson sector are described by the Hamiltonian . In the simplest picture,

is assumed to be be described the low-lying spectrum of two free heavy-light mesons. The physical

situation is more complex. At large separation between two mesons the interactions are dominated t-

channel pion exchanges. For states very near threshold such as the X(3872) charmonium state such pion

exchange in attractive channels might have significant effects on properties of the physical states [7]. At

somewhat shorter distances, more complicated interactions exist and new bound states might arise, e.g.

molecular states [8, 9].

Our command of quantum chromodynamics is inadequate to derive a realistic description of the

interactions, , that communicate between the and sectors. Two simple phenomenological

models have been used to describe this coupling: the Cornell coupled-channel model (CCC) and the

vacuum quark pair creation model (QPC).

The Cornell coupled-channel model for light quark pair creation [10–12]. generalizes the Cornell

model without introducing new parameters, writing the interaction Hamiltonian as

(1)

where is the quarkonium potential and is the color current density, with

the quark field operator and the octet of SU(3) matrices. To generate the relevant interactions, is

expanded in creation and annihilation operators (for up, down, strange and heavy quarks), but transitions

from two mesons to three mesons and all transitions that violate the Zweig rule are omitted. It is a good

approximation to neglect all effects of the Coulomb piece of the potential in Eq. 1. It was shown that this

simple model coupling charmonium to charmed-meson decay channels gives a qualitative understanding

of the structures observed above threshold while maintaining the successes of the single-channel

analysis below threshold [11, 12].

The main theoretical weakness of the CCC model is the use of the time component of a long-

range vector interaction between the heavy quarks color densities rather than the Lorentz scalar confining

interaction now favored in quarkonium potential models.

The vacuum quark pair creation model (QPC). This model was developed by Le Yaouanc et.

al. [13–15] based on an earlier idea of Micu [16] that the light quark pair is produced from the vacuum

with vacuum quantum numbers . The model is also referred to as the P model. The form

of the interaction Hamiltonian is

(2)

The constant is a free parameter of the model. This model has been applied to the light meson states

[17, 18]. It was first applied above charm threshold by the Orsay group [19].

13D2, 11D2, 13D3

3D3or 3D2

γχc1, γχc2

D0D̄0π0 , D0D̄0γ

<3 D2|HI |DD̄! >

ρa = c̄γ0tac + q̄γ0taq

Coupling to virtual channels induces spin-dependent forces 
in charmonium near threshold, because  M(D*) > M(D)
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⇒

5

threshold region occupies our interest in this study. How-
ever, analogous effects are present in the bb̄ states near
BB̄ threshold and cb̄ states near DB threshold. A de-
tailed comparison of different heavy-quark systems could
provide valuable insight into the correct form for the cou-
pling to light-quark pairs.

The C3 formalism generalizes the cc̄ model without in-
troducing new parameters, writing the interaction Hamil-
tonian in second-quantized form as

HI = 3
8

∑8
a=1

∫

: ρa(r)V (r − r′)ρa(r′) : d3r d3r′ , (2)

where V is the charmonium potential and ρa(r) =
1
2
ψ†(r)λaψ(r) is the color current density, with ψ the

quark field operator and λa the octet of SU(3) matrices.
To generate the relevant interactions, ψ is expanded in
creation and annihilation operators (for charm, up, down,
and strange quarks), but transitions from two mesons to
three mesons and all transitions that violate the Zweig
rule are omitted. It is a good approximation to neglect all
effects of the Coulomb piece of the potential in (2). This
simple model for the coupling of charmonium to charmed-
meson decay channels gives a qualitative understanding
of the structures observed above threshold while preserv-
ing the successes of the single-channel cc̄ analysis below
threshold [58, 59].

A. Mass Shifts

In the presence of coupling to two-light-quark decay
channels, the mass ω of the quarkonium state Ψ is defined
by the eigenvalue equation

[H0 + H2 + HI ]Ψ = ωΨ. (3)

Above the flavor threshold, ω is a complex eigenvalue.
The basic coupled-channel interaction HI given by

(2) is independent of the heavy quark’s spin, but the
hyperfine splittings of D and D∗, Ds and D∗

s , induce
spin-dependent forces that affect the charmonium states.
These spin-dependent forces give rise to S-D mixing that
contributes to the electronic widths of 3D1 states and in-
duces additional spin splitting among the physical states.

The masses that result from the full coupled-channel
analysis are shown in the second column of Table II,
which revises and extends our previously published re-
sults [8]. The new version presented here includes the
3S levels and takes account of Belle’s evidence [14] for
Z(3930), interpreted as a 23P2 state (cf. §II E 3). As
in our earlier analysis, the parameters of the potential-
model sector governed by H0 must be readjusted to fit
the physical masses, ω, to the observed experimental val-
ues. The centroids of the 1D and 2P spin-triplet masses
are pegged to the observed masses of 13D1 ψ(3770) and
23P2 (Z(3930)), respectively. The assumed spin split-
tings in the single-channel potential model are shown in
the penultimate column and the induced coupled-channel
spin splittings for initially unsplit multiplets are pre-
sented in the rightmost column of Table II. The shifts

TABLE II: Charmonium spectrum, including the influence
of open-charm channels. All masses are in MeV. The penul-
timate column holds an estimate of the spin splitting due
to tensor and spin-orbit forces in a single-channel potential
model. The last column gives the spin splitting induced by
communication with open-charm states, for an initially un-
split multiplet.

State Mass Centroid
Splitting

(Potential)
Splitting
(Induced)

11S0

13S1

2 979.9a

3 096.9a 3 067.6b −90.5e

+30.2e
+2.8
−0.9

13P0

13P1

11P1

13P2

3 415.3a

3 510.5a

3 524.4f

3 556.2a

3 525.3c

−114.9e

−11.6e

+0.6e

+31.9e

+5.9
−2.0
+0.5
−0.3

21S0

23S1

3 638a

3 686.0a 3 674b −50.1e

+16.7e
+15.7
−5.2

13D1

13D2

11D2

13D3

3 769.9a

3 830.6
3 838.0
3 868.3

(3 815)d

−40
0
0

+20

−39.9
−2.7
+4.2
+19.0

23P0

23P1

21P1

23P2

3 881.4
3 920.5
3 919.0
3 931g

(3 922)d

−90
−8
0

+25

+27.9
+6.7
−5.4
−9.6

31S0

33S1

3 943h

4 040a (4 015)i
−66e

+22e
−3.1
+1.0

aObserved mass, from Review of Particle Physics, Ref. [20].
bInput to potential determination.
cObserved 13PJ centroid.
dComputed centroid.
eRequired to reproduce observed masses.
fObserved mass from CLEO [3].
gObserved mass from Belle [14].
hObserved mass from Belle [13].
iObserved 3S centroid.

induced in the low-lying 1S and 1P levels are small. For
all the other states, coupled-channel effects are noticeable
and interesting.

An important consequence of coupling the open-charm
threshold is that the ψ′ receives a downward shift through
its communication with the nearby DD̄ channel; the un-
natural parity η′

c does not couple to DD̄, and so is not
depressed in the same degree. This effect is implicitly
present in the early Cornell papers [58, 59], but the shift
of spin-singlet states was not calculated there. The first
explicit mention—and the first calculation—of the un-
equal effects on the masses of the 2S hyperfine partners
is due to Martin and Richard [61]. In the framework of
the C3 model, we found [8, 9] (cf. Table II) that the
induced shifts draw ψ′ and η′

c closer by 20.9 MeV, sub-
stantially improving the agreement between theory and
experiment. This suggests that the ψ′-η′

c splitting reflects
the influence of virtual decay channels. In the case of the
3S system, both the 31S0 η′′

c and the 33S1 ψ(4040) com-

13

⇒

 ELQ PRD 73:014014 (2006)

Spin dependent shifts small far below threshold 

Reduces 'M(2S) 
by 21 MeV 

Less that 1 MeV 
shift 
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Hindered M1 transitions  

!(3S) -> %b and !(2S) -> %b 

Phenomenological model results vary greatly 
due to poorly understood relativistic 
corrections. 

pNRQCD expectation

QwG Workshop@BNL  JUN/2006Hajime Muramatsu 7

Search for !(2,3S) " #$b(1S)

• Hindered M1 transition:

• But E# ~911 (604) MeV from !(3S) (!(2S)) " #$b(1S) with

M($b)~9400 MeV/c2.

• CLEO has already set ULs (90%CL) on these BR’s (PRL94,032001)
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 Narrow states still missing 

Charmonium -   3 - 1D2, 3D2, and 3D3 

Bottomonium - 24 -  13D0, 13D1, 13FJ, 23DJ, 13GJ, 33PJ, 
11S0, 11P1, 21S0, 11D2, 21P1, 31S0, 11F3, 21D2, 11G4, 31P1
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 Multipole Expansion 

Including EM interactions

Theory of quarkonium transitions relies 
on the multipole expansion

Higher order terms

r

k
Q̄ Q

expansion kr/2

I. QUARKONIUM AND MULTIPOLE EXPANSIONS

LNRQCD = ψ†
(

iD0 +
D2

2mQ

)
ψ +

cF

2mQ
ψ†σ · gBψ + o(

1

m2
Q

)

+[ψ → iσ2χ∗, Aµ → −AT
µ ]

where ψ is the Pauli spinor field that annihilates a heavy quark of mass m, flavor Q and

electrical charge eeQ, χ is the corresponding one that creates a heavy antiquark.

HI = ieQψ†
(

D · eA + eA ·D
2mQ

)
ψ +

cF eQ

2mQ
ψ†σ · eBψ + ... (1)

II. RADIATIVE TRANSITIONS

For quarkonium states, Q1Q̄2, above the ground state but below threshold for strong

decay into a pair of heavy flavored mesons, electromagnetic transitions are often significant

decay modes. In fact, the first charmonium states not directly produced in e+e− collisions,

the χJ
c states, were discovered in photonic transitions of the ψ′ resonance. Even today, such

transitions continue to be used to observe new quarkonium states [1].

A. Effective Lagrangian

The theory of electromagnetic transitions between these quarkonium states is straightfor-

ward. Much of the terminology and techniques are familiar from the study EM transitions

in atomic and nuclear systems. The photon field Aµ
em couples to charged quarks through

the electromagnetic current:

jµ ≡
∑

i=u,d,s

ji
µ +

∑

i=c,b,t

ji
µ (2)

The heavy valence quarks (c, b, t) can described by the usual effective action:

LNRQCD = ψ†
{

iD0 +
D2

2m
+ cF g

σ ·B
2m

+ cD g
[D·,E]

8m2
+ icS g

σ · [D×,E]

8m2
+ . . .

}
ψ (3)

where the E and B fields are the chromoelectric and chomomagentic fields. Corrections to

the leading NR behaviour are determined by expansion in the quark and antiquark velocities.

For photon momentum small compared to the heavy quark masses, the form of the EM

2

Electric Magnetic
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 Photon Transitions
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where ψ is the Pauli spinor field that annihilates a heavy quark of mass m, flavor Q and

electrical charge eeQ, χ is the corresponding one that creates a heavy antiquark.

HI = ieQψ†
(

D · eA + eA ·D
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2mQ
ψ†σ · eBψ + · · ·
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{p,A(Rcm, t) + · · ·} = r · E(Rcm, t) + · · ·

1

mQ
{p,A(Rcm, t) + · · ·} =

where

i[H, r] =
2p

mQ

and

i[H,A] =
∂

∂t
A = E

We have

eQψ†r · eEψ + · · ·

remembering

p ∼ 1

r
∼ mQv
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electrical charge eeQ, χ is the corresponding one that creates a heavy antiquark.

A. photonic transitions

HI = ieQψ†
(

D · eA + eA ·D
2mQ

)
ψ +

cF eQ

2mQ
ψ†σ · eBψ + · · ·

A(Rcm, r, t) = A(Rcm, t) + x ·∇A(Rcm, t) + · · ·

1

mQ
{p,A(Rcm, t) + · · ·} = r · E(Rcm, t) + · · ·

1

mQ
{p,A(Rcm, r, t)} = r · E(Rcm, t) + · · ·

where

i[H, r] =
2p

mQ

and

i[H,A] =
∂

∂t
A = E

We have

eQψ†r · eEψ + · · ·

remembering

p ∼ 1

r
∼ mQv

2

A

B

γ

k

e
ir·k
2 =

∑

n

1

n!

(ir · k)

2

n

E1, E2, E3, ...
M1, M2, M3, ...   

Selection Rules  

expansion coefficients small:  
1

(2n + 1)!!

Electric
S <-> P

Magnetic
S <-> S
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 Other approaches

Lattice  

pNRQCD

Systematic Effective Lagrangian approach. 
Higher states an issue

See review:
Heavy Quarkonium 
Physics Cern-2005-005

Dudek, Edwards, Richards 
[PR D73:074507 (2007)]
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〈S(!pS)|jµ(0)|V (!pV , r)〉 = Ω−1(Q2)

(

E1(Q
2)

[

Ω(Q2)εµ(!pV , r) − ε(!pV , r).pS

(

pµ
V pV .pS − m2

V pµ
S

)

]

+
C1(Q2)
√

q2
mV ε(!pV , r).pS

[

pV .pS(pV + pS)µ − m2
Spµ

V − m2
V pµ

S

]

)

.

The Lorentz invariant matrix elements for the transition
χc0 → J/ψγ∗(Q2) are also given in the appendix:

M(rγ = ±; rψ = ∓) = E1(Q
2)

M(rγ = 0; rψ = 0) = −C1(Q
2).

Hence the analogue of (13) gives for the width at Q2 = 0,

Γ(χc0 → J/ψγ) = α
|!q|

m2
χc0
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where the lattice form-factor is again related to the phys-
ical one by E1(Q2) = 2 × 2

3e × Ê1(Q2).
The most recent measurement of this decay’s branch-

ing fraction comes from the CLEO collaboration[4], who
find, using the PDG total width to normalise: Γ(χc0 →
J/ψγ) = 204(31)keV. In addition to this we have the
PDG[3] average/fit to data obtained up to 2005 which
gives Γ(χc0 → J/ψγ) = 115(14)keV. The next PDG re-
port will likely contain the CLEO value in a new average
which will thus lie between these two values.

In figure 13 we display the Ê1(Q2) extracted from our
lattice simulations. Temporal vector current insertions
produce compatible results but with much larger error
bars and are not shown.

Our simulation data lies at Q2 '= 0, but since we are
primarily interested in the photopoint we require some
fit function to allow us to extrapolate back. In the light
of the success of forms motivated by the non-relativistic
quark model in previous sections we consider using a
function which resembles one that would be derived in
such a model. We opt to use a form

Ê1(Q
2) = Ê1(0)

(

1 +
Q2

ρ2

)

exp

[

−
Q2

16β2

]

, (15)

which has the gaussian behaviour used previously modi-
fied by a polynomial in Q2. In the simple quark model,
the Q2/ρ2 term could arise from relativistic corrections or
departures from gaussian wavefunction behaviour. Note
that this form is analytic for Q2 > 0 as we would expect
- singularities (as in the VMD case) will occur at Q2 < 0.

We do not include in the fit the points at Q2 < 0
- these data, corresponding to the case !pf = !pi where
Q2 = −(Ef −Ei)2, were extracted from correlators with
no plateau behaviour using the fitting method described
in section IV. It is therefore a rather non-trivial cross-
check that our fit function, constrained by points at Q2 !
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FIG. 13: χc0 → J/ψγ E1 transition form-factor. (a) full range
of lattice data (b) zoom to the Q2 ≈ 0 region

1GeV2, extrapolated to the Q2 < 0 region, overlays these
points.

The fit returns the following parameters:

atÊ1(0) = −0.137(12)

β = 542(35)MeV; ρ = 1.08(13)GeV

The longitudinal photon transition form-factor,
C1(Q2) can also be extracted from lattice three-point

Direct calculation - Extrapolate to Q2=0
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B. hadronic transitions

Applying the multipole expansion to hadronic transitions. First suggested by Gottfried

and proven by Yan.

HI = iψ†′ r

2
· gE′

at
aψ′ +

cF

mQ
ψ†′sQ · gtaB′

aψ
′ + [Q− > Q̄] + · · ·

where

ψ′ = U−1ψ

taA′µ
a = U−1taAµ

aU −
i

g
U−1∂µU

taA′µ
a = U−1taAµ

aU −
i

g
U−1∂µU

g2
E

8
< B|rigtaGrjgtb|A > < ππ|Ei

aE
i
b|0 >

where

G = (EA −H0
NR)−1 =

∑

KL

|KL >< KL|
EA − EKL

(QQ̄ octet)

fAB ≡
∑

KL

∫
druB(r)ruKL(r)

∫
uKL(r)ruA(r)

EA − EKL + iε

II. RADIATIVE TRANSITIONS

The spin averaged decay rate is given by

Γ(i
E1−→ f + γ) =

4αe2
Q

3
(2Jf + 1)SE

ifk
3|Eif |2 (1)

where eQ is the quark charge, k is the photon energy, the statistical factor SE
if = SE

fi is

SE
if = max (Li, Lf )





Ji 1 Jf

Lf S Li





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CG factor

Overlap

FIG. 1: E1 transitions in the narrow spin triplet b̄b states. For each S-P transition indicated

there are three individual transitions (one for each PJ state); while for transitions involving any

other pair of orbital angular momenta (P-D, D-F, F-G, ...) there are six individual transitions

(∆J = 0,±1).

An early choice for the potential was the Cornell Model [12, 30–32, 51]. Here the exchange

interaction was the time component of a vector with a Coulomb short range part −K/r plus

a linear r/a2 long range confining part. The Coulomb part was modified to agree with

perturbative QCD at short distance by Buchmuller and Tye[33, 34]. Other simple forms for

the potential, logarithmic[36, 38] and power law [37, 48], were also proposed.

In the NRQCD limit the the quark-antiquark interaction is spin independent, but includ-

ing relativistic corrections introduces dependency on the Lorentz structure of the potential.

Particular important is the vector versus scalar nature of the long-range confining interac-

tion. Many modern theoretical calculation assume a long range scalar confining potential[35]

or a linear combination of the form ηVS(r)+(1−η)VV (r) [27, 29, 40]. Moxhay and Rosner[41]

assumed an additional long range tensor force.

The second consideration is the extent of inclusion of relativistic corrections. Some calcu-

lations are essentially nonrelativistic. These calculations often include some finite size effects

(R3 of Eq. 22) by retaining the form for Eif given in Eq. 14[12, 30–32, 47, 51]. Other models

10

bb̄ spin triplets

.

The spin-flip radiative transition rate between an initial state (n2s+1!J), i, and a final

state (n′2s!+1SJ ′), f , is:

Γ(i
M1−→ f + γ) =

4αe2
Q

3m2
Q

(2Jf + 1)k3[Mif |]2 (3)

Eif =

∫
r2dr RniLi(r)rRnfLf

(r) (4)

For quarkonium states, Q1Q̄2, above the ground state but below threshold for strong

decay into a pair of heavy flavored mesons, electromagnetic transitions are often significant

decay modes. In fact, the first charmonium states not directly produced in e+e− collisions,

the χJ
c states, were discovered in photonic transitions of the ψ′ resonance. Even today, such

transitions continue to be used to observe new quarkonium states [1].

A. Effective Lagrangian

The theory of electromagnetic transitions between these quarkonium states is straightfor-

ward. Much of the terminology and techniques are familiar from the study EM transitions

in atomic and nuclear systems. The photon field Aµ
em couples to charged quarks through

the electromagnetic current:

jµ ≡
∑

i=u,d,s

ji
µ +

∑

i=c,b,t

ji
µ (5)

The heavy valence quarks (c, b, t) can described by the usual effective action:

LNRQCD = ψ†
{

iD0 +
D2

2m
+ cF g

σ ·B
2m

+ cD g
[D·,E]

8m2
+ icS g

σ · [D×,E]

8m2
+ . . .

}
ψ (6)

where the E and B fields are the chromoelectric and chomomagentic fields. Corrections to

the leading NR behaviour are determined by expansion in the quark and antiquark velocities.

For photon momentum small compared to the heavy quark masses, the form of the EM

interaction (in Coulomb gauge) is determined in the same way as the NRQCD action itself[2],

the leading order terms are:

j ·Aem = eQψ†
{
{D·,Aem}

2m
+ (1 + κQ)

σ ·Bem

2m
+ . . .

}
ψ (7)

Here κQ is the coefficient of a possible anomalous magnetic moment for the heavy quark.

The first term of Eq. 7 produces electric and the second magnetic transitions.

4

Sensitive to detailed dynamics 
for transitions involving radially
excited states
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FIG. 3 E1 dipole transition matrix elements for the charmonium decays 23S1 → 13PJ . The

horizontal bands indicate the experimental results. The circles designate nonrelativistic predictions

and the triangles relativistic predictions. Within these subsets the results are given in chronological

order of the publication date. The labels refer to C-Cornell Model (13), QR-Quigg Rosner, cc̄

ρ = 2 and bb̄ potentials (21), BT-Buchmüller Tye (89), GRR-Gupta Radford Repko (90), MB-

McClary Byers (43), MR-Moxhay Rosner (42), GOS-Grotch Owen Sebastian (34), GI-Godfrey

Isgur, calculated using the wavefunctions of Ref. (35), L-Lahde, DYN column (38), EFG-Ebert

Faustov Galkin (37).
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FIG. 16 E1 dipole transition matrix elements for the bottomonium decays 33S1 → 23PJ . The

labels are the same as in Fig. 15.
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FIG. 15 E1 dipole transition matrix elements for the bottomonium decays 23S1 → 13PJ . The

labels are the same as in Fig. 3 with the addition of two sets of predictions: KR-Kwong Rosner

(2), F-Fulcher (226).
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23S1->13PJ (cc) 

J=2 

J=1 

J=0 

33S1->23PJ (bb) 23S1->13PJ (bb) 

J=2 J=2 

J=1 J=1 

J=0 J=0 

EifS states -> P states

Generally good agreement with NR MPE  

Relativistic corrections 10%-20% effects in cc 
system.

Need better theoretical guidance. 

E.E., S. Godfrey, H. Mahlke and J. Rosner  [hep-ph/0701208]

Table 2: Experimental results for E1 transitions n3S1 to m3PJ . Total widths:
Γ(Ψ(2S)) = 337 ± 13, Γ(Υ(2S)) = 32.0 ± 2.6 and Γ(Υ(3S)) = 20.3 ± 1.8 (in keV) .

Transition k BR Rate |Eif |

i
E1
−→ f (MeV) % (keV) (GeV−1)

cc̄
23S1 13P2 127 9.33 ± 0.14 ± 0.61 31.4 ± 2.5 2.53 ± 0.10
23S1 13P1 171 9.07 ± 0.11 ± 0.54 30.6 ± 2.3 2.06 ± 0.08
23S1 13P0 261 9.22 ± 0.11 ± 0.46 31.1 ± 2.1 1.91 ± 0.06

bb̄
23S1 13P2 110.6 7.24 ± 0.11 ± 0.40 2.32 ± 0.23 1.69 ± 0.08
23S1 13P1 129.6 6.93 ± 0.12 ± 0.41 2.21 ± 0.23 1.68 ± 0.08
23S1 13P0 162.6 3.75 ± 0.12 ± 0.47 1.20 ± 0.18 1.52 ± 0.11
33S1 23P2 86.0 15.79 ± 0.17 ± 0.73 3.21 ± 0.37 2.90 ± 0.15
33S1 23P1 99.2 14.54 ± 0.18 ± 0.73 2.95 ± 0.34 2.90 ± 0.15
33S1 23P0 121.6 6.77 ± 0.20 ± 0.65 1.37 ± 0.18 2.52 ± 0.16
33S1 13P0 483 0.30 ± 0.04 ± 0.10 0.061 ± 0.023 0.067 ± 0.012

Table 3: Selected properties of quarkonium systems. Cornell potential model used
for calculations.

cc̄
State < |r| > (fm) < v2 >
J/ψ 0.32 0.26
χc(1P ) 0.57 0.24
ψ(2S) 0.70 0.29
ψ(3770) 0.78 0.28

bb̄
State < |r| > (fm) < v2 >
Υ(1S) 0.19 0.091
χb(1P ) 0.35 0.072
Υ(2S) 0.44 0.086
Υ(1D) 0.50 0.080
χb(2P ) 0.56 0.089
Υ(3S) 0.63 0.100
Υ(4S) 0.80 0.116

2
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Radial Wavefunctions – bb̄
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October 2, 2007

1 Rates

Table 1: Cancellations in Eif by node regions.

bb̄ initial state node
Transition < 1 1 to 2 2 to 3 total
2S → 1P 0.07 −1.68 −1.61
3S → 2P 0.04 −0.12 −2.43 −2.51
3S → 1P 0.04 −0.63 0.65 0.06

1

33S1 -> 13PJ transition dynamically suppressed. Rate 
very sensitive to relativistic corrections.  

nP -> mS transitions. Generally good agreement with 
NR predictions. Again better theoretical  control for 
relativistic corrections needed

TABLE XV Predicted (2) and measured (12) branching ratios for χbJ(2P ) = 23PJ radiative E1

decays.

Final Predicted B Measured B

Level state (%) (2) (%) (12)

23P0 γ + 1S 0.96 0.9 ± 0.6

γ + 2S 1.27 4.6 ± 2.1

23P1 γ + 1S 11.8 8.5 ± 1.3

γ + 2S 20.2 21 ± 4

23P2 γ + 1S 5.3 7.1 ± 1.0

γ + 2S 18.9 16.2 ± 2.4

knowledge of the χbJ(2P ) branching ratios, as summarized in Table XV.

The dipole matrix elements for Υ(2S) → γχbJ(1P ) and Υ(3S) → γχbJ(2P ) are shown

in Figs. 15 and 16, along with predictions of various models. The dipole matrix element

predictions are in generally good agreement with the observed values.

As already pointed out, the most notable exceptions are the matrix elements

〈33S1|r|13PJ〉. In the NR limit this overlap is less than 5% of any other S − P overlap,

and its suppression occurs for a broad range of potential shapes (227). This dynamical

accident makes these transition rates very sensitive to the details of wave functions and

relativistic corrections which are not known to this level of precision. This sensitivity is

shown most clearly looking at the signs of the matrix elements as well as their magnitudes.

The average experimental value for this matrix element is 〈33S1|r|13PJ〉 = 0.050 ± 0.006

GeV−1 (228). Taking the predictions of Ref. (35) for comparison, the average over J values

gives 0.052 GeV−1 which is in good agreement with the observed value. However, more

detailed scrutiny gives 0.097, 0.045, and –0.015 GeV−1 for J = 2, 1, and 0 matrix elements

respectively. Not only is there a large variation in the magnitudes but the sign also changes,

highlighting how sensitive the results for this particular transition are to details of the model

due to delicate cancellations in the integral.

The branching ratios can also be used to measure the ratios of various E1 matrix elements

which can then be compared to potential model predictions. CLEO (228) obtained the
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FIG. 4 E1 dipole transition matrix elements for the charmonium decays 13PJ → 13S1. Labels are

as in Fig. 3.

ratios a2 for these decays are

a2(χc1) = Eγ1
(1 + κc)/(4mc) , (26)

a2(χc2) = (3/
√

5)Eγ2
(1 + κc)/(4mc) , (27)

25

13PJ ->13S1 (cc) 

J=2 

J=1 

J=0 

Exp 
GI Model 
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#(3770)-> 13PJ transitions:                                               
Can study relativistic effects including 
coupling to decay channels.  

#’(2S) -> 13PJ -> J/# transitions:            
Can study size of higher multipole terms 
M2 and E3. 

TABLE V: M2 and E3 multipole amplitudes for radiative transitions involving χc states. The

values of X and Y are model dependent and are defined in the text. Note X = 0 if no S-D mixing.

χcJ → J/ψ + γ

J theory E835 PDG

2 a2 ≈ −
√

5
3

k
4mc

(1 + κc) −0.093+0.039
−0.041 ± 0.006 −0.140± 0.006

2 a3 ≈ 0 0.020+0.055
−0.044 ± 0.009 0.011+0.041

−0.033

1 a2 ≈ − k
4mc

(1 + κc) 0.002± 0.032± 0.004 −0.002+0.008
−0.017

J ψ ′ → χcJ + γ theory

2 a2 ≈ −
√

3
2
√

10
k

mc
[(1 + κc)(1 +

√
2

5 X)− i1
5X]/[1− 1

5
√

2
X]

2 a3 ≈ −12
√

2
175

k
mc

X[1 + 3
8Y ]/[1− 1

5
√

2
X]

1 a2 ≈ − k
4mc

[(1 + κc)(1 + 2
√

2
5 X) + i 3

10X]/[1 + 1√
2
X]

12

TABLE V: Our measurements of the photon transitions widths (statistical and systematic errors)

compared to theoretical predictions. The J =0 measurement comes from this analysis. The J =2
upper limit comes from Ref.[5]. The J = 1 measurement comes from the combination of this
analysis and of the result in Ref.[5].

Γ(ψ(3770) → γχcJ) in keV
J = 2 J = 1 J = 0

Our results < 21 70 ± 17 172 ± 30

Rosner (non-relativistic) [7] 24 ± 4 73 ± 9 523 ± 12
Ding-Qin-Chao [6]

non-relativistic 3.6 95 312

relativistic 3.0 72 199
Eichten-Lane-Quigg [8]

non-relativistic 3.2 183 254
with coupled-channels corrections 3.9 59 225
Barnes-Godfrey-Swanson [9]

non-relativistic 4.9 125 403
relativistic 3.3 77 213

predictions.
The theoretical predictions are based on potential model calculations [13] of the electric

dipole matrix element <13PJ |r|13D1 >:

ΓJ =
4

3
e2

QαE3
γCJ <13PJ |r|13D1 >2,

where eQ is the c quark charge and α is the fine structure constant. The spin factors CJ

are equal to 2/9, 1/6 and 1/90 for J = 0, 1 and 2, respectively [15]. The phase-space
factor (E3

γ) also favors the J = 0 transition. Together, the spin and phase-space factors
predict enhancement of the J = 0 width by a factor of ∼ 3.2 and ∼ 85 over J = 1 and
J = 2, respectively. In the non-relativistic limit, the matrix element is independent of J .
The measured ratios of the widths, Γ0/Γ1 = 2.5 ± 0.6 and Γ0/Γ2 > 8 (90% C.L.), are
consistent with these crude predictions, therefore, providing further evidence that ψ(3770)
is predominantly a 13D1 state. A small admixture of 23S1 wave, necessary to explain the
observed Γee(ψ(3770)), is expected to increase Γ0 and Γ2 while making Γ1 smaller [6, 7]. The
large experimental and theoretical uncertainties in ΓJ make testing of the mixing hypothesis
via radiative transitions difficult.

As evident from Table V, the naive non-relativistic calculations tend to overestimate
absolute values of the transition rates. Relativistic [6, 9] or coupled-channel [8] corrections
are necessary for quantitative agreement with the data. The latter is not surprising since
non-relativistic calculations also overestimate ψ(2S) → γχcJ transition rates [16].

We gratefully acknowledge the effort of the CESR staff in providing us with excellent
luminosity and running conditions. This work was supported by the A.P. Sloan Foundation,
the National Science Foundation, the U.S. Department of Energy, and the Natural Sciences
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 Partial and total widths:

Leptonic widths 

A wealth of results 

certainty (!stat) by
!!!!!!!!!!!!!!!!!
"2=Ndof

p
. All uncertainties are listed in

Table I.
We assume that e!e" ! q !q interferes only with the q !q

component of hadronic " decays. The "#1S$ fit favors this
interference scheme over the no-interference hypothesis by
3.7 standard deviations. It is also possible that e!e" !
q !q ! hadrons interferes with " ! ggg ! hadrons. If so,
full interference between all final states, all with a common
phase difference near %#=2 (" ! ggg phase minus " !
q !q phase), would shift #ee#had=#tot by &5:4%, &3:8%,
and &3:5% for the "#1S$, "#2S$, and "#3S$, respectively
[16]. This is the most extreme case. Overlap of isospin and
flavor states for these two processes suggest that this
interference, if it occurs, affects #ee#had=#tot at no more
than the '1% level.

Our values of #ee#had=#tot, listed in Table II, are con-
sistent with, but more precise than, the PDG world aver-
ages [5] and our "#3S$ measurement is substantially more
precise. Also listed in the Table are the dielectron widths
and ratios of these widths, in which common systematic
uncertainties have been canceled. Assuming Bee ( B$$

and using [9], we obtain new values of the " full widths:
54:4% 0:2#!stat$ % 0:8#!syst$ % 1:6#!B$$

$ keV for the

"#1S$, 30:5% 0:2% 0:5% 1:3 keV for the "#2S$, and
18:6% 0:2% 0:3% 0:9 keV for the "#3S$.

We gratefully acknowledge the effort of the CESR staff
in providing us with excellent luminosity and running
conditions. This work was supported by the A. P. Sloan
Foundation, the National Science Foundation, and the
U.S. Department of Energy.
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TABLE II. The results of #ee#had=#tot for the three resonances,
the dielectron widths #ee, and their ratios. The first uncertainty is
statistical and the second is systematic.

#ee#had=#tot#1S$ 1:252% 0:004% 0:019 keV
#ee#had=#tot#2S$ 0:581% 0:004% 0:009 keV
#ee#had=#tot#3S$ 0:413% 0:004% 0:006 keV

#ee#1S$ 1:354% 0:004% 0:020 keV
#ee#2S$ 0:619% 0:004% 0:010 keV
#ee#3S$ 0:446% 0:004% 0:007 keV

#ee#2S$=#ee#1S$ 0:457% 0:004% 0:004
#ee#3S$=#ee#1S$ 0:329% 0:003% 0:003
#ee#3S$=#ee#2S$ 0:720% 0:009% 0:007

PRL 96, 092003 (2006) P H Y S I C A L R E V I E W L E T T E R S week ending
10 MARCH 2006

092003-5

Branching ratios and total widths 

Check lepton universality 

Lattice calculations needed 

decay modes. In all cases the Monte Carlo expectation is
consistent with the data assuming lepton universality and
branching fractions from [3]. The agreement across the
various kinematic quantities indicates that backgrounds are
well controlled.

Figure 3 shows the agreement across all !!!" subsam-
ples of the ratio of off-resonance cross sections for !!!"

and "!"" production, relative to expectation, as well as
the ratio of branching fractions for each of these decay
modes at the different ! resonances, relative to the expec-
tation R! th

!! # 1. The agreement across !!!" subsamples
both on and off the resonances is again an indication that
backgrounds are small and well estimated.

The ratio of branching fractions and final branching
fractions are listed in Table II. These results show that
lepton universality is respected in ! decay within the
$10% measurement uncertainties.

Systematic uncertainties, summarized in Table III, are
estimated for the ratio of branching fractions, and for the
absolute branching fraction. The ratio is insensitive to
some common systematic uncertainties.

Most systematic uncertainties due specifically to ll se-
lection are derived by a variation of the selection criteria
over reasonable ranges in the !%1S& sample, which has the

lowest energy released in its decay. The most significant of
these are due to momentum selection (1.3%), calorimeter
energy selection (1.1%), and angular selection (1.1%). The
systematic uncertainty due to modeling of the trigger is
estimated to be 1.6%.

Backgrounds are assumed to be from ! decays, chiefly
due to cascade decays to lower resonances, and are esti-
mated to be 2.5% (15%, 11%) of the !!!" sample at the
!%1S&%2S; 3S&, with an estimated uncertainty contribution
to R!

!! of 0.1% (2.4%, 1.3%).
The uncertainty due to detector modeling in [3] was

estimated to be 1.7%: this value is used here conservatively
for the systematic uncertainty on the ratio.

The modeling of the physics in !%1S& ! "!"", ob-
tained by varying the decay model for ! ! "!"" be-
tween the Monte Carlo simulation and KORALB with
ISR simulation turned off, contributes a 2% uncertainty.
This is consistent with the variation in the product
#%"!""&$ee!"" using the FPAIR, KORALB, and
BABAYAGA [15] Monte Carlo simulations, and is thus likely
conservative, as direct "!"" production from the ! at the
peak involves much lower energy final state photons than
off-resonance production. An uncorrelated uncertainty of
2% for modeling of ! ! !!!" is assumed, consistent with

 

FIG. 3 (color online). Breakdown by mode of off- and on-
resonance data at the different resonances. On the left, the ratio
of the production cross section for e!e" ! ll%l # !;"&, relative
to its expectation, is plotted for data taken below the ! for each !
decay mode pair. On the right, the ratio of branching fractions for
the process !%nS& ! ll%l # !;"; n # 1; 2; 3& relative to the ex-
pectation R! th

!! # 1 is displayed. The lines represent the stan-
dard model expectation. Errors shown are statistical.

TABLE II. Final results on the ratio of branching fractions to
!!!" and "!"" final states, and the absolute branching frac-
tion for ! ! !!!". Included are both statistical and systematic
uncertainties, as detailed in the text. Results from Ref. [3] are
used in deriving the final absolute branching fractions.

R!
!! B%! ! !!!"& (%)

!%1S& 1:02' 0:02' 0:05 2:54' 0:04' 0:12
!%2S& 1:04' 0:04' 0:05 2:11' 0:07' 0:13
!%3S& 1:05' 0:08' 0:05 2:52' 0:19' 0:15

 

FIG. 2 (color online). Distributions for the !!!" final states at
the !%nS&, n # 1, 2, 3 after subtraction of S-scaled off-
resonance data. The solid line shows the expected total signal
and background distributions, assuming lepton universality.
(a) Psig=Ebeam in !%1S& decays for the sum of ! decay modes
including exactly two identified leptons, (b) Ptag=Ebeam in !%2S&
decays for ! modes including exactly one identified lepton,
(c) E!!=

!!!
s

p
for !%3S& for the sum of all ! modes, where signal

and total background distributions are explicitly displayed.
Uncertainties are statistical. The steps observed in (a), (b) are
due to momentum criteria in muon identification.

PRL 98, 052002 (2007) P H Y S I C A L R E V I E W L E T T E R S week ending
2 FEBRUARY 2007

052002-4

Direct Decays



E. Eichten - Fermilab                  Symposium Celebrating CLEO and CESR - Cornell - May 31, 2008 23

Measure (s and other QCD tests

Partial list of theory expectations (cc)A recent result 

Charmonium spectroscopy has provided some of the most detailed information about
the quark-antiquark interaction in Quantum Chromodynamics (QCD). The most practical
and convenient realization of QCD for onium spectroscopy is in terms of perturbative QCD
(pQCD), modeled after Quantum Electrodynamics (QED). Two-photon decays of charmo-
nium states χcJ(3PJ) offer the closest parallel between QED and QCD, being completely
analogous to the decays of the corresponding triplet states of positronium. Of course, the
masses of the quarks and the wave functions of the χc states differ from those of positronium,
but even these cancel out in the ratio of the two-photon decays, so that for both positronium
and charmonium R ≡ Γ(3P2 → γγ)/Γ(3P0 → γγ)=4/15#0.27 [1]. The departure from this
simple lowest order prediction can arise due to strong radiative corrections and relativistic
effects, and the measurement of R provides a unique insight into these effects. Two-photon
decay of the spin one χc1 state is forbidden by the Landau-Yang theorem [2]. There are
numerous theoretical potential model predictions of Γγγ(χc0,c2) available in the literature,
with some employing relativistic and/or radiative corrections. As shown in Table I, the
predictions vary over a wide range. This underscores the importance of measuring these
quantities with precision.

TABLE I: Potential model predictions for two-photon widths of χc2 and χc0 and the ratio R
derived from them.

Reference Γγγ(χc2) (eV) Γγγ(χc0) (eV) R
Barbieri [3] 930 3500 0.27
Godfrey [4] 459 1290 0.36

Barnes [5] 560 1560 0.36
Bodwin [6] 820±230 6700±2800 0.12+0.15

−0.06

Gupta [7] 570 6380 0.09

Münz [8] 440±140 1390±160 0.32+0.16
−0.12

Huang [9] 490±150 3720±1100 0.13+0.11
−0.06

Ebert [10] 500 2900 0.17
Schuler [11] 280 2500 0.11

Most of the existing measurements of Γγγ(χc0) and Γγγ(χc2) are based on formation of
χcJ in two-photon fusion. The only existing measurements based on the decay of χcJ into
two photons are from the Fermilab E760/E835 experiments [12, 13, 14] with χcJ formation
in pp̄ annihilation. We report here results for Γγγ(χcJ) measured in the decay of χcJ into
two photons. For these measurements we use the reactions

ψ(2S) → γ1χcJ , χcJ → γ2γ3, (1)

which have not been studied before. Since Γγγ(χc0) and Γγγ(χc2) are obtained from the
same measurement, we also obtain R with a good control of systematic errors. Few such
simultaneous measurements have been reported in the literature.

A data sample of 24.5 million ψ(2S) obtained in 48pb−1 e+e− annihilations at the CESR
electron-positron collider was used. The reaction products were detected and identified using
the CLEO-c detector.

The CLEO-c detector [15], which has a cylindrical geometry, consists of a CsI electromag-
netic calorimeter, an inner vertex drift chamber, a central drift chamber, and a ring-imaging

3 !
Widths depend on |R’P(0)|2 

Dependence cancels in ratio -> 
measure (s   

BUT (as is typical) first order (s 

corrections are large ->  
large theoretical uncertainties   

More work for theorists   
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 Factory mode:

Access to known lighter states.  

Search for new states:                     
glueballs, axions, light a0 (SUSY),            
narrow resonances, ...

C. Model fits

We estimate R! by extrapolating the background-
subtracted photon spectrum down to x! ! 0, using a model
to prescribe the spectral shape at low-photon momentum.
Since the CLEO calorimeter has finite resolution, and since
the photon-finding efficiency is momentum dependent, two
procedures may be used to compare with models. Either a
migration-matrix can be determined from Monte Carlo
simulations to estimate the bin-to-bin smearing, with a
matrix-unfolding technique used to compare with predic-
tion, or the model can first be efficiency attenuated (as a
function of momentum) and then smeared by the experi-
mental resolution to compare with data. We have followed
the latter procedure, floating only the normalization of the
efficiency-attenuated, resolution-smeared model, in this
analysis. To determine the percentage of direct photons
within our fiducial acceptance, we used the QCD predic-
tions of Koller and Walsh for the direct photon energy and
angular distributions [4]. Our large-statistics sample allows
(for the first time) a check of the Koller-Walsh prediction.
Figure 14 shows that the angular distribution of our data,
after taking into account acceptance effects, agrees ade-
quately with the Koller-Walsh prediction.

Figures 15–17, show the fits of the direct photon energy
spectrum to the Garcia-Soto direct photon model. The fits
are performed over the interval claimed to be relatively
free of either endpoint effects or fragmentation back-
grounds (0:65 " x! " 0:92), then extrapolated under these

backgrounds into the unfit region using only the direct
photon component of their spectral model. Field prescribes
no such cutoffs, so we have fit that model over the larger

FIG. 14. Photon angular distribution for background-
subtracted direct photon data (histogram) vs the Koller-Walsh
prediction, modified for the experimental efficiency as a function
of x! and cos"z.

FIG. 15. Fit to background-subtracted !#1S$ data, using ex-
plicit continuum data subtraction. The Garcia-Soto model is used
for spectral shape (modified for efficiency and experimental
resolution), either using a #2 fit in the region where the direct
photon contribution dominates, or normalizing the model to the
experimental data in the same interval, as shown. The two fits
very nearly overlay with each other.

FIG. 16. Fit to background-subtracted !#2S$ data, using ex-
plicit continuum data subtraction and explicit subtraction of
!#1S$ cascade contributions. Direct spectrum fit using the
Garcia-Soto model.

D. BESSON et al. PHYSICAL REVIEW D 74, 012003 (2006)

012003-10

Inclusive !(n3S1) ) $ + X
!(1S))$+X

The differential photon spectrum 
dN/dx$  for 0.4! x$ !0.95

is determined in NRQCD (+SCET) 

Fleming and Leibovich;
Garcia and Soto
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Why it works so well

 What about the gluon and light 
quark degrees of freedom of QCD?  

 Two thresholds: 

 Usual              decay threshold

 Excite the string - hybrids

Hybrid states will appear in the 
spectrum associated with the 
potential *u, ...  

In the static limit this occurs at 
separation:  r " 1.2 fm.           
Between 3S-4S in     ;              
just above the 5S in     .

Heavy Quark Limit
 Static Energy
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Fig. 3.6: The singlet static energy (quenched and unquenched data) from Ref. [51], see also [143]

2.3.3 The QCD static spectrum and mechanism of confinement18

The spectrum of gluons in the presence of a static quark–antiquark pair has been extensively studied with

high precision using lattice simulations. Such studies involve the calculation of large sets of Wilson loops

with a variety of different spatial paths. Projections onto states of definite symmetries are done, and the

resulting energies are related to the static quark–antiquark potential and the static hybrids potentials. With

accurate results, such calculations provide an ideal testing ground for models of the QCD confinement

mechanism.

The singlet static energy

The singlet static energy is the singlet static potential V (0)
s .

In the plot3.6, we report simulation results both with and without light quark–antiquark pair cre-

ation. Such pair creation only slightly modifies the energies for separations below 1 fm, but dramatically

affects the results around 1.2 fm, at a distance which is too large with respect to the typical heavy quarko-

nium radius to be relevant for heavy quarkonium spectroscopy. At finite temperature, the so-called string

breaking occurs at a smaller distance (cf. corresponding Section in Chapter 7,Media).

One can study possible nonperturbative effects in the static potential at short distances. As it has

already been mentioned in the ”static QCD potential” subsection, the proper treatment of the renormalon

effects has made possible the agreement of perturbation theory with lattice simulations (and potential

models) [78,88–92]. Here we would like to quantify this agreement assigning errors to this comparison.

In particular, we would like to discern whether a linear potential with the usual slope could be added to

perturbation theory. In order to do so we follow here the analysis of Ref. [90, 144], where the potential

is computed within perturbation theory in the Renormalon Subtracted scheme defined in Ref. [81]. The

comparison with lattice simulations [145] in Fig. 3.7 shows that nonperturbative effects should be small

and compatible with zero, since perturbation theory is able to explain lattice data within errors. The

systematic and statistical errors of the lattice points are very small (smaller than the size of the points).

Therefore, the main sources of uncertainty of our (perturbative) evaluation come from the uncertainty in

the value of ΛMS (±0.48 r−1
0 ) obtained from the lattice [146] and from the uncertainty in higher orders

in perturbation theory. We show our results in Fig. 3.7. The inner band reflects the uncertainty in ΛMS
whereas the outer band is meant to estimate the uncertainty due to higher orders in perturbation theory.

We estimate the error due to perturbation theory by the difference between the NNLO and NNNLO

evaluation. The usual confining potential, δV = σr, goes with a slope σ = 0.21GeV2. In lattice units

18Authors: N. Brambilla, C. Morningstar, A. Pineda
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ΨQQ̄(!r) =
unl(r)

r
Ylm(θ,φ)

The leading Born-Oppenheimer approximation

In the leading Born-Oppenheimer approximation, one replaces the covariant Lapla-

cian DDD2 by an ordinary Laplacian !!!
2
, which neglects retardation effects. The spin in-

teractions of the heavy quarks are also neglected, and one solves the radial Schrödinger

equation:

−
1

2µ

d2u(r)

dr2
+

{

〈LLL2
QQ̄

〉

2µr2
+VQQ̄(r)

}

u(r) = E u(r), (2)

where u(r) is the radial wavefunction of the quark-antiquark pair. The total angular
momentum is given by

JJJ = LLL+SSS, SSS= sssQ+ sssQ̄, LLL= LLLQQ̄+ JJJg, (3)

where sssQ is the spin of the heavy quark, sssQ̄ is the spin of the heavy antiquark, JJJg is the

total spin of the gluon field, and LLLQQ̄ is the orbital angular momentum of the quark-

antiquark pair. In the LBO, both L and S are good quantum numbers. The expectation

value in the centrifugal term is given by

〈LLL2
QQ̄

〉 = 〈LLL2〉−2〈LLL · JJJg〉+ 〈JJJ2g〉. (4)

The first term yields L(L+1). The second term is evaluated by expressing the vectors in
terms of components in the body-fixed frame. Let Lr denote the component of LLL along

the molecular axis, and L" and L# be components perpendicular to the molecular axis.

Writing L± = L" ± iL# and similarly for JJJg, one obtains

〈LLL · JJJg〉 = 〈LrJgr〉+
1
2
〈L+Jg− +L−Jg+〉. (5)

Since Jg± raises or lowers the value of $, this term mixes different gluonic stationary
states, and thus, must be neglected in the leading Born-Oppenheimer approximation. In

the meson rest frame, the component of LLLQQ̄ along the molecular axis vanishes, and

hence, 〈LrJgr〉 = 〈J2gr〉 = $2. In summary, the expectation value in the centrifugal term
is given in the adiabatic approximation by

〈LLL2
QQ̄

〉 = L(L+1)−2$2+ 〈JJJ2g〉. (6)

We assume 〈JJJ2g〉 is saturated by the minimum number of allowed gluons. Hence, 〈JJJ
2
g〉= 0

for the %+
g level and 〈JJJ

2
g〉= 2 for the&u and %

−
u levels.Wigner rotations are used as usual

to construct |LSJM;'(〉 states, where ' = JJJg · r̂rr and $ = |' |, then JPC eigenstates are
finally obtained from

|LSJM;'(〉+ )|LSJM;−'(〉, (7)

where ) = 1 for %+ levels, ) = −1 for %− levels, and ) = ±1 for $ ≥ 1 levels. Hence,
the JPC eigenstates satisfy

P= )(−1)L+$+1, C = ()(−1)L+S+$. (8)

The leading Born-Oppenheimer approximation

In the leading Born-Oppenheimer approximation, one replaces the covariant Lapla-

cian DDD2 by an ordinary Laplacian !!!
2
, which neglects retardation effects. The spin in-

teractions of the heavy quarks are also neglected, and one solves the radial Schrödinger

equation:

−
1

2µ

d2u(r)
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where u(r) is the radial wavefunction of the quark-antiquark pair. The total angular
momentum is given by

JJJ = LLL+SSS, SSS= sssQ+ sssQ̄, LLL= LLLQQ̄+ JJJg, (3)

where sssQ is the spin of the heavy quark, sssQ̄ is the spin of the heavy antiquark, JJJg is the

total spin of the gluon field, and LLLQQ̄ is the orbital angular momentum of the quark-

antiquark pair. In the LBO, both L and S are good quantum numbers. The expectation

value in the centrifugal term is given by

〈LLL2
QQ̄

〉 = 〈LLL2〉−2〈LLL · JJJg〉+ 〈JJJ2g〉. (4)

The first term yields L(L+1). The second term is evaluated by expressing the vectors in
terms of components in the body-fixed frame. Let Lr denote the component of LLL along

the molecular axis, and L" and L# be components perpendicular to the molecular axis.

Writing L± = L" ± iL# and similarly for JJJg, one obtains

〈LLL · JJJg〉 = 〈LrJgr〉+
1
2
〈L+Jg− +L−Jg+〉. (5)

Since Jg± raises or lowers the value of $, this term mixes different gluonic stationary
states, and thus, must be neglected in the leading Born-Oppenheimer approximation. In

the meson rest frame, the component of LLLQQ̄ along the molecular axis vanishes, and

hence, 〈LrJgr〉 = 〈J2gr〉 = $2. In summary, the expectation value in the centrifugal term
is given in the adiabatic approximation by

〈LLL2
QQ̄

〉 = L(L+1)−2$2+ 〈JJJ2g〉. (6)

We assume 〈JJJ2g〉 is saturated by the minimum number of allowed gluons. Hence, 〈JJJ
2
g〉= 0

for the %+
g level and 〈JJJ

2
g〉= 2 for the&u and %

−
u levels.Wigner rotations are used as usual

to construct |LSJM;'(〉 states, where ' = JJJg · r̂rr and $ = |' |, then JPC eigenstates are
finally obtained from

|LSJM;'(〉+ )|LSJM;−'(〉, (7)

where ) = 1 for %+ levels, ) = −1 for %− levels, and ) = ±1 for $ ≥ 1 levels. Hence,
the JPC eigenstates satisfy

P= )(−1)L+$+1, C = ()(−1)L+S+$. (8)
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FIGURE 2. One possible interpretation of the spectrum in Fig. 1. (a) For small quark-antiquark sepa-

rations, the strong chromoelectric field of the QQ̄ pair repels the physical vacuum (dual Meissner effect)

creating a bubble. The low-lying stationary states are explained by the gluonic modes inside the bubble,

since the bubble surface excitations are likely to be higher lying. (b) For large quark-antiquark separations,

the bubble stretches into a thin tube of flux, and the low-lying states are explained by the collective motion

of the tube since the internal gluonic excitations are much higher lying.

antiquark pair in SU(2) gauge theory also hint at flux tube formation[6].
The spectrum shown in Fig. 1 provides unequivocal evidence that the gluon field can

be well approximated by an effective string theory for large separations r. However,

string formation does not appear to set in until the quark and the antiquark are sepa-

rated by about 2 fm. For small separations, the level orderings and degeneracies are not

consistent with the expectations from an effective string description. More importantly,

the gaps differ appreciably from N"/r with N = 1,2,3, . . .. Such deviations cannot be
considered mere corrections, making the applicability of an effective string description
problematical. Between 0.5 to 2 fm, a dramatic level rearrangement occurs. For separa-

tions above 2 fm, the levels agree without exception with the ordering and degeneracies

expected from an effective string theory. The gaps agree well with N"/r, but a fine struc-
ture remains. The N"/r gaps are a robust prediction of any effective string theory since
they are a feature of the Goldstone modes associated with the spontaneous breaking of

transverse translational symmetry. However, the details of the underlying string theory

are encoded in the fine structure. This first glimpse of such a fine structure offers the

exciting possibility of ultimately understanding the nature of the QCD string in future

higher precision simulations.

Fig. 2 illustrates one possible interpretation of the results shown in Fig. 1. At small

quark-antiquark separations, the strong chromoelectric field of the QQ̄ pair repels the
physical vacuum in a dual Meissner effect, creating a bubble surrounding the QQ̄. The

low-lying stationary states are explained by the gluonic modes inside the bubble, since

the bubble surface excitations are likely to be higher lying. For large quark-antiquark

separations, the bubble stretches into a thin tube of flux, and the low-lying states are

explained by the collective motion of the tube since the internal gluonic excitations,

being typically of order 1 GeV, are now much higher lying.

!

(b
)

(a
)

F
IG
U
R
E
2
.
O
ne
po
ss
ib
le
in
te
rp
re
ta
ti
on
of
th
e
sp
ec
tr
um
in
F
ig
.
1.
(a
)
F
or
sm
al
l
qu
ar
k-
an
ti
qu
ar
k
se
pa
-

ra
ti
on
s,
th
e
st
ro
ng
ch
ro
m
oe
le
ct
ri
c
fi
el
d
of
th
e
Q
Q̄
pa
ir
re
pe
ls
th
e
ph
ys
ic
al
va
cu
um
(d
ua
l
M
ei
ss
ne
r
ef
fe
ct
)

cr
ea
ti
ng
a
bu
bb
le
.T
he
lo
w
-l
yi
ng
st
at
io
na
ry
st
at
es
ar
e
ex
pl
ai
ne
d
by
th
e
gl
uo
ni
c
m
od
es
in
si
de
th
e
bu
bb
le
,

si
nc
e
th
e
bu
bb
le
su
rf
ac
e
ex
ci
ta
ti
on
s
ar
e
li
ke
ly
to
be
hi
gh
er
ly
in
g.
(b
)
F
or
la
rg
e
qu
ar
k-
an
ti
qu
ar
k
se
pa
ra
ti
on
s,

th
e
bu
bb
le
st
re
tc
he
s
in
to
a
th
in
tu
be
of
fl
ux
,a
nd
th
e
lo
w
-l
yi
ng
st
at
es
ar
e
ex
pl
ai
ne
d
by
th
e
co
ll
ec
ti
ve
m
ot
io
n

of
th
e
tu
be
si
nc
e
th
e
in
te
rn
al
gl
uo
ni
c
ex
ci
ta
ti
on
s
ar
e
m
uc
h
hi
gh
er
ly
in
g.

an
ti
qu
ar
k
pa
ir
in
SU

(2
)
ga
ug
e
th
eo
ry
al
so
hi
nt
at
fl
ux
tu
be
fo
rm
at
io
n[
6]
.

T
he
sp
ec
tr
um
sh
ow
n
in
F
ig
.1
pr
ov
id
es
un
eq
ui
vo
ca
le
vi
de
nc
e
th
at
th
e
gl
uo
n
fi
el
d
ca
n

be
w
el
l
ap
pr
ox
im
at
ed
by
an
ef
fe
ct
iv
e
st
ri
ng
th
eo
ry
fo
r
la
rg
e
se
pa
ra
ti
on
s
r.
H
ow
ev
er
,

st
ri
ng
fo
rm
at
io
n
do
es
no
t
ap
pe
ar
to
se
t
in
un
ti
l
th
e
qu
ar
k
an
d
th
e
an
ti
qu
ar
k
ar
e
se
pa
-

ra
te
d
by
ab
ou
t
2
fm
.F
or
sm
al
l
se
pa
ra
ti
on
s,
th
e
le
ve
l
or
de
ri
ng
s
an
d
de
ge
ne
ra
ci
es
ar
e
no
t

co
ns
is
te
nt
w
it
h
th
e
ex
pe
ct
at
io
ns
fr
om
an
ef
fe
ct
iv
e
st
ri
ng
de
sc
ri
pt
io
n.
M
or
e
im
po
rt
an
tl
y,

th
e
ga
ps
di
ff
er
ap
pr
ec
ia
bl
y
fr
om

N
"
/r
w
it
h
N

=
1,
2,
3,

..
..
S
uc
h
de
vi
at
io
ns
ca
nn
ot
be

co
ns
id
er
ed
m
er
e
co
rr
ec
ti
on
s,
m
ak
in
g
th
e
ap
pl
ic
ab
il
it
y
of
an
ef
fe
ct
iv
e
st
ri
ng
de
sc
ri
pt
io
n

pr
ob
le
m
at
ic
al
.B
et
w
ee
n
0.
5
to
2
fm
,a
dr
am
at
ic
le
ve
l
re
ar
ra
ng
em
en
t
oc
cu
rs
.F
or
se
pa
ra
-

ti
on
s
ab
ov
e
2
fm
,t
he
le
ve
ls
ag
re
e
w
it
ho
ut
ex
ce
pt
io
n
w
it
h
th
e
or
de
ri
ng
an
d
de
ge
ne
ra
ci
es

ex
pe
ct
ed
fr
om
an
ef
fe
ct
iv
e
st
ri
ng
th
eo
ry
.T
he
ga
ps
ag
re
e
w
el
lw
it
h
N
"
/r
,b
ut
a
fi
ne
st
ru
c-

tu
re
re
m
ai
ns
.T
he
N
"
/r
ga
ps
ar
e
a
ro
bu
st
pr
ed
ic
ti
on
of
an
y
ef
fe
ct
iv
e
st
ri
ng
th
eo
ry
si
nc
e

th
ey
ar
e
a
fe
at
ur
e
of
th
e
G
ol
ds
to
ne
m
od
es
as
so
ci
at
ed
w
it
h
th
e
sp
on
ta
ne
ou
s
br
ea
ki
ng
of

tr
an
sv
er
se
tr
an
sl
at
io
na
l
sy
m
m
et
ry
.H
ow
ev
er
,
th
e
de
ta
il
s
of
th
e
un
de
rl
yi
ng
st
ri
ng
th
eo
ry

ar
e
en
co
de
d
in
th
e
fi
ne
st
ru
ct
ur
e.
T
hi
s
fi
rs
t
gl
im
ps
e
of
su
ch
a
fi
ne
st
ru
ct
ur
e
of
fe
rs
th
e

ex
ci
ti
ng
po
ss
ib
il
it
y
of
ul
ti
m
at
el
y
un
de
rs
ta
nd
in
g
th
e
na
tu
re
of
th
e
Q
C
D
st
ri
ng
in
fu
tu
re

hi
gh
er
pr
ec
is
io
n
si
m
ul
at
io
ns
.

F
ig
.
2
il
lu
st
ra
te
s
on
e
po
ss
ib
le
in
te
rp
re
ta
ti
on
of
th
e
re
su
lt
s
sh
ow
n
in
F
ig
.
1.
A
t
sm
al
l

qu
ar
k-
an
ti
qu
ar
k
se
pa
ra
ti
on
s,
th
e
st
ro
ng
ch
ro
m
oe
le
ct
ri
c
fi
el
d
of
th
e
Q
Q̄
pa
ir
re
pe
ls
th
e

ph
ys
ic
al
va
cu
um
in
a
du
al
M
ei
ss
ne
r
ef
fe
ct
,
cr
ea
ti
ng
a
bu
bb
le
su
rr
ou
nd
in
g
th
e
Q
Q̄
.
T
he

lo
w
-l
yi
ng
st
at
io
na
ry
st
at
es
ar
e
ex
pl
ai
ne
d
by
th
e
gl
uo
ni
c
m
od
es
in
si
de
th
e
bu
bb
le
,
si
nc
e

th
e
bu
bb
le
su
rf
ac
e
ex
ci
ta
ti
on
s
ar
e
li
ke
ly
to
be
hi
gh
er
ly
in
g.
F
or
la
rg
e
qu
ar
k-
an
ti
qu
ar
k

se
pa
ra
ti
on
s,
th
e
bu
bb
le
st
re
tc
he
s
in
to
a
th
in
tu
be
of
fl
ux
,
an
d
th
e
lo
w
-l
yi
ng
st
at
es
ar
e

ex
pl
ai
ne
d
by
th
e
co
ll
ec
ti
ve
m
ot
io
n
of
th
e
tu
be
si
nc
e
th
e
in
te
rn
al
gl
uo
ni
c
ex
ci
ta
ti
on
s,

be
in
g
ty
pi
ca
ll
y
of
or
de
r
1
G
eV
,a
re
no
w
m
uc
h
hi
gh
er
ly
in
g.

Short distance: gluelumps  
Perturbative QCD,  pNRQCD 
singlet:  -4/3 (s /r
octet : 2/3 (s /r      

Large distance:   String 
+ r + #N/r     
Nambu-Gato string behavour

The leading Born-Oppenheimer approximation

In the leading Born-Oppenheimer approximation, one replaces the covariant Lapla-

cian DDD2 by an ordinary Laplacian !!!
2
, which neglects retardation effects. The spin in-

teractions of the heavy quarks are also neglected, and one solves the radial Schrödinger

equation:

−
1

2µ

d2u(r)

dr2
+

{

〈LLL2
QQ̄

〉

2µr2
+VQQ̄(r)

}

u(r) = E u(r), (2)

where u(r) is the radial wavefunction of the quark-antiquark pair. The total angular
momentum is given by

JJJ = LLL+SSS, SSS= sssQ+ sssQ̄, LLL= LLLQQ̄+ JJJg, (3)

where sssQ is the spin of the heavy quark, sssQ̄ is the spin of the heavy antiquark, JJJg is the

total spin of the gluon field, and LLLQQ̄ is the orbital angular momentum of the quark-

antiquark pair. In the LBO, both L and S are good quantum numbers. The expectation

value in the centrifugal term is given by

〈LLL2
QQ̄

〉 = 〈LLL2〉−2〈LLL · JJJg〉+ 〈JJJ2g〉. (4)

The first term yields L(L+1). The second term is evaluated by expressing the vectors in
terms of components in the body-fixed frame. Let Lr denote the component of LLL along

the molecular axis, and L" and L# be components perpendicular to the molecular axis.

Writing L± = L" ± iL# and similarly for JJJg, one obtains

〈LLL · JJJg〉 = 〈LrJgr〉+
1
2
〈L+Jg− +L−Jg+〉. (5)

Since Jg± raises or lowers the value of $, this term mixes different gluonic stationary
states, and thus, must be neglected in the leading Born-Oppenheimer approximation. In

the meson rest frame, the component of LLLQQ̄ along the molecular axis vanishes, and

hence, 〈LrJgr〉 = 〈J2gr〉 = $2. In summary, the expectation value in the centrifugal term
is given in the adiabatic approximation by

〈LLL2
QQ̄

〉 = L(L+1)−2$2+ 〈JJJ2g〉. (6)

We assume 〈JJJ2g〉 is saturated by the minimum number of allowed gluons. Hence, 〈JJJ
2
g〉= 0

for the %+
g level and 〈JJJ

2
g〉= 2 for the&u and %

−
u levels.Wigner rotations are used as usual

to construct |LSJM;'(〉 states, where ' = JJJg · r̂rr and $ = |' |, then JPC eigenstates are
finally obtained from

|LSJM;'(〉+ )|LSJM;−'(〉, (7)

where ) = 1 for %+ levels, ) = −1 for %− levels, and ) = ±1 for $ ≥ 1 levels. Hence,
the JPC eigenstates satisfy

P= )(−1)L+$+1, C = ()(−1)L+S+$. (8)
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, = 0, 1, 2, ... denoted -, *, ', ...

%= ±1 (symmetry under combined charge conjugation and spatial inversion) 
denoted g(+1) or u(-1).   
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with.=+1 for -+ and .=-1 for --

both signs for ,>0.   
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Hybrid states and Lattice QCD

 Potentials computed by lattice QCD 

3

TABLE I: Operators to create excited gluon states for small
qq̄ separation R are listed. E and B denote the electric and
magnetic operators, respectively. The covariant derivative D

is defined in the adjoint representation [10].

gluon state J operator
Σ+ ′

g 1 R · E, R · (D ×B)
Πg 1 R × E, R × (D× B)
Σ−

u 1 R · B, R · (D× E)
Πu 1 R × B, R × (D× E)
Σ−

g 2 (R · D)(R · B)
Π′

g 2 R × ((R · D)B + D(R · B))
∆g 2 (R × D)i(R × B)j + (R × D)j(R × B)i

Σ+
u 2 (R · D)(R · E)

Π′

u 2 R × ((R · D)E + D(R · E))
∆u 2 (R × D)i(R × E)j + (R × D)j(R × E)i

predicted short–distance degeneracies. Only the states
∆u and Σ+′

g show considerable soft breaking of the ap-
proximate symmetry at the shortest R values.
Crossover region. For 0.5 fm < R < 2 fm, a dramatic
crossover of the energy levels toward a string-like spec-
trum as R increases is observed. For example, the states
Σ−

u with N = 3 and Σ−

g with N = 4 break violently away
from their respective short-distance O(3) degeneracies to
approach the ordering expected from bosonic string the-
ory near R ∼ 2 fm.

An interesting feature of the crossover region is the suc-
cessful parametrization of the Σ+

g ground state energy by
the empirical function E0(R) = a + σR− c π

12R
, with the

fitted constant c close to unity, once R exceeds 0.5 fm.
The Casimir energy of a thin flux line was calculated in
Refs. [11, 12], yielding c = 1, and this approximate agree-
ment is often interpreted as evidence for string formation.
While the spectrum, including the qualitative ordering
of the energy levels, differs from the naive bosonic string
gaps for R < 1 fm, a high precision calculation shows
the rapid approach of ceff(R) to the asymptotic Casimir
value in the same R range [13]. Although there is no in-
consistency between the two different findings, a deeper
understanding of this puzzling situation is warranted.

We will return to this issue in a high precision study of
the 3-dimensional Z(2) gauge model in a future publica-
tion [14]. This accurate study of ceff(R) and the excita-
tion spectrum of the Z(2) flux line for a wide range of R
values between 0.3 fm and 10 fm will clearly demonstrate
the early onset of c ≈ 1 without a well-developed string
spectrum. For now, Fig. 3 shows the lowest excitations in
Z(2) for R = 0.7 fm, revealing a bag-like disorder profile
surrounding the static qq̄ pair in the vacuum [14]. The
two lowest energy levels are substantially dislocated from
exact π/R string gaps and all other excitations form a
continuous spectrum above the glueball threshold. Since
the submission of this work, a new study of Z(2) at fi-
nite temperature has appeared [15], reporting very early
onset of string behavior in support of Ref. [13].
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FIG. 2: Short-distance degeneracies and crossover in the
spectrum. The solid curves are only shown for visualization.
The dashed line marks a lower bound for the onset of mixing
effects with glueball states which requires careful interpreta-
tion.

String limit. For R > 2 fm, the energy levels exhibit,
without exception, the ordering and approximate degen-
eracies of string-like excitations. The levels nearly re-
produce the asymptotic π/R gaps, but an intriguing fine
structure remains.

It has been anticipated that the interactions of mass-
less excitations on long flux lines are described by a lo-
cal derivative expansion of a massless vector field ξ with
two transverse components in four–dimensional space-
time [11, 12]. Symmetries of the effective QCD string
Lagrangian require a derivative expansion of the form

Leff = a∂µξ·∂µξ+b(∂µξ·∂µξ)2+c(∂µξ·∂νξ)(∂µξ·∂νξ)+...,
(1)

where the dots represent further terms with four or more
derivatives in world sheet coordinates. The coefficient a
has the dimension of a mass squared and can be identified
with the string tension σ. The other coefficients must be
determined from the underlying microscopic theory. Ex-
amples with calculable coefficients include the D=3 Z(2)

K.J. Juge, J. Kuti and C. Morningstar [PRL 90, 161601 (2003)] 
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B. hadronic transitions

Applying the multipole expansion to hadronic transitions. First suggested by Gottfried

and proven by Yan.

HI = iψ†′ r

2
· gE′

at
aψ′ +

cF

mQ
ψ†′sQ · gtaB′

aψ
′ + [Q− > Q̄] + · · ·

where

ψ′ = U−1ψ

taA′µ
a = U−1taAµ

aU −
i

g
U−1∂µU

II. RADIATIVE TRANSITIONS

For quarkonium states, Q1Q̄2, above the ground state but below threshold for strong

decay into a pair of heavy flavored mesons, electromagnetic transitions are often significant

decay modes. In fact, the first charmonium states not directly produced in e+e− collisions,

the χJ
c states, were discovered in photonic transitions of the ψ′ resonance. Even today, such

transitions continue to be used to observe new quarkonium states [1].

A. Effective Lagrangian

The theory of electromagnetic transitions between these quarkonium states is straightfor-

ward. Much of the terminology and techniques are familiar from the study EM transitions

in atomic and nuclear systems. The photon field Aµ
em couples to charged quarks through

the electromagnetic current:

jµ ≡
∑

i=u,d,s

ji
µ +

∑

i=c,b,t

ji
µ (1)

The heavy valence quarks (c, b, t) can described by the usual effective action:

LNRQCD = ψ†
{

iD0 +
D2

2m
+ cF g

σ ·B
2m

+ cD g
[D·,E]

8m2
+ icS g

σ · [D×,E]

8m2
+ . . .

}
ψ (2)

where the E and B fields are the chromoelectric and chomomagentic fields. Corrections to

the leading NR behaviour are determined by expansion in the quark and antiquark velocities.
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where

G = (EA −H0
NR)−1 =

∑

KL

|KL >< KL|
EA − EKL

(QQ̄ octet)

fAB ≡
∑

KL

∫
druB(r)ruKL(r)

∫
uKL(r)ruA(r)

EA − EKL + iε
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B

π

π

Model: Kuang & Yan 
[PR D24, 2874 (1981)]

αEE
AB

Hadronize

S state -> S state

Phase Space Overlap - Vibrating String Model

Γ = G |αEE
AB C1|2

Γ(n3
IS1→n3

F S1 π π) = |C1|2G|f 111
nI0nF 0|2, (13)

where the phase-space factor G is [7]

G ≡ 3

4

MΦF

MΦI

π3

∫
K

√

1− 4m2
π

M2
ππ

(M2
ππ − 2m2

π)2 dM2
ππ, (14)

dΓ ∼ K

√

1− 4m2
π

M2
ππ

(M2
ππ − 2m2

π)2 dM2
ππ, (15)

with

K ≡
√

(MA + MB)2 −M2
ππ

√
(MA −MB)2 −M2

ππ

2MA
, (16)

and

fLPIPF
nI lInF lF

≡
∑

K

∫
RF (r)rPF R∗

KL(r)r2dr
∫

R∗
KL(r′)r′PIRI(r′)r′2dr′

MI − EKL
, (17)
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FIG. 2: Plots relevant to the decay ψ(2S) → π+π−J/ψ (top) and ψ(2S) → π0π0J/ψ (bottom).

The left plots show the dipion recoil mass spectrum and the right plots the dipion mass spectrum.
The J/ψ candidates in the continuum sample arise from the tail of the ψ(2S). Symbols are as in

Fig. 1.
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FIG. 1: The decay process under study and the main background process, denoted in the text as

“ππ γ γ”. Note that these have the same γ2, so that the energy of this photon is not a distinguishing
observable.

denoted E1, and the mass recoiling against the pion pair, Mrec, to define our signal. In
calculating Mrec we also used the four vector of γ1 so that Mrec actually represents the mass
difference of the 2P and 1P states; i.e.,

Mrec ≡
√

(P3S − Pγ1)2 −
√

(P3S − Pγ1 − Pπ1 − Pπ2)2 , (1)

with P denoting the four-vector momentum. In the second, we increased our efficiency
by only reconstructing one of the pions (a “one-pion” analysis) and used as variables the
missing mass of the event and E1.

II. THE CHANNEL χ′
b → π+π−χb

In event selection for our study of χ′
b → π+π−χb we required four well-measured primary

charged tracks, two of which had to have high momenta (in excess of 3.75 GeV/c) and
had to have calorimeter and momentum information consistent with being either e+e− or
µ+µ−.1 These two putative lepton tracks also had to have an invariant mass within 300
MeV of the Υ(1S) mass, which is a very loose requirement (∼ ±5σ). The other track(s) had
to have measured momentum 50 < p < 750 MeV/c and have a dip angle with respect to
the beam axis corresponding to | cos θ| < 0.93. To reduce QED backgrounds and facilitate
comparison to other, established channels, we made additional, highly efficient requirements

1 More details on the charged pion analyses are available in the MS thesis of K. M. Weaver, Observation

of χ′
b
→ π+π−χb, Cornell University, 2005 (unpublished).

5

P state -> P state

Assume only S wave term =>  J = J’
result of

Γππ = (0.83 ± 0.22 ± 0.08 ± 0.19) keV ,

with the uncertainties being statistical, systematics from our analyses, and systematics from
outside sources. This result for χ′

b → ππχb can be compared to values derived from the
PDG[12] of Γ(Υ(3S) → ππΥ(2S)) = (1.3±0.2) keV for a process with somewhat less Q and
Γ(Υ(2S)→ ππΥ(1S)) = (12 ± 2) keV for a process with considerably more Q. Our result
is consistent with the theoretical expectations of Kuang and Yan[20], who have calculated
Γππ = 0.4 keV.

In summary, we have searched the CLEO III data at the Υ(3S) resonance for the decay
χ′

b → ππχb using four different approaches. The combined probability that the signal process
is absent is small, leading to the conclusion that the null hypothesis cannot be substantiated.
Under the assumption of no D-wave contributions we obtain a partial width for each of the
J ′ = J = 1 and J ′ = J = 2 transitions of Γππ = (0.83 ± 0.22 ± 0.08 ± 0.19) keV.
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2PJ -> 1PJ’ + 2# - First observation[CLEO] 
Results agree with Kuang and Yan (1988)  

FIG. 4: Distributions in π+π−"+"− events of the π+π− mass (left) and polar angle (right) of the

positively charged lepton from data (open circles) and MC (solid line line).
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CLEO [N. E. Adam et al., 
PRL 96, 082004 (2006)]

state (n′2s!+1SJ ′), f , is:

Γ(i
M1−→ f + γ) =

4αe2
Q

3m2
Q

(2J ′ + 1)k3SM
if [Mif |]2 (8)

where the statistical factor SM
if = SM

fi is

SM
if = 6(2s + 1)(2s′ + 1)





J 1 J ′

s′ # s






2 



1 1

2
1
2

1
2 s′ s






2

. (9)

For l = 0 transitions, SM
if = 1.

V. HADRONIC TRANSITONS

g2
E

6
〈πα(q1)πβ(q2)|Ea

kEa
l |0〉 =

δαβ√
(2ω1)(2ω2)

[
C1δklq

µ
1 q2µ + C2

(
q1kq2l + q1lq2k −

2

3
δkl (q1 · q2)

)]

where C1 and C2 are two unknown constants.

Very recently, CLEO-c also detected the channel ψ(3770)→J/ψ + π+ + π− with higher

precision, and the measured branching ratio is [29]

B(ψ(3770)→J/ψ + π+ + π−) = (0.214± 0.025± 0.022)%. (10)

With the ψ(3770) total width (??), the partial width is

Γ(ψ(3770)→J/ψ + π+ + π−) = 50.5± 16.9 keV. (11)

We can also determine C2/C1 from (12) and (??), and the result is

C2/C1 = 1.52+0.35
−0.45. (12)

This is consistent with the value (??) determined from the BES data, but with higher

precision.

An alternative way of calculating this kind of transition rate taking the approach to the

H factor proposed by Ref. [4] was carried out in Ref. [22]. The so obtained transition rate

is smaller than the above theoretical prediction by two orders of magnitude. So it strongly

disagrees with (??) and (12). Therefore the approach given in Ref. [4] is ruled out by the

BES and CLEO-c experiments.

9

Determines

D state -> S state

CLEO [C. Cawfield et al.,PR D73, 012003 (2006)]
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Table 4: Two pion transitions observed in the cc̄ system.

Transition m(max)
ππ Branching Fraction Partial Width 1

i → f + X (MeV) (%) (keV)
ψ(2S) → J/ψ π+π− 589 33.54 ± 0.14 ± 1.10 113.0 ± 8.4

π0π0 16.52 ± 0.14 ± 0.58 55.7 ± 4.1
ψ(3770) → J/ψ π+π− 676 (1.89 ± 0.20 ± 0.20) × 10−1 43.5 ± 11.5

π0π0 (0.80 ± 0.25 ± 0.16) × 10−1 18.4 ± 9.8

Table 5: Two pion transitions observed in the bb̄ system.

Transition m(max)
ππ Branching Fraction Partial Width 2

i → f + X (MeV) (%) (keV)
Υ(2S) → Υ(1S) π+π− 563 18.8 ± 0.6 6.0 ± 0.5

π0π0 9.0 ± 0.8 2.6 ± 0.2
Υ(3S) → Υ(1S) π+π− 895 4.48 ± 0.21 0.77 ± 0.06

π0π0 2.06 ± 0.28 0.36 ± 0.06
Υ(3S) → Υ(2S) π+π− 332 2.8 ± 0.6 0.48 ± 0.12

π0π0 2.00 ± 0.32 0.35 ± 0.07
Υ(4S) → Υ(1S) π+π− 1120 (0.90 ± 0.15) × 10−2 1.8 ± 0.4
Υ(4S) → Υ(2S) π+π− 557 (0.83 ± 0.16) × 10−2 1.7 ± 0.5
χb2(2P ) → χb2(1P ) π+π− 356 (6.0 ± 2.1) × 10−1 0.83 ± 0.32
χb1(2P ) → χb1(1P ) π+π− 363 (8.6 ± 3.1) × 10−1 0.83 ± 0.32

1Total widths: Γ(ψ(2S)) = 337 ± 13 keV and Γ(ψ(3770)) = 23.0 ± 2.7 MeV
2Total widths: Γ(Υ(2S)) = 28.62 ± 1.30 keV, Γ(Υ(3S)) = 17.28 ± 0.61 keV, Γ(Υ(4S)) = 110 ±

13 MeV, Γ(χb1(2P )) = 96 ± 16 keV and Γ(χb2(2P )) = 138 ± 19 keV.

4

=> |C1| = 8.87x10-3 

=> |C2|/|C1| = 1.52  
+0.35
-0.45  
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π0π0 2.06 ± 0.28 0.36 ± 0.06
Υ(3S) → Υ(2S) π+π− 332 2.8 ± 0.6 0.48 ± 0.12

π0π0 2.00 ± 0.32 0.35 ± 0.07
Υ(4S) → Υ(1S) π+π− 1120 (0.90 ± 0.15) × 10−2 1.8 ± 0.4
Υ(4S) → Υ(2S) π+π− 557 (0.83 ± 0.16) × 10−2 1.7 ± 0.5
χb2(2P ) → χb2(1P ) π+π− 356 (6.0 ± 2.1) × 10−1 0.83 ± 0.32
χb1(2P ) → χb1(1P ) π+π− 363 (8.6 ± 3.1) × 10−1 0.83 ± 0.32

1Total widths: Γ(ψ(2S)) = 337 ± 13 keV and Γ(ψ(3770)) = 23.0 ± 2.7 MeV
2Total widths: Γ(Υ(2S)) = 28.62 ± 1.30 keV, Γ(Υ(3S)) = 17.28 ± 0.61 keV, Γ(Υ(4S)) = 110 ±

13 MeV, Γ(χb1(2P )) = 96 ± 16 keV and Γ(χb2(2P )) = 138 ± 19 keV.

4

 Rescaled Kuang &Yan model

} 9.4  

} 1.4  

} 0.6  

0.6
0.6  
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 Model generally in good agreement with experiment
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don’t show leading (S-wave) two 
pion invariant mass distribution 

Υ(3S) → Υ + ππ

Υ(4S) → Υ(2S) + ππ

Many proposals for explaining the !(3S)->! transition 
but most don’t survive results for !(4S): 

$ Final State Interactions

!

$ 4 quark intermediate state

$ dynamical accident - suppress the leading E1 E1 term    ⇒

 Problem: Compare !(4S)->!(2S), !(2S)->!(1S) and #(2S) -> J/#  
  essentially the same phase space but different distributions. 

 Problem:  Compare !(4S)->!(2S), !(3S)->!(1S)  
  similiar distributions but shifted masses 

$ Coupling to decay channels
 Problem:  Compare !(3S)->!(1S) to #(2S)->J/#, !(4S)->!(1S)  
  Coupled channel effects should be larger in second set.

32
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M!! distributions

!(2S) and !(3S)!!(1S) are well described by Brown-Cahn and

Moxhay models. !"consistent with CLEO measurement(PRD58

052004, PRD49 40).

Belle

33



E. Eichten - Fermilab                  Symposium Celebrating CLEO and CESR - Cornell - May 31, 2008

M!! distributions(cont.)

!(4S)!!(1S) is consistent with Brown-Cahn model.

Belle

6

TABLE I: Number of signal events, significance, efficiency
and measured values of the products of branching ratios for
the 4S → nS transitions. The error on the efficiency is
obtained adding in quadrature the systematic uncertainties.
The errors on the product branching fractions are statistical
and systematic respectively

Transition Nsig significance εsel B4S→nS × BnS→µµ

(%) (10−6)

4S → 1S 167±19 10.0σ 32.5±3.9 2.23±0.25±0.27

4S → 2S 97±15 7.3σ 24.9±3.0 1.69±0.26±0.20

QCD multipole model [2]. The second largest source
of systematic uncertainty is due to uncertainty in the
track reconstruction efficiency, which is 1.3% per track,
resulting in a 5.2% uncertainty in εsel. The systematic
uncertainties associated with the event selection (4.3%)
and muon identification (1.4%) criteria are estimated by
comparing the efficiency of each selection criterion deter-
mined from MC samples to the corresponding efficiency
measured with the ISR control samples. We have also
considered the systematic uncertainties due to the choice
of signal and background parametrizations by using dif-
ferent functions or different parameters, and the system-
atic uncertainties due to the choice of the fit range. The
contributions from these sources are negligible in com-
parison to the previously mentioned sources.

The product branching fraction (Table I) is determined
from the π+π−µ+µ− sample using:

B
(

Υ (4S) → π+π−Υ (nS)
)

×

B
(

Υ (nS) → µ+µ−
)

=
Nsig

εsel N(4S)
, (1)

where N(4S) = (230.0 ± 2.5) × 106 is the total number
of Υ (4S) mesons produced.

The event yields observed for 3S → nS and 2S → 1S
are compatible with PDG-averaged values of the ISR
cross section and branching fractions for those reso-
nances. The number of signal events observed in the
π+π−e+e− final state is compatible with the branch-
ing fractions we measure in the π+π−µ+µ− sample. No
4S → nS signal is observed for π+π−µ+µ− or π+π−e+e−

final states in the data collected at center of mass energies
40 MeV below the Υ (4S) resonance.

The dipion invariant mass distribution, Mπ+π−

(Fig. 3), is determined by fitting the ∆M distribution
in equal intervals of Mπ+π− , and dividing the number
of signal events in each interval by the corresponding
selection efficiency. The measured distribution for the
4S → 1S transition has a shape similar to the prediction
of the Kuang-Yan model [2]. This model provides a good
description of the observed distributions for 2S → 1S,
3S → 2S, and also ψ(2S) → π+π−J/ψ, but fails to de-
scribe the 3S → 1S distribution. Our measured distribu-

)
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FIG. 3: The efficiency-corrected Mπ+π− distribution for
4S → 1S transition (left) and 4S → 2S transition (right).
The solid line shows the distribution predicted in Ref. [2]. The
dotted histogram shows the selection efficiency in each bin.
The experimental resolution in Mπ+π− is less than 5 MeV/c2,
much smaller than the bin size.

tion for the 4S → 2S transition has a marked enhance-
ment at low Mπ+π− that is incompatible with this model.

The 4S → nS branching ratios and partial widths
can be derived using the world average values for
B (Υ (nS) → µ+µ−) [10] and a recent BABAR measure-
ment of Γ(Υ (4S)) [13]. We obtain

B (Υ (4S) → π+π−Υ (1S)) = (0.90 ± 0.15)× 10−4,

B (Υ (4S) → π+π−Υ (2S)) = (1.29 ± 0.32)× 10−4,

Γ(Υ (4S) → π+π−Υ (1S)) = (1.8 ± 0.4) keV,

and

Γ(Υ (4S) → π+π−Υ (2S)) = (2.7 ± 0.8) keV.

We add in quadrature the statistical and systematic un-
certainties on the derived quantities. With the most
recent CLEO measurement of B (Υ (2S) → µ+µ−) [14],
we obtain smaller values: B (Υ (4S) → π+π−Υ (2S)) =
(0.83 ± 0.16) × 10−4 and Γ(Υ (4S) → π+π−Υ (2S)) =
(1.7 ± 0.5) keV.

The branching fractions are compatible with previ-
ous upper limits on these decays [7]. The Υ (4S) partial
widths are within the range spanned by other dipion tran-
sitions in the bb̄ system [10]: Γ(Υ (2S) → π+π−Υ (1S)) =
(8.1 ± 2.1) keV; Γ(Υ (3S) → π+π−Υ (1S)) = (1.2 ±
0.2) keV; Γ(Υ (3S) → π+π−Υ (2S)) = (0.6 ± 0.2) keV.

In conclusion, we measure

B
(

Υ (4S) → π+π−Υ (1S)
)

× B
(

Υ (1S) → µ+µ−
)

=

(2.23 ± 0.25 ± 0.27) × 10−6

and

B
(

Υ (4S) → π+π−Υ (2S)
)

× B
(

Υ (2S) → µ+µ−
)

=

(1.69 ± 0.26 ± 0.20)× 10−6 .
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Predicted  for 
!(3S)->!(1S)

Kuang &Yan (1981)  

Like the E1 case ?
 'n =2 overlap suppressed.

∑

nl

|Ψnl >< Ψnl|
Ei − Enl

∼ 1

Ei − ETH
string

+ · · ·

Below lowest intermediate state threshold

 

Hence transition rates fairly insensitive to 
intermediate states details

Note the large variations in 
phase space and overlaps 
for the various ! states.

Table 10: Transitions expectations.

Transition G | < i|r2|f > | G< i|r2|f >
2

(GeV7) (GeV−2) ×102

ψ(2S) → J/ψ 3.56 × 10−2 3.36 40.2
Υ(2S) → Υ(1S) 2.87 × 10−2 1.19 4.06
Υ(3S) → Υ(1S) 1.09 2.37 × 10−1 0.61
Υ(3S) → Υ(2S) 9.09 × 10−5 3.70 0.12
Υ(4S) → Υ(1S) 5.58 9.74 × 10−2 0.48
Υ(4S) → Υ(2S) 2.61 × 10−2 4.64 × 10−1 0.56

Table 11: Transitions expectations.

Transition |F|(full)
(GeV−2)

ψ(2S) → J/ψ 3.82
Υ(2S) → Υ(1S) 1.37
Υ(3S) → Υ(1S) 1.33 × 10−1

Υ(3S) → Υ(2S) 3.70
Υ(4S) → Υ(1S) −1.17 × 10−2

Υ(4S) → Υ(2S) −2.71 × 10−1

F(full) =
∑

n

< i|r|X(n) >< X(n)|r|f >
Ei − EX(0)

Ei − EX(n)

7

35

If leading <E1-E1> suppressed, can the <M1-M1> significant?   
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Voloshin [PR D74:054022(2006)] Detailed study: S-wave

Here in the first replacement the cross terms between r and q are dropped since they cancel in

tµνλσ due to the C symmetry (p1 ↔ p2), while the gαβ term in the last transition is dropped,

since such structure cancels in the traceless tensor t. Using Eq.(22) one readily finds from

the formula (19) the expressions for the S and D wave amplitudes:

Sµνλσ =
8π2

3b

{

(q2 + m2) (gµλgνσ − gµσgνλ) (23)

−
3

2
κ

(

1 +
2m2

q2

)

[

qµqλgνσ + qνqσgµλ − qνqλgµσ − qµqσgνλ −
1

2
q2 (gµλgνσ − gµσgνλ)

]

}

,

and

Dµνλσ =
8π2

3b

9κ

4
(#µλgνσ + #νσgµλ − #νλgµσ − #µσgνλ) . (24)

4 Two-pion transition amplitudes with the relativistic

corrections

Using the formulas in the equations (2), (5) and (7) and the expressions (23) and (24) for

the dipion production amplitudes in the chiral limit, one can readily find the amplitude of

the transition ψ2 → π+π−ψ1 between generic 3S1 states of a heavy quarkonium. After a

straightforward calculation one finds the S wave decay amplitude

S(ψ2 → π+π−ψ1) = (25)

−
4π2

b
α(12)

0

[

(1 − χM) (q2 + m2) − (1 + χM) κ

(

1 +
2m2

q2

) (

(q · P )2

P 2
−

1

2
q2

)]

(ψ1 · ψ2) ,

as well as three types of D wave amplitude: one unrelated to the spins of the quarkonium

states

D1(ψ2 → π+π−ψ1) = −
4π2

b
α(12)

0 (1 + χM)
3κ

2

#µνP µP ν

P 2
(ψ1 · ψ2) , (26)

and two amplitudes with the correlation with the polarization of the initial and the final

resonances

D2(ψ2 → π+π−ψ1) =
4π2

b
α(12)

0

(

χ2 +
3

2
χM

)

κ

2

(

1 +
2m2

q2

)

qµqνψ
µν (27)

and

D3(ψ2 → π+π−ψ1) =
4π2

b
α(12)

0

(

χ2 +
3

2
χM

)

3κ

4
#µνψ

µν . (28)
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and three D-waves
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spin independent
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In these formulas the following notation is used: P stands for the 4-momentum of the initial

quarkonium resonance, ψµ
1 and ψµ

2 are the polarization 4-vectors for the 3S1 states, and ψµν

is the spin-2 structure ψµν = ψµ
1 ψν

2 + ψν
1ψ

µ
2 − (2/3) (ψ1 · ψ2) (P µP ν/P 2 − gµν). Finally, χM

and χ2 stand for the ratia

χM =
αM

α0
, χ2 =

α2

α0
(29)

and encode the relative magnitude of the O(v2/c2) relativistic effects due to respectively the

chromo-magnetic interaction (Eq.(6)) and the 3D1 −3 S1 mixing.

The three D waves correspond to different angular correlations. The first one, D1, given

by Eq.(26) corresponds to a D-wave motion in the c.m. frame of two pions, which correlates

with the motion of the c.m. system in the laboratory frame, i.e. with the direction of $q.

This D wave arises in the leading nonrelativistic approximation [18] and is in fact observed

and measured experimentally [9] for the transition ψ(2S) → π+π−J/ψ. The second D-wave

amplitude, D2 in Eq.(27), corresponds to the two pions being in the S wave in their c.m.

system and describes the correlation of the spins of the initial and the final resonances with

the D-wave motion of the two-pion system as a whole. Finally, the amplitude D3 given

by Eq.(28) corresponds to a D-wave motion of the pions in their c.m. frame, which D

wave is correlated with the spins of the quarkonium states. It can be noted that the two

latter amplitudes are proportional to a product of two relatively small parameters κ and

α2 + (3/2) αM ∼ v2/c2. Neither D2 nor D3 have yet been observed experimentally, although

a study [23] of polarization effects in the decay Υ(2S) → π+π−Υ, utilizing a transversal po-

larization of the DORIS beams qualitatively confirms that these spin-dependent amplitudes

are quite small. (A discussion can be found in the review [24].)

The transitions between 1S0 states of quarkonium have not been observed yet. One may

hope however that with a dedicated effort a two-pion transition from the recently found

ηc(2S) resonance: ηc(2S) → π+π−ηc can be observed and studied. Within the approach

discussed here such transition is closely related to the familiar decay ψ(2S) → π+π−J/ψ,

and in fact can be used for a useful calibration of the total width of ηc(2S) [25]. Clearly,

on the theoretical side the transitions between 1S0 states are simpler than those between

the 3S1 ones since no polarization effects are involved. On the other hand the effect of the

M1 interaction (Eq.(6)) is enhanced for the 1S0 states (Eq.(7)) by a factor of 3, so that the

relevant transition amplitudes of a generic η2 → π+π−η1 transition are given by

S(η2 → π+π−η1) = (30)

11

magnetic S-D mixing 
In these formulas the following notation is used: P stands for the 4-momentum of the initial

quarkonium resonance, ψµ
1 and ψµ

2 are the polarization 4-vectors for the 3S1 states, and ψµν

is the spin-2 structure ψµν = ψµ
1 ψν

2 + ψν
1ψ

µ
2 − (2/3) (ψ1 · ψ2) (P µP ν/P 2 − gµν). Finally, χM

and χ2 stand for the ratia

χM =
αM

α0
, χ2 =

α2

α0
(29)

and encode the relative magnitude of the O(v2/c2) relativistic effects due to respectively the

chromo-magnetic interaction (Eq.(6)) and the 3D1 −3 S1 mixing.

The three D waves correspond to different angular correlations. The first one, D1, given

by Eq.(26) corresponds to a D-wave motion in the c.m. frame of two pions, which correlates

with the motion of the c.m. system in the laboratory frame, i.e. with the direction of $q.

This D wave arises in the leading nonrelativistic approximation [18] and is in fact observed

and measured experimentally [9] for the transition ψ(2S) → π+π−J/ψ. The second D-wave

amplitude, D2 in Eq.(27), corresponds to the two pions being in the S wave in their c.m.

system and describes the correlation of the spins of the initial and the final resonances with

the D-wave motion of the two-pion system as a whole. Finally, the amplitude D3 given

by Eq.(28) corresponds to a D-wave motion of the pions in their c.m. frame, which D

wave is correlated with the spins of the quarkonium states. It can be noted that the two

latter amplitudes are proportional to a product of two relatively small parameters κ and

α2 + (3/2) αM ∼ v2/c2. Neither D2 nor D3 have yet been observed experimentally, although

a study [23] of polarization effects in the decay Υ(2S) → π+π−Υ, utilizing a transversal po-

larization of the DORIS beams qualitatively confirms that these spin-dependent amplitudes

are quite small. (A discussion can be found in the review [24].)

The transitions between 1S0 states of quarkonium have not been observed yet. One may

hope however that with a dedicated effort a two-pion transition from the recently found

ηc(2S) resonance: ηc(2S) → π+π−ηc can be observed and studied. Within the approach

discussed here such transition is closely related to the familiar decay ψ(2S) → π+π−J/ψ,

and in fact can be used for a useful calibration of the total width of ηc(2S) [25]. Clearly,

on the theoretical side the transitions between 1S0 states are simpler than those between

the 3S1 ones since no polarization effects are involved. On the other hand the effect of the

M1 interaction (Eq.(6)) is enhanced for the 1S0 states (Eq.(7)) by a factor of 3, so that the

relevant transition amplitudes of a generic η2 → π+π−η1 transition are given by

S(η2 → π+π−η1) = (30)

11

where q = p1 + p2 is the total four-momentum of the dipion.

Few remarks are due regarding effects of higher order in αs. The trace term in Eq.(19)

receives no renormalization, provided that the coefficient b is replaced by β(αs)/α2
s with

β(αs) = bα2
s + O(α3

s) being the full beta function in QCD. This modification however only

affects the overall normalization of the trace part, and can in fact be absorbed into the

definition of the heavy quarkonium amplitudes. On the contrary, the relative coefficient of

the traceless term in Eq.(19), i.e. the parameter κ, does depend on the normalization scale,

which scale is appropriate to be chosen as the characteristic size of the heavy quarkonium [18].

However, given other uncertainties in the analysis of the two-pion transitions, the logarithmic

variation of κ is a small effect. In particular, this effect is likely to be smaller than the

discussed in this paper relativistic effects in the amplitudes of the two-pion emission.

The matrix element in Eq.(19) describes the production of the two pions in two partial

waves in their center of mass system: the S wave and the D wave. The two waves can

be measured separately, and also any effects of the final state interaction between pions

are different in these two orbital states. Therefore it is quite instructive for the subsequent

discussion to explicitly separate the S and D waves in the matrix element, i.e. to rewrite

the amplitude (19) in the form

− 〈π+(p1)π
−(p2)|F

a
µνF

a
λσ|0〉 = Sµνλσ + Dµνλσ . (20)

Clearly, the trace term in Eq.(19) corresponds to a pure S wave, while the traceless term

proportional to κ contains both waves. In order to perform explicit partial wave separation

in tµνλσ it is helpful to introduce [18] the four vector r = p1 − p2 describing the relative

momentum of the two pions, which reduces to a purely spatial vector in the c.m. system of

the pions ((r · q) = 0). Then the tensor

%µν = rµrν +
1

3

(

1 −
4m2

q2

)

(q2 gµν − qµqν) (21)

is also purely spatial in the c.m. frame and corresponds to pure D wave. Using this tensor

one can make the following series of replacements for the terms of the generic structure

p1αp2β in the tensor tµνλσ:

p1αp2β →
1

4
qαqβ −

1

4
rαrβ =

1

4
qαqβ +

1

12

(

1 −
4m2

q2

)

(q2 gαβ − qαqβ) −
1

4
%αβ

→
1

6

(

1 +
2m2

q2

)

qαqβ −
1

4
%αβ . (22)

9

rµ = (k1µ − k2µ)Pµ = MAδ0
µ

If <M1-M1> term significant,                 
expect noticeable presence of D2 and D3 in !(3S) ->! +##

O(v2) O(v2) 

the motion of the dipion, i.e. of the vector !q.

For consideration of the effects of different terms of the amplitude in the observable phase

space distribution and also for evaluating the significance of the ππ rescattering it is helpful

to write the decay amplitude as a sum of partial waves[9]:

M = S (ε1 · ε2) + D1 $µν

P µP ν

P 2
(ε1 · ε2) + D2 qµ qν εµν + D3 $µν εµν . (2)

In this expression P is the 4-momentum of the initial resonance. The tensor $µν corresponds

to a D-wave spatial tensor made out of momenta of the pions in their c.m. frame. Namely,

using the notation r = p1 − p2, this tensor is defined as[5]

$µν = rµrν +
1

3

(

1 −
4m2

π

q2

)

(q2 gµν − qµqν) . (3)

Finally, εµν stands for the spin-2 tensor made from the polarization amplitudes of the reso-

nances

εµν = εµ
1ε

ν
2 + εν

1ε
µ
2 +

2

3
(ε1 · ε2)

(

P µP ν

P 2
− gµν

)

. (4)

The terms in the expression (2) describe an S wave and three possible types of D-wave

motion: the term with D1 corresponds to a D wave in the c.m. system of the two pions

correlated with the overall motion of the dipion in the rest frame of the initial state, the D2

term describes the D-wave motion of the dipion as a whole, correlated with the spins of the

Υ resonances, and finally, the D3 term corresponds to the correlation between the spins and

the D-wave motion in the c.m. frame of the dipion. One can also notice that the S and D1

terms contain an overall spin-0 combination of the quarkonium polarizations, so that there

is no interference between these two terms and those with D2 and D3, if no polarization

information in the rate is used. In particular, the distribution of the rate studied in Ref.[8]

can be written as
dΓ

d cos θX dq
∝ |M|2X

√

q2
0 − q2

√

q2 − 4 m2
π , (5)

where |M|2X stands for the square of the amplitude appropriately averaged/summed over all

the variables except for θX and q2,

|M|2X = |S|2 −
2

3

(

1 − 3 cos2 θX

) (

q2
0 − q2

)

(

1 −
4m2

π

q2

)

Re (SD∗

1) (6)

+
1

9

(

1 − 3 cos2 θX

)2 (

q2
0 − q2

)2

(

1 −
4m2

π

q2

)2

|D1|2 +
8

9

(

q2
0 − q2

)2

|D2|2

3

S-wave
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BUT - In addition to the suppression of the M1-M1 term 
by <v2> relative to the dominate E1-E1 term: 

Radial overlap amplitude: with the hybrid states 

∑

nl

|Ψnl >< Ψnl|
Ei − Enl

∼ 1

Ei − ETH
string

+ · · ·

Again below lowest intermediate state threshold

In this limit the overlap vanishes since <f|i>=0 (i%f)

The M1-M1 term is highly suppressed !
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FIG. 8: Plots overlaying projections of the data (points with error bars) and the fit result (his-

tograms) onto the Mππ and cos θX variables. The plots are summed over electrons and muons, but
are differentiated by pion charge. The neutral modes (open symbols, dashed lines) show only a
positive distribution in cos θX because the two pions are indistinguishable. For the charged modes

(solid symbols, solid lines) the angle is that of the π+.

and proportional to 1/
√

ai, where ai is the Monte Carlo phase space yield in bin i. Hence,

σi =
√

di + d̃2
i /ai.

The bins for which di = 0 require special treatment, and σi is modified appropriately. To
minimize the effect of such bins with zero yield, we sum over muon and electron final states.
This takes a weighted average over the distributions, rather than taking account of the

14
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Dalitz variables

• Three body decay: !’"!##. If no coupling of ## system to 

!’s polarizations then only 2 degrees of freedom.
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QQ(n3S1) -> QQ(m3S1) + #+#-Upsilon dipion transition in CLEO    DPF'06 Honolulu    T. Skwarnicki 5

Initial Theory 

• In Multipole Expansion model, the 3rd term involves magnetic 

interactions (spin flip) and can be neglected compared to the leading 

E1*E1 transition [Yan PR,D22,1652 (80)].  

C 0!

• In QCD-motivated calculation of soft-pion piece in E1*E1 transition, 

expect S-wave to dominate in the non-relativistic limit producing 

M("") distribution similar to the one due to the 1st term 
[Voloshin,Zakharov,PRL,45,688(80); Novikov, Shifman, ZP,C8,43(81)]

A B!

• Observation of #(2S)$#(1S)"" with the 

same M("") distribution was a great 

success of this theoretical framework and 

reinforced A-dominance dogma

• Consistent with the phenomenological 

observation by Brown&Cahn, that M("") 
in %(2S)$J/%(1S)"" was well 

reproduced by assuming B=C=0

[ ]22

1 2 1 2 2 1A B C( )( 2 ) ( ) ( )( ) ( )( )M q m EE q q q q!" " " " " " " "& & & &= ' ( + ' + ' ' + ' '

M"" (GeV) 

Fit, No C stat. effcy. (π±) effcy.(π0) bg. sub.

Υ(3S) → Υ(1S)ππ
"(B/A)

#(B/A)

−2.523

±1.189

±0.031

±0.051

±0.019

±0.026

±0.011

±0.018

±0.001

±0.015

Υ(2S) → Υ(1S)ππ
"(B/A)

#(B/A)

−0.753

0.000

±0.064

±0.108

±0.059

±0.036

±0.035

±0.012

±0.112

±0.001

Υ(3S) → Υ(2S)ππ
"(B/A)

#(B/A)

−0.395

±0.001

±0.295

±1.053

±0.025

±0.180

±0.120

±0.001

Fit, float C stat. effcy. (π±) effcy.(π0) bg. sub.

Υ(3S) → Υ(1S)ππ
|B/A|
|C/A|

2.89
0.45

±0.11
±0.18

±0.19
±0.28

±0.11
±0.20

±0.027
±0.093

TABLE IV: Combined fit results for all transitions with statistical and systematic uncertainties.

The systematic uncertainties are in order: π± detection efficiency, π0 detection efficiency, and
background subtraction for the Υ(3S) → Υ(2S)ππ transition. The upper set of results are for
the fits assuming contributions to the amplitude from only the A and B terms. The bottom two

lines are the fit results when the C term is allowed to be non-zero. The imaginary part of the
ratio has a two-fold ambiguity and is only known to within a sign. Note that for the transition

Υ(3S) → Υ(2S)ππ we do not have fits for the charged di-pion case.

of the Brown and Cahn decay amplitude (Eqn. 1) are included in our model, and the fits
account for the structure of the decay without introduction of new physics or contributions
from resonances.

The matrix elements are indicated as points in the complex plane in Fig. 12. For the
“anomalous” Υ(3S) → Υ(1S)ππ transition we fit for the presence of the “suppressed” C
term as a test for the breakdown of the underlying assumptions leading to the standard
matrix element. This term is not significant when systematic errors are taken into account
and the quality of the fit to the data is good without it. Therefore, we set an upper limit of
|C/A| < 1.09 at 90% C.L..

We note in particular that the treatment of the di-pion transitions via the full allowed
matrix element under the assumptions in Refs. [3, 4, 23, 24, 25] allows two matrix elements,
only one of which has traditionally been assumed to be non-zero. The description of the
Υ(3S) → Υ(1S)ππ transition di-pion mass and angular structure as anomalous is only true
in the limit of this assumption. This analysis shows in particular that the description of the
decay process in terms of the two favored amplitude terms, with complex form factors con-
stant over the Dalitz plane, suffices to describe the decay distributions of Υ(3S) → Υ(1S)ππ,
Υ(3S) → Υ(2S)ππ, and Υ(2S) → Υ(1S)ππ, provided the form factors are allowed to vary
with the transition. For the Υ(3S)→ Υ(1S)ππ transition, we find |B/A| = 2.79±0.05, which
could imply a large magnitude of B or a suppressed A; recent theoretical considerations [20]
favor the latter interpretation. While smaller than in the case of Υ(3S) → Υ(1S)ππ, |B/A|
is also determined to be non-zero for the case of Υ(2S) → Υ(1S)ππ. The large imaginary
part of B/A is intriguing [27].

While there are not yet first principles predictions of the values of the matrix elements
of the decays studied here, this analysis does provide complete measurements of the relative
matrix element magnitudes and phases that can serve as a point of comparison with ab initio
QCD calculations.

We gratefully acknowledge the effort of the CESR staff in providing us with excellent
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[D. Cronin-Hennessy et al., 
PRD 76:072001 (2007)] Hindered M1-M1 term => C"0.     

Consistent with CLEO results.  

Small D-wave contributions

Useful to look at polarization info.                            
Dubynskiy & Voloshin [hep-ph/0707.1272]

Fit, no C, total error

Υ(3S) → Υ(1S)ππ

"(B/A)

#(B/A)
|B/A|
δBA

−2.52 ± 0.04

±1.19 ± 0.06
2.79 ± 0.05

155(205) ± 2

Υ(2S) → Υ(1S)ππ

"(B/A)
#(B/A)

|B/A|
δBA

−0.75 ± 0.15
0.00 ± 0.11

0.75 ± 0.15
180 ± 9

Υ(3S) → Υ(2S)ππ
"(B/A)
#(B/A)

−0.40 ± 0.32
0.00 ± 1.1

Fit, float C, total error

Υ(3S) → Υ(1S)ππ
|B/A|
|C/A|

2.89 ± 0.25
0.45 ± 0.40

TABLE V: Fit results for all transitions with total uncertainties. These numbers represent the final
result of this analysis. In the case of the magnitude ratio |C/A|, we also quote a limit as detailed

in the text. The phase angles are quoted in degrees, and have a two-fold ambiguity of reflection in
the real axis.

FIG. 12: Complex values of matrix element ratio B/A from combined fits for the three transitions
under the assumption that C = 0. Note the two-fold ambiguity in the imaginary part.

luminosity and running conditions. D. Cronin-Hennessy and A. Ryd thank the A.P. Sloan
Foundation. This work was supported by the National Science Foundation, the U.S. De-
partment of Energy, and the Natural Sciences and Engineering Research Council of Canada.

21

FIG. 11: The left plot shows the amplitude component functions SA, SB, DA, and DB as a function

of Mππ ≡
√

q2. These are summed to obtain the total amplitude. The partial rate to S-wave and
D-wave components are shown in the right plot for the Υ(3S) → Υ(1S)ππ decay as determined

from the results of this analysis: B/A = −2.52+1.19i. Note that the D-wave contribution is largest
in the low to intermediate range of q2, and is suppressed at both extrema by angular momentum
barrier effects. Note further that this is not a resonance phenomenon despite its shape in Mππ and

the changing angular structure.

This partial wave extraction becomes much more complex if the form factors are assumed
to be variable over the Dalitz space, for example due to resonant structure/enhancement in
the decay. This will introduce higher powers of cos2 θX to the overall amplitude and will
need higher partial wave components to account for the variation.

The presence of D-wave components in the angular distribution of the decay is not in
itself an indication of resonances contributing, nor the presence of unaccounted-for physics.
The presence of a q2-dependent D-wave component could simply be a consequence of angu-
lar momentum barriers in the three body phase space of the decay. The data do not demand
the introduction of a q2-dependent magnitude or phase for B/B. These small D-wave com-
ponents are consistent with those derived in a recent paper by Voloshin [20], in which he
emphasizes the importance of relativistic and chromo-magnetic effects.

IV. SYSTEMATIC UNCERTAINTIES

We address three sources of systematic uncertainty in the measurements of B/A and
C/A: model dependence, detector efficiency and resolution, and backgrounds.

In Sect. III we showed that our model provides a very good description of the data in the
(q2, cos θX) plane and that the presence or absence of the chromo-magnetic coupled term in
the amplitude has little effect on |B/A| and δBA.

Uncertainty in the estimation of the detector efficiency and resolution contributes most
significantly in the charged mode analyses due to our limited knowledge of the tracking
efficiency at very low momentum. In that the low momentum region is precisely where
the matrix element has potential suppression in the B term, this can potentially cause a

18
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<E1 M1>; <M1 M1>, <E1 M2> higher order 

O(v) O(v2)
CiCf = −1 + 1

symmetry 
  breaking: 
  #; %, &  

chiral effective theory:  

CHAPTER 4

For instance, the amplitude for the decay (4.149) is given by:

M(3S1→3S1 + ππ) =
4i
√

MSMS′

f2
π

ε′ · ε∗ (ASS′p1 · p2 + BSS′v · p1v · p2) (4.158)

where ε and ε′ are the polarisation vectors of quarkonium states; p1, p2 are the momenta of the two pions.

It is well known that the use of chiral symmetry arguments leads to a general amplitude for the process

in question, which contains a third independent term given by:

CSS′
4i
√

MSMS′

f2
π

(
ε′ · p1ε

∗ · p2 + ε′ · p2ε
∗ · p1

)
. (4.159)

In the nonrelativistic limit in QCDME, Yan [230] finds CSS′ = 0. It is interesting to note that, within
the present formalism, this result is an immediate consequence of the chiral and heavy quark spin sym-

metries. However, these symmetries are not exact and corrections to the symmetry limit are expected.

In the chiral Lagrangian (CL) approach, the π0 − η − η′ mixings can be derived, which should
be taken into account in predicting single pseudoscalar meson transitions of heavy quarkonia (cf. Sec-

tion 7.2). Let us define

m̂ ≡




mu 0 0
0 md 0
0 0 ms



 . (4.160)

The Lagrangian that gives mass to the pseudoscalar octet (massless in the chiral limit) and causes π0 − η
mixing is

Lm = λ0〈m̂(Σ + Σ†)〉, (4.161)

and that giving rise to the mixing of η′ with π0 and η is

Lηη′ =
ifπ

4
λ̃〈m̂(Σ − Σ†)〉η′, (4.162)

where λ̂ is a parameter with the dimension of a mass. At first order in the mixing angles the physical
states π̃0, η̃, and η̃′ determined from the above Lagrangians are:

π̃0 = π0 + εη + ε′η′, η̃ = η − επ0 + θη′, η̃′ = η′ − θη − ε′π0, (4.163)

in which the mixing angles are

ε =
(md − mu)

√
3

4(ms −
mu + md

2
)
, ε′ =

λ̃(md − mu)√
2(m2

η′ − m2
π0)

, θ =

√
2

3

λ̃

(
ms −

mu + md

2

)

m2
η′ − m2

η
. (4.164)

7.2 Predictions for hadronic transitions in the single-channel approach

In this section, we give the predictions for HTs in the single-channel approach. In this approach, the

amplitude of HT is diagrammatically shown in Fig. 4.13 in which there are two complicated vertices:

namely, the MGE vertex of the heavy quarks and the vertex of hadronization (H) describing the conver-

sion of the emitted gluons into light hadrons. In the following, we shall treat them separately.

Let us first consider the HT processes n3
i S1→n3

fS1 + π + π. To lowest order, these are double
electric-dipole transitions (E1E1). The transition amplitude can be obtained from the S matrix element
(4.143). After some algebra, we obtain [230, 231, 237]

ME1E1 = i
g2
E

6

∑

KLK′L′

〈Φfh|x · E|KL〉
〈

KL

∣∣∣∣
1

Ei − H(0)
QCD − iD0

∣∣∣∣K
′L′

〉
〈K ′L′|x · E|Φi〉, (4.165)
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7.2 Predictions for hadronic transitions in the single-channel approach

In this section, we give the predictions for HTs in the single-channel approach. In this approach, the

amplitude of HT is diagrammatically shown in Fig. 4.13 in which there are two complicated vertices:

namely, the MGE vertex of the heavy quarks and the vertex of hadronization (H) describing the conver-

sion of the emitted gluons into light hadrons. In the following, we shall treat them separately.

Let us first consider the HT processes n3
i S1→n3

fS1 + π + π. To lowest order, these are double
electric-dipole transitions (E1E1). The transition amplitude can be obtained from the S matrix element
(4.143). After some algebra, we obtain [230, 231, 237]
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For instance, the amplitude for the decay (4.149) is given by:

M(3S1→3S1 + ππ) =
4i
√

MSMS′

f2
π

ε′ · ε∗ (ASS′p1 · p2 + BSS′v · p1v · p2) (4.158)

where ε and ε′ are the polarisation vectors of quarkonium states; p1, p2 are the momenta of the two pions.

It is well known that the use of chiral symmetry arguments leads to a general amplitude for the process

in question, which contains a third independent term given by:
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In the nonrelativistic limit in QCDME, Yan [230] finds CSS′ = 0. It is interesting to note that, within
the present formalism, this result is an immediate consequence of the chiral and heavy quark spin sym-

metries. However, these symmetries are not exact and corrections to the symmetry limit are expected.

In the chiral Lagrangian (CL) approach, the π0 − η − η′ mixings can be derived, which should
be taken into account in predicting single pseudoscalar meson transitions of heavy quarkonia (cf. Sec-
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Table 6: Single light hadron transitions observed in the cc̄ system. Total widths as
in Table 1.

Transition Branching Fraction 3 Partial Width
i → f + X (%) (keV)

ψ(2S) → J/ψ η 3.25 ± 0.06 ± 0.11 11.0 ± 0.84
π0 0.13 ± 0.01 ± 0.01 0.44 ± 0.06

ψ(2S) → hc(1P ) π0 (1.0 ± 0.2 ± 0.18) × 10−1 0.34 ± 0.10
ψ(3770) → J/ψ η (0.87 ± 0.33 ± 0.22) × 10−1 20 ± 11

Table 7: Single light hadron transitions observed in the bb̄ system.

Transition Branching Fraction Partial Width 4

i → f + X (%) (keV)
Υ(2S) → Υ(1S) η (2.5 ± 0.7 ± 0.5) × 10−2 (7.2 ± 2.3) × 10−3

χb1(2P ) → Υ(1S) ω 1.63 ± 0.33 ± 0.16 1.56 ± 0.59
χb2(2P ) → Υ(1S) ω 1.10 ± 0.30 ± 0.11 1.52 ± 0.64

3Using NRQCD and measured 13PJ decay rates to guess Br(hc → ηc+γ) = 0.4 and Γ(hc(1P )) =
87 keV.

4Total widths: Γ(Υ(2S)) = 28.62 ± 1.30 keV, Γ(Υ(3S)) = 17.28 ± 0.61 keV, Γ(Υ(4S)) = 110 ±
13 MeV, Γ(χb1(2P )) = 96 ± 16 keV and Γ(χb2(2P )) = 138 ± 19 keV.
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FIG. 4: The “Υ(5S)” yields as functions of M(π+π−) and cos θHel for (a,c) Υ(1S)π+π− and (b,d)

Υ(2S)π+π− transitions. The shaded (open) histogram are from MC simulations using the model
of Ref. [1] (phase-space model).

TABLE I: Signal yield (Ns), significance (Σ), reconstruction efficiency, and observed cross-section
(σ) for e+e− → Υ(nS)π+π− and Υ(1S)K+K− at

√
s ∼ 10.87 GeV. Assuming the Υ(5S) to be

the sole source of the observed events, the branching fractions (B) and the partial widths (Γ) for
Υ(5S) → Υ(nS)π+π− and Υ(1S)K+K− are also given. The first uncertainty is statistical, and
the second is systematic.

Process Ns Σ Eff.(%) σ(pb) B(%) Γ(MeV)

Υ(1S)π+π− 325+20
−19 20σ 37.4 1.61 ± 0.10 ± 0.12 0.53 ± 0.03 ± 0.05 0.59 ± 0.04 ± 0.09

Υ(2S)π+π− 186 ± 15 14σ 18.9 2.35 ± 0.19 ± 0.32 0.78 ± 0.06 ± 0.11 0.85 ± 0.07 ± 0.16

Υ(3S)π+π− 10.5+4.0
−3.3 3.2σ 1.5 1.44+0.55

−0.45 ± 0.19 0.48+0.18
−0.15 ± 0.07 0.52+0.20

−0.17 ± 0.10

Υ(1S)K+K− 20.2+5.2
−4.5 4.9σ 20.3 0.185+0.048

−0.041 ± 0.028 0.061+0.016
−0.014 ± 0.010 0.067+0.017

−0.015 ± 0.013

distributions give rise to 4.4% and 6.8% error for Υ(1S)π+π− and Υ(2S)π+π− MC efficien-
cies, respectively. For the other two modes, the model of Ref. [1] is assumed. The difference
between this model and the phase-space model is included as a systematic uncertainty for this
assumption. A relative large uncertainty of 13.6% arises for the “Υ(5S)” → Υ(1S)K+K−

channel, while the corresponding error for “Υ(5S)” → Υ(3S)π+π− is small (3.2%) due to
limited phase-space. The uncertainties from PDF parameterization are obtained either by
replacing the signal PDF with a sum of three Gaussians, or by a second order polynomial
for the background. The difference between the fits with alternative PDFs and the nominal
results are included as systematic uncertainties. The selection criteria for rejecting radiative
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Υ(2S)π+π− transitions. The shaded (open) histogram are from MC simulations using the model
of Ref. [1] (phase-space model).

TABLE I: Signal yield (Ns), significance (Σ), reconstruction efficiency, and observed cross-section
(σ) for e+e− → Υ(nS)π+π− and Υ(1S)K+K− at

√
s ∼ 10.87 GeV. Assuming the Υ(5S) to be

the sole source of the observed events, the branching fractions (B) and the partial widths (Γ) for
Υ(5S) → Υ(nS)π+π− and Υ(1S)K+K− are also given. The first uncertainty is statistical, and
the second is systematic.

Process Ns Σ Eff.(%) σ(pb) B(%) Γ(MeV)

Υ(1S)π+π− 325+20
−19 20σ 37.4 1.61 ± 0.10 ± 0.12 0.53 ± 0.03 ± 0.05 0.59 ± 0.04 ± 0.09

Υ(2S)π+π− 186 ± 15 14σ 18.9 2.35 ± 0.19 ± 0.32 0.78 ± 0.06 ± 0.11 0.85 ± 0.07 ± 0.16

Υ(3S)π+π− 10.5+4.0
−3.3 3.2σ 1.5 1.44+0.55

−0.45 ± 0.19 0.48+0.18
−0.15 ± 0.07 0.52+0.20

−0.17 ± 0.10

Υ(1S)K+K− 20.2+5.2
−4.5 4.9σ 20.3 0.185+0.048

−0.041 ± 0.028 0.061+0.016
−0.014 ± 0.010 0.067+0.017

−0.015 ± 0.013

distributions give rise to 4.4% and 6.8% error for Υ(1S)π+π− and Υ(2S)π+π− MC efficien-
cies, respectively. For the other two modes, the model of Ref. [1] is assumed. The difference
between this model and the phase-space model is included as a systematic uncertainty for this
assumption. A relative large uncertainty of 13.6% arises for the “Υ(5S)” → Υ(1S)K+K−

channel, while the corresponding error for “Υ(5S)” → Υ(3S)π+π− is small (3.2%) due to
limited phase-space. The uncertainties from PDF parameterization are obtained either by
replacing the signal PDF with a sum of three Gaussians, or by a second order polynomial
for the background. The difference between the fits with alternative PDFs and the nominal
results are included as systematic uncertainties. The selection criteria for rejecting radiative

8

New Belle Measurements - [hep-ex/0710.2577]
/(5S) -> #+#-  + /(nS)  (n=1,2,3)

Large partial rates.            
Continuum e+e--> ##/(nS) 
background not subtracted.      

M(##) and angular distribution.  
Compare to /(4S).
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phase space (GeV-7)

Table 12: Transitions expectations.

Transition |F|(full)
(GeV−2)

ψ(2S) → J/ψ 1.81 × 10−1

Υ(2S) → Υ(1S) 3.04 × 10−1

Υ(3S) → Υ(1S) 1.70 × 10−1

Υ(3S) → Υ(2S) 1.74 × 10−1

Υ(4S) → Υ(1S) 1.06 × 10−1

Υ(4S) → Υ(2S) 0.92 × 10−1

Table 13: Transitions expectations.

Transition Ratio Belle
R(2, 1) 1.47 ± 0.15 ± 0.20
R(3, 1) 0.91 ± 0.35 ± 0.15

8

If lowest hybrid mass near /(5S) a few states 
dominate sum. Results sensitive to mass value.      

If hybrid mass 10.75 + i(0.1) (GeV),             obtain 
R(2,1)"1.1 and R(3,1)"0.08.

Overall scale of transitions more than an order  of 
magnitude larger than theory expects. 

theory -  hadronic transition rates
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 Above Threshold   

/(4S) ideal for study of B±, B0 mesons        
/(5S) ideal for study of Bs

± mesons   

 #(3770) 

Ideal for D+, D0 studies. CLEO has exploited 
this for fD, D decays and mD (572 pb-1)

Decays into charmed mesons

08/01/2007 10:33 AMpdgLive Particle Summary

Page 1 of 2file:///Users/eichten/Documents/Confs/07/charm07/refs/3770/pdgLive%20Particle%20Summary.html

 

 Reviews, Tables, and Plots

Help 
Send feedback 

 

  Please use this CITATION:  W.-M.Yao et al. (Particle Data Group), J. Phys. G 33,  1 (2006) and 2007 partial update for the 2008 edition

c c MESONS  back to c c MESONS

 ψ(3770)              I G( J P C ) = 0 ! ( 1 !  !  )

               
Due to the length of this section, not all  information is displayed. To expand a currently hidden section, click on the ! icon. To hide an expanded
section, click on the  "  icon. To view a fully expanded version of this section, please click here.

 
Mass m  = 3772.4 ± 1.1 MeV ,     ( S = 1.8 )   
Full width "  = 25.2 ± 1.8 MeV    
"ee  = 0.247+ 0.028!  0.025 keV ,     ( S = 1.1 )   

 "  ψ(3770) DECAY MODES
In addition to the dominant decay mode to D D, ψ(3770) was found to decay into the final
states containing the J/ψ  (BAI 2005, ADAM 2006). ADAMS 2006 and HUANG 2006A searched
for various decay modes with light hadrons and found a statistically significant signal for the
decay to φ η only (ADAMS 2006).

 "i Mode Fraction ("i / ")
Scale factor/

 Confidence level
 p

 (MeV/c)

 
 "1  D D  ( 85 ± 5 ) # 10

 ! 2 283

 "2  D0 D0  ( 48.7 ± 3.2 ) # 10
 ! 2 283

 "3  D+ D!  ( 36.1 ± 2.8 ) # 10
 ! 2 249

 "4  J/ψ π+ π!  ( 1.93 ± 0.28 ) # 10
 ! 3 560

 "5  J/ψ π0 π0  ( 8.0 ± 3.0 ) # 10
 ! 4 563

 "6  J/ψ η  ( 9 ± 4 ) # 10
 ! 4 359

 "7  J/ψ π0  <2.8 # 10
 ! 4 CL=90% 602

 "8  γ χc0  ( 7.3 ± 0.9 ) # 10
 ! 3 —

 "9  γ χc1  ( 2.9 ± 0.6 ) # 10
 ! 3 —

 "10  γ χc2  <9 # 10
 ! 4 CL=90% —

 "11  e+ e!  ( 9.8 ± 1.2 ) # 10
 ! 6 S=1.1 1886

 "12  KS
0 KL

0  <1.2 # 10
 ! 5 CL=90% 1819

 "13  2(π+ π!)  <1.12 # 10
 ! 3 CL=90% 1860

 "14  2(π+ π!) π0  <1.06 # 10
 ! 3 CL=90% 1843

 "15  η π+ π!  <1.24 # 10
 ! 3 CL=90% 1836

 "16  ω π+ π!  <6.0 # 10
 ! 4 CL=90% 1794

 "17  η 3π  <1.34 # 10
 ! 3 CL=90% 1824

 "18  η' 3π  <2.44 # 10
 ! 3 CL=90% 1740

 "19  K+ K! π+ π!  <9.0 # 10
 ! 4 CL=90% 1772

 "20  φ π+ π!  <4.1 # 10
 ! 4 CL=90% 1736

 "21  φ f0(980)  <4.5 # 10
 ! 4 CL=90% 1599

 "22  K+ K! π+ π! π0  <2.36 # 10
 ! 3 CL=90% 1741

 "23  η K+ K!  <4.1 # 10
 ! 4 CL=90% 1711

 "24  ω K+ K!  <3.4 # 10
 ! 4 CL=90% 1663

 "25  2(K+ K!)  <6.0 # 10
 ! 4 CL=90% 1551

 "26  φ K+ K!  <7.5 # 10
 ! 4 CL=90% 1597

 "27  2(K+ K!) π0  <2.9 # 10
 ! 4 CL=90% 1493

 "28  p p π+ π!  <5.8 # 10
 ! 4 CL=90% 1544

 "29  p p π+ π! π0  <1.85 # 10
 ! 3 CL=90% 1490

 "30  η p p  <5.4 # 10
 ! 4 CL=90% 1430

 "31  ω p p  <2.9 # 10
 ! 4 CL=90% 1309

 "32  p p K+ K!  <3.2 # 10
 ! 4 CL=90% 1185

 "33  φ p p  <1.3 # 10
 ! 4 CL=90% 1177

 "34  Λ Λ  <1.2 # 10
 ! 4 CL=90% 1521

 "35  Λ Λ π+ π!  <2.5 # 10
 ! 4 CL=90% 1404

 "36  Λ p K+  <2.8 # 10
 ! 4 CL=90% 1386

 Heavy Flavor Factories   

Decay width in good agreement 
with theory (CCCM)
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D0D̄0

D+D−

Γ(p) ∼ A
p3

Λ2
exp (− p2

Λ2
)

A = .18 Λ = .57 GeV

p0 = 283 MeV p+ = 250 MeV

The ratio, R0/+, of  D0D0 to D+D- 
production deviates from one due to 
isospin violating terms: 

(a) up-down mass difference 
(b) EM interactions                      
-> m(D+)-m(D0) = 4.78 ± 0.10 MeV    
-> different final state interactions

The shape of the resonance differs from
the usual Breit-Wigner:   
(1) width 0(p) not pure p wave 
(2) interference with 2S state.

R0/+

PDG07 p3 CCCM
1.28± 0.14 1.47 1.36

44

 More details
Charged/neutral ratios

Shape of resonance

Mixing with #(2S) 

CCC Model

Parameterizing the #(3770) as a simple mixture of
 |1D> and |2S> state is inadequate 
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Production in e+e- due to relativistic terms:
(a) Expansion of EM current 

(b) S-D mixing terms - short range
(c) Induced mixing from D*-D mass difference - long range

2

resonances and a few well identified final states becomes
less useful as the whole non-relativistic picture loses va-
lidity. Finally, in the last section, some suggestions for
future studies are presented.

II. NRQCD

Starting from the correlator of two electromagnetic
charm quark currents

i

∫

d4x eiqx 〈0|T jµ
c (x)jν

c (0) |0〉 = (2)

(gµνq2 − qµqν)Πc(q
2)

Rc can be defined in terms of the current correlator of
Eq. 2 as:

Rc = 12πQ2
cImΠ(s + iε) (3)

In the center of mass frame only the spatial compo-
nents of the EM current contribute to the cross section.
Near threshold the production of charm hadrons should
be governed by nonrelativistic dynamics and the EM cur-
rent can be expanded in terms of the two-component
Pauli spinors as follows: ψ and χ:

ji
c = s1ψ

†σiχ +
s2

m2
c

ψ†σiD2χ (4)

+
d2

m2
c

ψ†σj [
1

2
(DiDj + DjDi) −

1

3
δijD2]χ + ...

where s1, s2, and d2 are Wilson coeffecients representing
the contributions from hard momentum that have been
integrated out in NRQCD approach. These coefficients
are given by:

s1 = 1 + (5)

s2 = −
1

6
−

8CF

3β0
ln[

αs(mcv2)

αs(mc)
]

d2 =
1

4
+ (6)

in vNRQCD [? ]. This is of course not ideal for the
charm system because of the relatively large velocities v
of the charm quark.

The general expression for Rc in Eq.3 can be rewritten
by inserting a complete state of states in the nonrelativis-
tic limit in the absence of coupling to decay channels into
the current correlator defining Πc in Eq. 2. Only states
with JPC = 1−− contribute. In nonrelativistic notation
these states have L = 0 and labeled here by the radial
quantum number n (one plus the number of nodes) as
n3S1 or L = 2 and labeled using the same notation as
m3D1. Rc can be rewritten as:

Rc =
∑

i,j

Im
(

Ψ†
iG(i, j, s)Ψj

)

(7)

where the index i(j) represents the ith state ordered by
assending mass. The Green’s Function G, denotes the off
energy shell amplitude for the ith state to propagate into
the jth state at center of mass energy

√

(s). This is de-
scribed in the original CCC model[? ] and more recently
by Eichten, Lane and Quigg[? ]. Letting |a > represent
ath charmonium state, the corresponding component of
the vector Ψ is defined by:

< 0|ji
c(0)|a >= εi(a)Ψa

√

(Nc)
√

(2mQ)
(8)

For S states the definition of Ψ just corrresponds to the
the usual wavefunction at the origin in nonrelativistic
potential models, while for D states it is proportional to
m−2

Q times the second derivative of the wavefunction at
the origin. We will make these connenctions more precise
below.

For the nth S state the form of the normalized nonrel-
ativistic wavefunction, ψ, is given by:

ψnS()r) = ε(nS)i 1√
2
χ†

s1
σiχs2

1√
4π

RnS(r) (9)

The expression for production in e+e− is straighfor-
ward, writing the EM current in nonrelativistic form (Eq.
4) both the first and second terms in the current’s decom-
postion contribute to Ψ, while the third term vanishes by
conservation of orbital angular momentum. Hence the
explicit expression for Ψ when the a state is the n3S1

state is:

Ψa = c1RnS(0) +
c2

m2
Q

R′′
nS(0) (10)

as expected.
For the rmnth D state the form of the normalized non-

relativistic wavefunction, ψ, is given by:

ψnD = ε(nD)i 1√
2
χ†

s1σjχs2

√

9

8π
[rirj −

1

3
δijr2]

RnD(r)

r2

(11)
.

Now evaluating the current matrix element for the
rmnth D state. From symmetry considerations only the
third term in the EM current survives. Hence the ex-
plicit expression for Ψ in the case that the ath state is
the n3D1 state is:

Ψa =
d1

m2
Q

ψ′′
m(0) (12)

III. CCC MODEL

The Green’s function G is formally given by:

[G−1]ij = (Mij − Eδij) + iΩ(E)ij (13)

 S-wave

 D-wave

ψ(3772) = 0.10 |2S〉 + 0.01e+0.22iπ |3S〉 + ...

+ 0.69e−0.59iπ |1D〉 + 0.10e+0.27iπ |2D〉 + ...

45

Two important measurement:   

(1) Resonance shape in each channel
(2) Ratio of charge to neutral DD final states
  over the whole resonance region

E. Eichten, K. Gottfried, T. Kinoshita, K. Lane and T.M. Yan
PR D17, 3090 (1978)

phase shifts
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TABLE III: The upper limits on the observed cross section σup
ψ(3770)→f and the branching fraction Bup

ψ(3770)→f for ψ(3770) → f

are set at 90% C.L.. The σψ(3770)→f in the second column is calculated with Eq. (6), where the first error is the statistical, the
second is the independent systematic, and the third is the common systematic error. Here, the upper t denotes that we treat
the upper limit on the observed cross section for e+e− → f at 3.773 GeV as σup

ψ(3770)→f , the upper n denotes that we neglect
the contribution from the continuum production, and the upper z denotes that we treat the central value of σψ(3770)→f as zero
if it is less than zero.

Decay Mode σψ(3770)→f σup
ψ(3770)→f Bup

ψ(3770)→f

[pb] [pb] [×10−3]

φπ0 < 3.5tn < 3.5 < 0.5

φη < 12.6tn < 12.6 < 1.9

2(π+π−) 7.4 ± 15.0 ± 2.8 ± 0.8 < 32.5 < 4.8
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pp̄π+π− −6.2 ± 6.6 ± 0.6 ± 0.7z < 11.0 < 1.6

pp̄K+K− 1.4 ± 3.5 ± 0.1 ± 0.2 < 7.2 < 1.1

φpp̄ < 5.8tn < 5.8 < 0.9

3(π+π−) 16.9 ± 26.7 ± 5.5 ± 2.4 < 61.7 < 9.1

2(π+π−)η 72.7 ± 55.0 ± 7.3 ± 8.2 < 164.7 < 24.3

2(π+π−)π0 −35.4 ± 24.6 ± 6.6 ± 4.0z < 42.3 < 6.2

K+K−π+π−π0 −36.9 ± 43.8 ± 12.8 ± 4.2z < 75.2 < 11.1

2(K+K−)π0 18.1 ± 7.7 ± 0.7 ± 2.0n < 31.2 < 4.6

pp̄π0 1.5 ± 3.9 ± 0.5 ± 0.1 < 7.9 < 1.2

pp̄π+π−π0 26.0 ± 13.9 ± 2.6 ± 3.2 < 49.7 < 7.3
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Table VI: Radiative decays ψ′′ → γχcJ : energies, predicted and measured partial
widths. Theoretical predictions of Ref. [8] are (a) without and (b) with coupled-
channel effects; nonrelativistic (c) and relativistic (d) predictions of Ref. [11]; (e)
shows predictions of Ref. [134].

Mode Eγ (MeV) Predicted (keV) CLEO (keV)
[55] (a) (b) (c) (d) (e) [136]

γχc2 208.8 3.2 3.9 4.9 3.3 24±4 < 21
γχc1 251.4 183 59 125 77 73 ± 9 70 ± 17
γχc0 339.5 254 225 403 213 523 ± 12 172 ± 30

4.8 ψ(4040) and ψ(4160)

The ψ(4040) and ψ(4160) resonances appear as elevations in the measurement of
R = σ(hadrons)/σ(µ+µ−). They are commonly identified with the 3S and 2D states
of charmonium (Fig. 1). Their parameters have undergone some refinement as a
result of a recent analysis in Ref. [145]. The error on the mass of ψ(4040) has shrunk
considerably, with M = (4040±10) MeV/c2 in 2004 (Ref. [146]) replaced with (4039±
1) MeV/c2 in 2006 (Ref. [55]). The width is now quoted as (80±10) MeV/c2, up from
(52 ± 10) MeV/c2. Similarly, the mass and width of the ψ(4160) are now quoted as
(4153±3) MeV/c2 and (108±8) MeV/c2, replacing (4159±20) MeV/c2 and (78±20)
MeV/c2. Data taken at the ψ(4040) and the ψ(4160) can be useful to search for the
2P states through radiative decays ψ(4160) → γχ′

c0,1,2. Identifying the transition
photon in the inclusive photon spectrum requires excellent background suppression
and is therefore a challenge. The E1 branching fractions listed in [147] are, calculated
for χ′

cJ masses chosen to be2 3929/3940/3940 MeV for J = 2/1/0:
ψ(4040) → γχ′

c2,1,0: 0.7/0.3/0.1× 10−3,
ψ(4160) → γχ′

c2,1,0: 0.1/1.3/1.7× 10−3.
The J = 0 and J = 1 states can be distinguished since the decays χc0 → DD̄

and χc1 → DD̄∗ are possible but not the reverse. χ′
c2 can decay to either, where the

relative rate depends on the amount of phase space, which in turn depends on the
mass. Exclusive decays to charmonium have not been observed, though CLEO has
set upper limits on a number of final states involving charmonium [148].

4.9 New Charmonium-like States

Many new charmonium states above DD̄ threshold have recently been observed.
While some of these states appear to be consistent with conventional cc̄ states, others
do not. Here we give a brief survey of the new states and their possible interpretations.
Reviews may be found in Refs. [149–151]. In all cases, the picture is not entirely clear.
This situation could be remedied by a coherent search of the decay pattern to DD̄(∗),
search for production in two-photon fusion and ISR, the study of radiative decays of

2 The motivation for this choice will become apparent in Section 4.9.

28

ψ′′ → π+π−J/ψ 0.34± 0.14± 0.09 BES
0.189± 0.020± 0.020 CLEO

ψ′′ → π0π0J/ψ 0.080± 0.025± 0.016 CLEO
ψ′′ → η0J/ψ 0.087± 0.033± 0.022 CLEO

Good agreement with theory expectations 
including relativistic effects 

Theory expectation for #+#-J/#: 0.1-0.7%

No evidence for direct decays 
to light hadrons seen yet.  

No evidence of unexpected rates for  
non DD decays

Puzzle of missing decays

σψ(3770) = 6.38± 0.08 +0.41
−0.30 nb

σψ(3770) − σψ(3770)→DD̄ = −0.01± 0.08 +0.41
−0.30nb

σψ(3770) = 7.25± 0.27± 0.34 nb

CLEO

BES

46

 Non DD decays of the ψ(3770)
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Updated Cornell Coupled Channel Model 

This rich structure arises simply from   
the 3S and 2D states

The peaks for individual final states
 do not coincide

Determining the number and properties
of the resonances is impossible without

a detail decay model.

Interference between the 3S and 2D
plays an important role.

Decay amplitudes for radially excited 
states have oscillatory structure

47

 &R - Total

 &R - Exclusive channels

First: a caution
FIG. 7: R (including radiative corrections) from this analysis and from previous measurements
[6, 23].

where the Born cross section σB is a function of the effective center-of-mass energy squared
(k = (s − seff)/s), and f(k, s) is the ISR kernel. The radiative-correction factor is also
calculated following the alternative implementation of Bonneau and Martin [22]. We take the
difference between the two methods as an estimate of the underlying theoretical uncertainty
in the calculation of the radiative-correction factor. We also consider systematic uncertainty
due to our approximation of σB(seff), required for Eq. 2, by taking the difference between
a simple linear interpolation and a fit to a sum of Breit-Wigners to both the BES [6] and
Crystal Ball (CB) [23] R measurements. Fig. 7 shows that there is excellent agreement
between our inclusive-charm measurement and the previous R measurements.

VII. SUMMARY AND CONCLUSIONS

In summary, we have presented detailed information about charm production above cc̄
threshold. Realizing the main objective of the CLEO-c scan run, we find the center-of-
mass energy that maximizes the yield of Ds to be 4170 MeV, where the cross section of
∼ 0.9 nb is dominantly D∗+

s D−
s . This information has guided the planning of subsequent

CLEO-c running, with initial results already presented on leptonic [24] and hadronic [15] Ds

16
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CLEO - #(4170) an excellent Ds 
factory

Opening of the DDP channelsNew 

 Surprises in existing data  

48

Study fDs,  Ds decays,  MDs with 314 pb-1

FIG. 6: Exclusive cross sections for two-body and multi-body charm-meson final states, and total
observed charm cross section with combined statistical and systematic uncertainties.

EvtGen were varied from their nominal shapes. While a qualitative constraint of consistency
with our measured cross sections was imposed, some extreme variations are included in the
final systematic uncertainty. Both the direct effect on the fitted yield of varying a specific
mode and the indirect effect of varying other modes were computed, although the former
dominates in quadrature.

The yields for Ds final states are determined by direct counts after cutting on Mbc and
∆E. Systematic uncertainty arises in these measurements if the Monte Carlo simulation
does not provide an accurate determination of the associated efficiency. This is probed by
adjusting the selection criteria and recomputing the cross sections, again using the high-
statistics sample at 4170 MeV. The systematic uncertainties assigned based on these studies
are ±3%, ±2.5% and ±5% for D+

s D−
s , D∗+

s D−
s , and D∗+

s D∗−
s , respectively.

In converting the measured yields to cross sections we must correct for the branching
fractions of the charm-meson decay modes. For each of the non-strange charm mesons,

11

These channels are small 
for Ecm ! 4.26 GeV

But will become very 
significant at the #(4S)

FIG. 4: Sideband-subtracted momentum spectra for (a) D0 → K−π+, (b) D+ → K−π+π+, and
(c) D+

s → φπ+ at 4170 MeV. Data are shown as points with errors and the total fit result is shown
as the solid black line. The colored histograms represent specific D(s)-production mechanisms,
with shapes obtained from Monte Carlo simulations and normalizations determined by the fits.
For example, the primary D0 in D∗0D̄0, which peaks at 0.7 GeV/c, is shown in bright red. The
secondary D0 mesons from the primary D∗0 decaying via the emission of a π0 form the broad peak
at 0.6 GeV/c shown in light blue. The second broad peak, at 0.6 GeV/c, consists of D0 mesons
from the charged pion decay of the D∗+ in D∗+D−. All sources of multi-body events are combined
and result in the broad spectrum between 0 and 0.5 GeV/c shown in dark red.

agreement between data and Monte Carlo, with an estimated relative uncertainty of ±0.7%
per track. Pion and kaon identification has been studied with D0 and D+ decays in ψ(3770)
data, with estimated systematic uncertainties in the respective efficiencies of ±0.3% and
±1.3%. The uncertainties on reconstruction efficiencies for the neutral particles π0 and η
for Ds decays have been estimated at ±2% and ±4%, respectively.

9

Discovery of Ds1(2460) 
in 13 pb-1 

data collected from 1990-1998
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New States Near Charm Threshold  

Basic Questions:   Is it a new state?  
What are its properties?   
Charmonium or not?
If not what? New spectroscopy?

49
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Many new states :                

State EXP M + i ! (MeV) JPC Decay Modes 
Observed

Production Modes 
Observed

X(3872) Belle,CDF, D0, 
BaBar 3871.2±0.5 + i(<2.3) 1++

!+!-J/",  !+!-!0J/", 
#J/" B decays,  ppbar 

Belle
BaBar

3875.4±0.7+1.2
-2.0

3875.6±0.7+1.4
-1.5

D0D0!0 B decays 

Z(3930) Belle 3929±5±2 + i(29±10±2) 2++ D0D0, D+D- $$

Y(3940) Belle
BaBar

3943±11±13 + i(87±22±26)
3914.3+3.8

-3.4 ±1.6+ i(33+12
-8 ±0.60) 1-- %J/" B decays 

X(3940) Belle 3942+7
-6±6 + i(37+26

-15±8) JP+ DD* e+e- (recoil against J/")

Y(4008) Belle 4008±40+72
-28 + i(226±44+87

-79) 1-- !+!-J/" e+e- (ISR)

X(4160) Belle 4156+25
-20±15+ i(139+111

-61±21) JP+ D*D* B decays 

Y(4260)
BaBar
Cleo
Belle

4259±8+8
-6 + i(88±23+6

-4)
4284+17

-16 ±4 + i(73+39
-25±5) 

4247±12+17
-32 + i(108±19±10)

1-- !+!-J/", !0!0J/",
 K+K-J/" e+e- (ISR), e+e- 

Y(4350) BaBar
Belle

4324±24 + i(172±33) 
4361±9±9 + i(74±15±10) 1-- !+!-"(2S) e+e- (ISR)

Z+(4430) Belle 4433±4±1+ i(44+17
-13

+30
-11) JP !+"(2S) B decays 

Y(4660) Belle 4664±11±5 + i(48±15±3) 1-- !+!-"(2S) e+e- (ISR)

56
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G. Cibinetto 21Quarkonium spectroscopy and search for new states at BaBar

X(3872)

Mass = 3871.2 ± 0.6
Width < 2.3  90% cl

Discovery
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 X(3872) 

Decay Modes

X(3872) -> #+#- + J/#  (00) (1 like)    
(Belle, CDF, D0, BaBar)

0(X(3872)->‘ &‘+J/#)/00 = 1.0±0.4±0.3  
⇒ Isospin violating (Belle)

0(X(3872->!+J/#)/00 = 0.14±0.05        
⇒ C=+   (Belle, BaBar)

JPC = 1++ Strongly favored (Belle, CDF)

0(X(3875)->D0D*0+D*0D0)/00 = 12.2±3.1     
(Belle, BaBar)

28/7/2006 R.Mussa , ICHEP 2006, Moscow

X(3872) –  X(3872) –  ππ++  ππ− − mass distributionmass distribution

Consistent with large J/ψ ρ contribution 
(Isospin =1)

G. Cibinetto 9Quarkonium spectroscopy and search for new states at BaBar

Search for !(*)D(*) resonances

BELLE observed of: B -> X(3872)K± , X(3872)->D0!0!0

M = 3875.4-2.0
+1.2±0.7MeV /c2

"m(B0/B+) = 0.2±1.6 MeV/c2

PRL 97, 162002(2006)

BaBar studied 8 channels:

The mass is in good agreement with

Belle’s result in the same final state,
but 2.5# higher than the world average.

347fb-1

Same state ? M = 3875.4     ±0.7 Mev/c2   
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What is the X? 

Key feature X(3872) extremely close to 
threshold.

Options - Tetraquark state or Hybrid state 
highly improbable to be this near threshold. 
23P1  charmonium state (2’c1) expected 50 MeV 
higher and isosinglet. 

D0D*0 molecule with binding provided mainly by 
nearby 2’c1  most likely possibility.  

Need to measure the line shape of the X in 
various production modes and decay channels to 
establish it’s true mass.                             
Braaten and Lu [PR D 76:094028 (2007)]

CLEO precise D0 mass measurement [PRL 98, 092002 (2007)]

 1864.847 ± 0.150 ± 0.095 MeV
⇒ M(X) - M(D0) - M(D0*) = -0.6 ± 0.6  MeV 

M–(mD0+ mD*0) = +4.3 ± 0.7       MeV
+0.7
-1.7

DD* “Binding Energy?”:

-12 -8 -4 0 4 8 12
E (MeV)

d
!

/d
 E

-12 -8 -4 0 4 8 12
E (MeV)

d
!

/d
 E

FIG. 5: The line shapes in the D∗D̄ threshold region for X(3872) produced by a B → K transition
and decaying into J/ψ π+π−. The line shapes are different for X produced by a B+ → K+

transition (upper panel) and a B0 → K0 transition (lower panel). The line shapes are shown for
γ1 = ±∞ and three values of γ: +34 MeV (solid lines), 0 (dotted lines), and −34 MeV (dashed

lines).

25

B0 -> K0 + X

Dependence of d0/dE on inverse scattering length $

Requires S-wave threshold; 
Decay into two very narrow hadrons
Nearby state (|MS - M(threshold)| ! 0S) 
with strong coupling to decay channel. 
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 Y(4260) and beyond 

 Y(4260) discovery

 Decays
Y(4260) -> #+#- + J/#                            
(BaBar, CLEO, Belle)

Y(4260) -> #0#0 + J/# (CLEO)

Y(4260) -> K+K- + J/# (CLEO) 

Not a charmonium state

Small 'R - 43S1 state at 4.26 would have 'R"2.5

13D1 state #(4160)
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Figure 4: J/ψπ+π− invariant mass spectrum in the range 3.8−5.0 GeV/c2 and (inset) over
a wider range that includes the ψ(2S) state.

least five charged tracks in the event for background suppression, we report the product of
the branching fraction to states with more than two tracks and the production cross section.
The results are 17.6±2.8+1.5

−2.1 fb, 10.3±2.5+1.4
−1.8 fb and 16.4±3.7+2.4

−3.0 fb for ηc, χc0 and ηc(2S),
respectively. These values are an order of magnitude higher than those predicted by non-
relativistic QCD [13]. However, recent works incorporating charm quark dynamics [14] seem
to narrow down the discrepancy.

5 Observation of Y (4260)

ISR events produced in the Υ (4S) energy region at the B factories act as a probe of inter-
esting physics occurring at a lower center-of-mass energy. Motivated by this, BABAR has
investigated the e+e− → J/ψπ+π−γISR process across the charmonium mass range, using a
data sample of 233 fb−1 integrated luminosity [15]. These events are characterized by two
pions, two leptons (electron or muon) making a J/ψ candidate and a very small recoil mass
against the J/ψπ+π− system. Figure 4 shows the J/ψπ+π− invariant mass spectrum for
the selected candidates. An enhancement of events near 4.26 GeV/c2 is clearly observed
in addition to the expected ψ(2S) peak. No other structures are evident in the spectrum
including the X(3872). Using a maximum likelihood fit, we obtain a signal yield of 125± 23
with a statistical significance of 8σ (the signal is referred to as Y (4260)). The mass and
width of the particle are found to be 4259 ± 8+2

−6 MeV/c2 and 88 ± 23+6
−4 MeV, respectively.

We also calculate a value of Γ(Y (4260) → e+e−) · B(Y → J/ψπ+π−) = 5.5 ± 1.0+0.8
−0.7 eV.

Although all these results are from a single resonance fit, we cannot exclude or establish a
multi-resonance hypothesis at the current level of statistics. More data are needed to reveal
its exact nature.

5

Mass = 4264 ±    MeV;  Width = 83 ±    MeV

Seen by BaBar in ISR production 
 confirmed by CLEO and Belle ⇒ JPC= 1--

consistent with I = 0

FIG. 13 Evidence for Y (4260) from a direct scan by CLEO (Coan et al., 2006a).

observed width implies that Γ(Y → J/ψπ+π−) > 7.7±2.1 MeV. This is much larger than the

typical charmonium transition widths of, for example, Γ(ψ(3770) → J/ψπ+π−) ∼ 80 keV.

And the Y is seen in this mode while the conventional states ψ(4040), ψ(4160), and ψ(4415)

are not.

One predicted consequence of the hybrid hypothesis is that the dominant hybrid char-

monium open-charm decay modes are expected to be a meson pair with an S-wave (D, D∗,

Ds, D∗
s) and a P -wave (DJ , DsJ) in the final state (Close and Page, 2005). The dominant

decay mode is expected to be DD̄1 + c.c.. (Subsequently we shall omit “+c.c.” in cases

where it is to be understood.) Evidence for a large DD̄1 signal would be strong evidence

for the hybrid interpretation. A complication is that DD̄1 threshold is 4287 MeV/c2 if we

consider the lightest D1 to be the narrow state noted in Yao et al. (2006) at 2422 MeV/c2.

The possibility also exists that the Y (4260) could be a DD̄1 bound state. It would decay to

DπD̄∗, where the D and π are not in a D∗. Note that the dip in Re+e− occurs just below

DD̄1 threshold, which may be the first S-wave meson pair accessible in cc̄ fragmentation

(Close and Page, 2005; Rosner, 2006a). In addition to the hybrid decay modes given above,
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 X(4008)

 Y(4350) 

 Y(4660)

FIG. 12 Y (4260) signal in ISR from the Υ(4S) by BaBar (Aubert et al., 2005b), CLEO (He et al.,

2006), and Belle (Yuan et al., 2007). The fit parameters are given in Table XI.

the rate, corresponding to constructive and destructive interference. Both solutions arrive

at the same fit function. The two solutions differ markedly. The lower-lying state is not

associated with any presently known charmonium state.

The invariant mass distribution m(π+π−) looks quite different for events at ∼ 4260 MeV

than above and below; the distribution is shifted towards higher values, not consistent with

phase space (Yuan et al., 2007).

A variety of ratios between channels have been measured now (Aubert et al., 2006d; Coan

et al., 2006a; Gowdy, 2006; Heltsley, 2006; Ye, 2006), which should help narrow down the

possible explanations of Y (4260). They are listed in Table XII. The preliminary upper limit

for the ratio of DD̄ to π+π−J/ψ of 7.6 may not seem particularly tight at first glance, but

is to be compared, for example, with the same ratio for the ψ(3770), where it is about 500.
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Mass = 4008±40     MeV/c2

Width = 226±44     MeV
Seen by Belle in #+#- + J/# final state

 JPC= 1--

Mass = 4664±11±5 MeV/c2

Width = 48±15±3  MeV
Seen by Belle in #+#- + #(2S) final state

 JPC= 1--

Mass = 4361±9±9 MeV/c2

Width = 74±15±10  MeV
Seen by BaBar, Belle in #+#- + #(2S) final state
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FIG. 2: The π+π−ψ(2S) invariant mass distribution for events that pass the ψ(2S) selection. The

open histogram is the data while the shaded histogram is the normalized ψ(2S) sidebands. The
curves show the best fit with two coherent resonances together with a background term and the

contribution from each component. The interference between the two resonances is not shown.
The two dashed curves at each peak show the two solutions (see text).
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FIG. 3: (a) The M2
rec and (b) polar angle distributions of the π+π−ψ(2S) system in the e+e− CM

frame for the π+π−ψ(2S) events with mπ+π−ψ(2S) ∈ [4.0, 5.5] GeV/c2. The points with error bars

are data, and histograms are from MC simulation.

mπ+π−ψ(2S) from 3% at 4.3 GeV/c2 to 5% at 4.7 GeV/c2. The effects of mass resolution,
which is determined from MC simulation to be 3 MeV/c2-6 MeV/c2 over the full mass range,
are small compared with the widths of the observed structures, and therefore are neglected.

Figure 2 shows the fit results with two solutions with equally good fit quality. In these two
solutions, the masses and widths of the resonant structures are the same, but their partial
widths to e+e− and the relative phase between the two resonant structures are different (see

6
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What are the X(4008), Y(4260), Y(4350) 
and Y(4660)? 

Various options - see 

One attractive possibility - hybrid states  

• Lattice calculations put states in this region

• The Y(4660) state could be the first radial 
excitation of the charm quarks from the ground 
state Y(4260) (analog of #’ to J/#). This would 
naturally explain its preference for decays to     
##+#’.  

• Similarly, the Y(4360) would the radial excitation 
of the charm quarks from a ground state X(4008).                             

• Heavy quark spin symmetry: 1-- -> 0-+, 1-+, 2-+ 
states nearby (for *u potential)

• How many states would be narrow?

Stephen Godfrey, Hanna Mahlke, Jonathan L. Rosner and E.E.
 [hep-ph/0701208]
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Summary
CLEO has been in the forefront of quarkonium physics from 
beginning to end.  The wealth of precision data has solidified 
our confidence in the NRQCD approach. 

The velocity expansion for the spectrum and the multipole 
expansions for both electromagnetic and hadronic transitions       
hold up well.

Relativistic corrections: Significant relativistic for the cc system.  
Reduced for the bb system.  Generally consistent with velocity 
scaling expectations. Phenomenological models inadequate. Need 
lattice QCD and pNRQCD.

Below threshold - puzzling exceptions are resolved:

By new CLEO measurement:  J/# -> $+%c M1 rate

By well understood dynamical suppression of the leading order 
expansion coefficient: !(3S) -> $+!b(1P) E1 rate;                    
#(2S) -> $+%c, /(2S) -> $+%b(1S) and /(3S) -> $+%b(1S) M1 rates;    
!(3S) -> !(1S) +2!  E1-E1 term; !(nS) ->!(mS) +2!,  M1-M1 terms                           
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CLEO has exploited quarkonium resonances as factories:

!(4S), !(5S) - B±, B0, Bs
± studies

#(3772) - D±, D0 studies

#(4160) - Ds
± studies 

J/#, #’, !, !’’,...  - direct decays

The situation above threshold is not yet clear:  
Unexpected large hadronic transition rates:                               
/(5S) -> /(nS) + 2# (n=1,2,3)

New states and possibly a new spectroscopy: X(3872),                  
X(4008), Y(4260), Y(4350), Y(4660)

NRQCD and HQET allows scaling from c to b systems. This will 
eventually provide critical tests of our understanding of new 
charmonium states.

Lattice calculations will provide insight into theoretical issues

Answers in many cases will require the next generation of heavy 
flavor experiments - BES III, LHCb and Super-B factories. 
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