Charmonium and Bottomonium
 at CLEO

Estia Eichten

(8) \square Spectroscopy
(41) DDirect Decays
(19) \square Transitions
\square Above Threshold

Plan of Talk

D Narrow States
O Spin singlets

- Direct decays

O EM transitions
\square Why it works so well
D Hadronic transitions

- Two pions

D Above Threshold
O Heavy flavor factories
O New states

Spectroscopy

HQET $\frac{\Lambda}{m_{Q}}$
\square The NRQCD approach:

Kinetic

$$
\mathcal{H}=\mathbf{Q}^{\dagger}\left[\delta \mathbf{m}_{Q}-\frac{\mathbf{D}^{2}}{2 \mathbf{m}_{Q}}\right] \mathbf{Q}+\int d^{3} x \mathrm{j}_{a}^{0}(x) \mathcal{G}^{\mathrm{ab}} \mathrm{j}_{b}^{0}(0)
$$

relativistic $\quad-\mathbf{Q}^{\dagger}\left[\frac{c_{4}}{8 \mathbf{m}_{Q}^{3}}\left(\mathbf{D}^{2}\right)^{2}+\frac{c_{D}}{8 \mathbf{m}_{q}^{2}}(\mathbf{D} \cdot g \mathbf{E}-g \mathbf{E} \cdot \mathbf{D})\right] \mathbf{Q}$ corrections $-\mathbf{Q}^{\dagger}\left[\frac{c_{s}}{8 \mathbf{m}_{q}^{2}} i \sigma(\mathbf{D} \times g \mathbf{E}+g \mathbf{E} \times \mathbf{D})+\frac{c_{f}}{2 \mathbf{m}_{q}} \sigma \cdot g \mathbf{B}\right] \mathbf{Q}+\ldots$

D CLEO played a major role in validating the NRQCD approach
D. Andrews, et al. PRL 44:1108 (1980)

- Y, Y^{\prime} and $\gamma^{\prime \prime}$ confirmed
S. Herb et al., PRL 39:252 (1977)
C. Berger et al., Phys. Lett. 76B, 243 (1978)
C. W. Darden et al., Phys. Lett. 76B, 246 (1978); ibid, 78B, 364 (1978)
J. K. Bienlein et al., Phys. Lett. 78B, 360 (1978)
K. Ueno et al., PRL 42:486 (1979)

Static Energy

where $\mathrm{j}_{a}^{0}=\mathbf{Q}^{\dagger} g t_{\mathrm{a}} \mathbf{Q}+g^{2} f^{\mathrm{abc}} \mathbf{E}_{\mathrm{b}} \cdot \mathbf{A}_{\mathrm{c}}+\ldots$ and $\mathcal{G}^{\mathrm{ab}}=\frac{1}{\nabla \mathrm{D}} \nabla^{2} \frac{1}{\nabla \mathrm{D}}$

\square Spin triplet states

- $Y(4 S)$
D. Andrews et al., PRL 45:219 (1980)
D. Besson et al., PRL 54:381 (1985)
- $Y(5 S)$
- $X_{b}\left(1^{3} P_{J}\right), X_{b}\left(2^{3} P_{J}\right)$
- $1^{3} D_{2}(b \bar{b})$

$$
\Upsilon(3 S) \rightarrow \gamma \chi_{b}(2 P)
$$

$$
\chi_{b}(2 P) \rightarrow \gamma \Upsilon(1 D)
$$

$$
\Upsilon(1 D) \rightarrow \gamma \chi_{b}(1 P)
$$

$$
\chi_{b}(1 P) \rightarrow \gamma \Upsilon(1 S)
$$

\square Consistency between (b $\bar{b})$ and ($c \bar{c}$) systems validates NRQCD approach.

- masses
- spin splittings
- EM transitions
- hadronic transitions
- direct decays

$$
\begin{aligned}
<\frac{v^{2}}{c^{2}}> & \approx 0.24 \quad(c \bar{c}) \\
& \approx 0.08 \quad(b \bar{b})
\end{aligned}
$$

CUSB, CLEO, Crystal Ball, Argus
M. Artuso et al., PRL 94032001 (2005)

B Below threshold for heavy flavor meson pair production

O Narrow states allow precise experimental probes of the subtle nature of QCD.

O Lattice QCD supports and will supplant potential models

O A variety of lattice approaches

S. Gottlieb et al., PoS LAT2006

Figure 5: Summary of charmonium spectrum.

QCD Static Energy

Lattice calculation of the static energy between QQ versus R.
\square Agrees with potential models.

D Excitation of gluonic degrees of freedom (string) also calculable.
\square Masses of low-lying states directly calculable by LQCD.

Multi-level algorithm allows lattice determination of potentials with unprecedented precision

Heavy quark potential

To $O\left(1 / m^{2}\right)$

$$
\begin{aligned}
V(r) & =V^{(0)}(r)+\left(\frac{1}{m_{1}}+\frac{1}{m_{1}}\right) V^{(1)}(r)+O\left(\frac{1}{m^{2}}\right) \\
& +\left(\frac{\vec{s}_{1} \vec{l}_{1}}{2 m_{1}^{2}}-\frac{\vec{s}_{2} \vec{l}_{2}}{2 m_{2}^{2}}\right)\left(\frac{V^{(0)}(r)^{\prime}}{r}+2 \frac{V^{(1)}(r)^{\prime}}{r}\right)+\left(\frac{\vec{s}_{2} \vec{l}_{1}}{2 m_{1} m_{2}}-\frac{\vec{s}_{1} \vec{l}_{2}}{2 m_{1} m_{2}}\right) \frac{V^{(2)}(r)^{\prime}}{r} \\
& +\frac{1}{m_{1} m_{2}}\left(\frac{\left(\vec{s}_{1} \vec{r}\right)\left(\vec{s}_{2} \vec{r}\right)}{r^{2}}-\frac{\vec{s}_{1} \vec{s}_{2}}{3}\right) V^{(3)}(r)+\frac{\vec{s}_{1} \vec{s}_{2}}{3 m_{1} m_{2}} V^{(4)}(r) \quad \text { Short range }
\end{aligned}
$$

Fine and hyper-fine splitting

Spin Singlet States

- hc

O Observation E835, CLEO $\quad e^{+} e^{-} \rightarrow \psi(2 S) \rightarrow \pi^{0} h_{c}, \quad h_{c} \rightarrow \gamma \eta_{c}, \quad \pi^{0} \rightarrow \gamma \gamma$.

$$
\begin{aligned}
& M\left(h_{c}\right)=3524.4 \pm 0.6 \pm 0.4 \\
& \mathcal{B}\left(\psi(2 S) \rightarrow \pi^{0} h_{c}\right) \times \mathcal{B}\left(h_{c} \rightarrow \gamma \eta_{c}\right)=(4.0 \pm 0.8 \pm 0.7) \times 10^{-4}
\end{aligned}
$$

O Partial widths and decay modes:
$\Gamma\left(h_{c} \rightarrow \gamma \eta_{c}\right)=\left(\frac{k_{h_{c}}^{\gamma}}{k_{\chi_{c 1}}^{\gamma}}\right)^{3} \Gamma\left(\chi_{c 1} \rightarrow \gamma J / \psi\right) \approx 340 \mathrm{keV}$
$\Gamma\left(h_{c} \rightarrow\right.$ light hadrons $)$

O Spin-dependent forces:

$$
\Delta M_{\mathrm{hf}}\left(\left\langle M\left({ }^{3} P_{J}\right)\right\rangle-M\left({ }^{1} P_{1}\right)\right)=+1.0 \pm 0.6 \pm 0.4 \mathrm{MeV}
$$

Confirms the short range nature of spin-spin and tensor potentials. Phenomenological models which closely follow pert QCD are best.

TABLE I. Results for the inclusive and exclusive analyses for the reaction $\psi(2 S) \rightarrow \pi^{0} h_{c} \rightarrow \pi^{0} \gamma \eta_{c}$. First errors are statistical, and the second errors are systematic, as described in the text and Table II.

	Inclusive	Exclusive
Counts	150 ± 40	17.5 ± 4.5
Significance	$\sim 3.8 \sigma$	6.1σ
$M\left(h_{c}\right)(\mathrm{MeV})$	$3524.9 \pm 0.7 \pm 0.4$	$3523.6 \pm 0.9 \pm 0.5$
$\mathcal{B}_{\psi} \mathcal{B}_{h}\left(10^{-4}\right)$	$3.5 \pm 1.0 \pm 0.7$	$5.3 \pm 1.5 \pm 1.0$

J. L. Rosner et al., PRL 95, 102003 (2005)

S. Godfrey [hep-ph/0501083]

O M1 transition was a theoretical disaster

+ Basics

$$
\begin{aligned}
& \Gamma(i \xrightarrow{\mathrm{M} 1} f+\gamma)=\frac{4 \alpha e_{Q}^{2}}{3 m_{Q}^{2}}\left(2 J_{f}+1\right) k^{3}\left[\mathcal{M}_{i f} \mid\right]^{2} \\
& \Gamma\left(J / \psi \rightarrow \eta_{c} \gamma\right)=\frac{16}{3} \alpha e_{c}^{2} \frac{k_{\gamma}^{3}}{M_{J / \psi}^{2}}\left(1+\kappa_{c}\right)\left[1+o\left(v^{2}\right)\right]
\end{aligned}
$$

$$
\begin{aligned}
\mathcal{M}_{i f} & =\int r^{2} d r R_{n_{i} \mathrm{~L}_{i}}(r) j_{0}\left(\frac{r k}{2}\right) R_{n_{f} \mathrm{~L}_{f}}(r) \\
\mathrm{j}_{0} & =1-(\mathrm{kr})^{2} / 24+\ldots, \text { so in NR limit }
\end{aligned}
$$

$$
k=0: \quad \mathcal{M}_{i f}=1 \quad n_{i}=n_{f} ; L_{i}=L_{f}
$$

$$
=0 \text { otherwise }
$$

+ J/ $\Psi->\gamma+\eta_{c} \quad M 1$ transition
$1.19 \pm 0.33 \mathrm{keV} \operatorname{Exp}$ [CUSB]half the naive theoretical result
$+\quad$ LQCD $\quad \Gamma\left(J / \psi \rightarrow \eta_{c}+\gamma\right)=2.0 \pm 0.1 \pm 0.4$
Dudek, Edwards, Richards
[PR D73:074507 (2007)]
+ pNRQCD
Model independent - completely accessible by perturbation theory to o $\left(v^{2}\right)$

$$
\Gamma\left(J / \psi \rightarrow \eta_{c} \gamma\right)=\frac{16}{3} \alpha e_{c}^{2} \frac{k_{\gamma}^{3}}{M_{J / \psi}^{2}}\left[1+C_{F} \frac{\alpha_{s}\left(M_{j / \psi} / 2\right)}{\pi}+\frac{2}{3}\left(C_{F} \alpha_{s}\left(p_{J / \psi}\right)\right)^{2}\right]
$$

Brambilla, Jia \& Vairo [PR D73:054005 (2006)]

No large anomalous magnetic moment

$$
\Gamma\left(J / \psi \rightarrow \eta_{c} \gamma\right)=(1.5 \pm 1.0) \mathrm{keV}
$$

No scalar long range interaction

O New CLEO measurement solves the issue
R. E. Mitchell et al., [arXiv:0805.0252] [hep-ex]

$$
\begin{aligned}
\mathcal{B}\left(\psi(2 S) \rightarrow \gamma \eta_{c}\right) & =(4.32 \pm 0.16 \pm 0.60) \times 10^{-3} \\
\mathcal{B}\left(J / \psi \rightarrow \gamma \eta_{c}\right) & =(1.98 \pm 0.09 \pm 0.30) \times 10^{-3}
\end{aligned}
$$

O Mass splittings

$$
\begin{aligned}
M\left(\eta_{c}\right) & =2976.7 \pm 0.6 \mathrm{MeV} / c^{2} \quad \text { Breit - Wigner } \\
& =2982.2 \pm 0.6 \mathrm{MeV} / c^{2} \quad \text { Modified Breit - Wigner }
\end{aligned}
$$

long tail

Figure 4: Hyperfine splitting of the $1 S$ states
S. Gottlieb et al., PoS LAT2006

$$
M\left(\eta_{c}^{\prime}\right)=3642.9 \pm 3.1 \pm 1.5 \mathrm{MeV} / c^{2} ; \quad \Delta M=43.1 \pm 3.4 \mathrm{MeV} / c^{2}
$$

O Spin splitting
$\Delta M=M(\Upsilon(2 S))-M\left(\eta_{c}^{\prime}\right)=49 \pm 4 \mathrm{MeV} / c^{2}$ PDG 2007
Too small - scaling from 1S; most models.
Are we seeing threshold effects?
O Effects of light quark loops

FIG. 1. Invariant mass distributions for $K_{S}^{0} K^{ \pm} \pi^{\mp}$ events from (top) the CLEO II data and (bottom) the CLEO III data. The curves in the figures are results of fits described in the text.

Effects on spectrum

seen in LQCD
C.T. H. Davies et al. [HPQCD, Fermilab Lattice, MILC, and UKQCD Collaborations], PRL 92, 02200I (2004)

O Dual approach using heavy flavor mesons virtual/real pairs

Phenomenological approach based on Cornell coupled channel model (CCCM):

$$
\begin{aligned}
& \mathcal{H}_{I}=\frac{3}{8} \sum_{a} \int: \rho_{a}(\mathbf{r}) V\left(\mathbf{r}-\mathbf{r}^{\prime}\right) \rho_{a}\left(\mathbf{r}^{\prime}\right): d^{3} r d^{3} r^{\prime} \\
& \rho^{a}=\bar{c} \gamma^{0} t^{a} c+\bar{q} \gamma^{0} t^{a} q
\end{aligned}
$$

Calculate pair-creation amplitudes, eg

$$
\left.<^{3} D_{2}\left|\mathcal{H}_{I}\right| D \bar{D}^{\star}\right\rangle
$$

Solve coupled-state system for ω and ψ
where

$$
\left[\mathcal{H}_{0}+\mathcal{H}_{I}^{\dagger} \frac{1}{\omega-\mathcal{H}_{2}+i \epsilon} \mathcal{H}_{I}\right] \psi_{0}=\omega \psi_{0}
$$

Coupling to virtual channels induces spin-dependent forces in charmonium near threshold, because $M\left(D^{*}\right)>M(D)$

O Spin dependent shifts small far below threshold

ELQ PRD 73:014014 (2006)

\square Search for the at η_{b} CLEO

- Hindered M1 transitions
- $Y(3 S) \rightarrow \eta_{b}$ and $Y(2 S)->\eta_{b}$

- Phenomenological model results vary greatly due to poorly understood relativistic corrections.
- pNRQCD expectation

$$
\text { CLEO < } 0.14 \mathrm{keV} \text { (90\%c.l.) }
$$

ㅁ Narrow states still missing

O Charmonium - $3-{ }^{1} D_{2},{ }^{3} D_{2}$, and ${ }^{3} D_{3}$

O Bottomonium - 24- $1^{3} D_{0}, 1^{3} D_{1}, 1^{3} F_{J}, 2^{3} D_{J}, 1^{3} G_{J}, 3^{3} P_{J}$, $1^{1} S_{0}, 1^{1} P_{1}, 2^{1} S_{0}, 1^{1} D_{2}, 2^{1} P_{1}, 3^{1} S_{0}, 1^{1} F_{3}, 2^{1} D_{2}, 1^{1} G_{4}, 3^{1} P_{1}$

Photon Transitions

\square Multipole Expansion

O Including EM interactions

$$
\begin{gathered}
\mathcal{H}_{I}=i e_{Q} \psi^{\dagger}\left(\frac{\mathbf{D} \cdot \mathbf{e} \mathbf{A}+\mathbf{e} \mathbf{A} \cdot \mathbf{D}}{2 m_{Q}}\right) \psi+\frac{c_{F} e_{Q}}{2 m_{Q}} \psi^{\dagger} \boldsymbol{\sigma} \cdot e \mathbf{B} \psi+\ldots \\
\text { Electric } \quad \text { Magnetic }
\end{gathered}
$$

O Theory of quarkonium transitions relies on the multipole expansion

$$
\begin{array}{lc}
\mathrm{A}\left(R_{\mathrm{cm}}, r, t\right)=\mathbf{A}\left(R_{\mathrm{cm}}, t\right)+\mathbf{x} \cdot \nabla \mathbf{A}\left(R_{\mathrm{cm}}, t\right)+\ldots \\
\text { Electric } & \frac{1}{m_{Q}}\left\{\mathbf{p}, \mathbf{A}\left(R_{\mathrm{cm}}, r, t\right)\right\}=\mathbf{r} \cdot \mathrm{E}\left(R_{\mathrm{cm}}, t\right)+\cdots \\
\text { Magnetic } & \frac{c_{F} e_{Q}}{2 m_{Q}} \psi^{\dagger} \boldsymbol{\sigma} \cdot e \mathrm{~B} \psi
\end{array}
$$

O Higher order terms E1, E2, E3, ... Selection Rules M1, M2, M3, ...
expansion coefficients small: $\frac{1}{(2 n+1)!!}$

\square Other approaches

O Lattice
Direct calculation - Extrapolate to $Q^{2}=0$

O pNRQCD
Systematic Effective Lagrangian approach. Higher states an issue

See review:
Heavy Quarkonium
Physics Cern-2005-005

\square El Transitions

$$
\Gamma(i \xrightarrow{\mathrm{E} 1} f+\gamma)=\frac{4 \alpha e_{Q}^{2}}{3}\left(2 J_{f}+1\right) \mathrm{S}_{i f}^{\mathrm{E}} k^{3}\left|\mathcal{E}_{i f}\right|^{2}
$$

CG factor $\quad S_{i f}^{\mathrm{E}}=\max \left(L_{i}, L_{f}\right)\left\{\begin{array}{ccc}J_{i} & 1 & J_{f} \\ L_{f} & S & L_{i}\end{array}\right\}^{2}$
$b \bar{b}$ spin triplets
Overlap

$$
\mathcal{E}_{i f}=\int r^{2} d r R_{n_{i} \mathrm{~L}_{i}}(r) r R_{n_{f} \mathrm{~L}_{f}}(r)
$$

Sensitive to detailed dynamics for transitions involving radially excited states

S states -> P states

\square Generally good agreement with NR MPE

D Relativistic corrections 10\%-20\% effects in cc system.
\square Need better theoretical guidance.

C QR1 QR2 BT GRR MB MR GOS GI L EFG
$2^{3} S_{1}->1^{3} P_{J}(b \bar{b})$

$c \bar{c}$		
State	$<\|r\|>(\mathrm{fm})$	$<v^{2}>$
J / ψ	0.32	0.26
$\chi_{c}(1 P)$	0.57	0.24
$\psi(2 S)$	0.70	0.29
$\psi(3770)$	0.78	0.28
$b b$		
State	$<\|r\|>(\mathrm{fm})$	$<v^{2}>$
$\Upsilon(1 S)$	0.19	0.091
$\chi_{b}(1 P)$	0.35	0.072
$\Upsilon(2 S)$	0.44	0.086
$\Upsilon(1 D)$	0.50	0.080
$\chi_{b}(2 P)$	0.56	0.089
$\Upsilon(3 S)$	0.63	0.100
$\Upsilon(4 S)$	0.80	0.116

$$
3^{3} S_{1}->2^{3} P_{J}(b \bar{b})
$$

E.E., S. Godfrey, H. Mahlke and J. Rosner [hep-ph/0701208]

- $\quad 3^{3} \mathrm{~S}_{1} \rightarrow 1^{3} \mathrm{P}_{\mathrm{J}}$ transition dynamically suppressed. Rate very sensitive to relativistic corrections.

$$
\begin{aligned}
\mathcal{E}\left(3^{3} S_{1}, 1^{3} P_{0}\right)= & 0.067 \pm 0.012 \mathrm{GeV}^{-1} \\
<\mathcal{E}\left(3^{3} S_{1}, 1^{3} P_{J}\right)>_{J}= & 0.050 \pm 0.006 \mathrm{GeV}^{-1} \\
J=(2,1,0) & (0.097,0.045,-0.015)
\end{aligned}
$$

Exp
GI Model

- nP $\rightarrow \mathrm{mS}$ transitions. Generally good agreement with NR predictions. Again better theoretical control for relativistic corrections needed

Table 1: Cancellations in $\mathcal{E}_{i f}$ by node regions.

$b b$	initial state node				
Transition	<1	1 to 2	2 to 3	total	
$2 S \rightarrow 1 P$	0.07	-1.68		-1.61	
$3 S \rightarrow 2 P$	0.04	-0.12	-2.43	-2.51	
$3 S \rightarrow 1 P$	0.04	-0.63	0.65	0.06	

- $\psi(3770)->1^{3} P_{J}$ transitions: Can study relativistic effects including coupling to decay channels.

	$\Gamma\left(\psi(3770) \rightarrow \gamma \chi_{c J}\right)$ in keV		
	$J=2$	$J=1$	$J=0$
Our results CLEO			
[PR D74 (2006) 031106]		70 ± 17	172 ± 30
Rosner (non-relativistic) [7]	24 ± 4	73 ± 9	523 ± 12
Ding-Qin-Chao [6]			
non-relativistic	3.6	95	312
relativistic	3.0	72	199
Eichten-Lane-Quigg [8]			
non-relativistic	3.2	183	254
with coupled-channels corrections	3.9	59	225
Barnes-Godfrey-Swanson [9]			
non-relativistic	4.9	125	403
relativistic	3.3	77	213

- $\psi^{\prime}(2 \mathrm{~S}) \rightarrow 1^{3} \mathrm{P}_{\mathrm{J}} \rightarrow \mathrm{J} / \Psi$ transitions: Can study size of higher multipole terms M2 and E3.

Direct Decays

A wealth of results

\square Partial and total widths:

O Leptonic widths

Branching ratios and total widths

Z. Li et al., PRD 71, 111103(R) (2005)
$\mathrm{B}\left(J / \psi \rightarrow e^{+} e^{-}\right)=5.945 \pm 0.067 \pm 0.042$

Check lepton universality

TABLE II. Final results on the ratio of branching fractions to $\tau^{+} \tau^{-}$and $\mu^{+} \mu^{-}$final states, and the absolute branching fraction for $\Upsilon \rightarrow \tau^{+} \tau^{-}$. Included are both statistical and systematic uncertainties, as detailed in the text. Results from Ref. [3] are used in deriving the final absolute branching fractions.

	$\mathcal{R}_{\tau \tau}^{\Upsilon}$	$B\left(\Upsilon \rightarrow \tau^{+} \tau^{-}\right)(\%)$
$\Upsilon(1 S)$	$1.02 \pm 0.02 \pm 0.05$	$2.54 \pm 0.04 \pm 0.12$
$\Upsilon(2 S)$	$1.04 \pm 0.04 \pm 0.05$	$2.11 \pm 0.07 \pm 0.13$
$\Upsilon(3 S)$	$1.05 \pm 0.08 \pm 0.05$	$2.52 \pm 0.19 \pm 0.15$

D. Besson et al., PRL 98, 052002 (2007)

$$
\Gamma_{e^{+} e^{-}}\left(n^{3} S_{1}\right)=\frac{16 \pi \alpha^{2} e_{q}^{2}}{M^{2}}\left|\Psi_{n S}(0)\right|^{2}\left(1-\frac{16 \alpha_{s}}{3 \pi}\right)
$$

Lattice calculations needed

TABLE II. The results of $\Gamma_{e e} \Gamma_{\text {had }} / \Gamma_{\text {tot }}$ for the three resonances, the dielectron widths $\Gamma_{e e}$, and their ratios. The first uncertainty is statistical and the second is systematic.

$\Gamma_{e e} \Gamma_{\text {had }} / \Gamma_{\text {tot }}(1 S)$	$1.252 \pm 0.004 \pm 0.019 \mathrm{keV}$
$\Gamma_{e e} \Gamma_{\text {had }} / \Gamma_{\text {tot }}(2 S)$	$0.581 \pm 0.004 \pm 0.009 \mathrm{keV}$
$\Gamma_{e e} \Gamma_{\text {had }} / \Gamma_{\text {tot }}(3 S)$	$0.413 \pm 0.004 \pm 0.006 \mathrm{keV}$
$\Gamma_{e e}(1 S)$	$1.354 \pm 0.004 \pm 0.020 \mathrm{keV}$
$\Gamma_{e e}(2 S)$	$0.619 \pm 0.004 \pm 0.010 \mathrm{keV}$
$\Gamma_{e e}(3 S)$	$0.446 \pm 0.004 \pm 0.007 \mathrm{keV}$
$\Gamma_{e e}(2 S) / \Gamma_{e e}(1 S)$	$0.457 \pm 0.004 \pm 0.004$
$\Gamma_{e e}(3 S) / \Gamma_{e e}(1 S)$	$0.329 \pm 0.003 \pm 0.003$
$\Gamma_{e e}(3 S) / \Gamma_{e e}(2 S)$	$0.720 \pm 0.009 \pm 0.007$

$$
\begin{aligned}
& \Gamma(\Upsilon(1 \mathrm{~S}))=54.4 \pm 0.2 \pm 0.8 \pm 1.6 \mathrm{keV} \\
& \Gamma(\Upsilon(2 \mathrm{~S}))=30.5 \pm 0.2 \pm 0.5 \pm 1.3 \mathrm{keV} \\
& \Gamma(\Upsilon(3 \mathrm{~S}))=18.6 \pm 0.2 \pm 0.3 \pm 0.9 \mathrm{keV}
\end{aligned}
$$

G. S. Adams, PRL 94, 012001 (2005)
J. L. Rosner et al., PRL 96, 092003 (2006)

- Measure α_{s} and other QCD tests

A recent result

$\psi(2 S) \rightarrow \gamma_{1} \chi_{c J}, \quad \chi_{c J} \rightarrow \gamma_{2} \gamma_{3}$,
K. M. Ecklund et al. [arXiv:0803.2869] [hep-ex]
$\begin{aligned} \Gamma\left(\chi_{c 0} \rightarrow \gamma \gamma\right) & =(2.53 \pm 0.37 \pm 0.26) \mathrm{keV} \\ \Gamma\left(\chi_{c 2} \rightarrow \gamma \gamma\right) & =(0.60 \pm 0.06 \pm 0.06) \mathrm{keV} \\ \mathcal{R}=\frac{\Gamma\left(\chi_{c 2} \rightarrow \gamma \gamma\right)}{\Gamma\left(\chi_{c 0} \rightarrow \gamma \gamma\right)} & =0.237 \pm 0.043 \pm 0.034\end{aligned}$
Widths depend on $\left|\mathbb{R}^{\prime}{ }_{p}(0)\right|^{2}$
Dependence cancels in ratio -> measure α_{s}

BUT (as is typical) first order α_{s} corrections are large ->
large theoretical uncertainties

Partial list of theory expectations (cc)

$$
\begin{aligned}
\Gamma\left(n^{3} S_{1} \rightarrow 3 g\right) & =\frac{10}{81} \frac{\left(\pi^{2}-9\right)}{\pi} \frac{\alpha^{3}\left(m_{Q}\right)}{m_{Q}^{2}}\left|R_{n S}(0)\right|^{2}\left(1-\frac{3.7 \alpha_{s}}{\pi}\right) \\
\frac{\Gamma\left(n^{1} S_{0} \rightarrow \gamma \gamma\right)}{\Gamma_{e e}\left(n^{3} S_{1}\right)} & =3 e_{Q}^{2}\left[1+\frac{\alpha_{s}}{3 \pi}\left(\pi^{2}-4\right)\right] \\
\frac{\Gamma\left(n^{3} S_{1} \rightarrow g g g\right)}{\Gamma_{e e}\left(n^{3} S_{1}\right)} & =\frac{10}{81} \frac{\left(\pi^{2}-9\right)}{\pi} \frac{\alpha_{s}^{3}\left(m_{Q}\right)}{e_{Q}^{2} \alpha^{2}}\left[1+1.6 \frac{\alpha_{s}}{\pi}\right] \\
\frac{\Gamma\left(n^{3} S_{1} \rightarrow \gamma g g\right)}{\Gamma_{e e}\left(n^{3} S_{1}\right)} & =\frac{8}{9} \frac{\left(\pi^{2}-9\right)}{\pi} \alpha_{s}^{2}\left(m_{Q}\right)\left[1-1.3 \frac{\alpha_{s}}{\pi}\right] \\
\Gamma\left(n^{3} P_{0} \rightarrow \gamma \gamma\right) & =\frac{27 e_{Q}^{4} \alpha^{2}}{m_{Q}^{4}}\left|R_{n P}^{\prime}(0)\right|^{2}\left[1+\frac{\alpha_{s}}{3 \pi}\left(\pi^{2}-\frac{28}{3}\right)\right] \\
\Gamma\left(n^{3} P_{2} \rightarrow \gamma \gamma\right) & =\frac{36 e_{Q}^{4} \alpha^{2}}{5 m_{Q}^{4}}\left|R_{n P}^{\prime}(0)\right|^{2}\left[1-\frac{16 \alpha_{s}}{3 \pi}\right] \\
\frac{\Gamma\left(n^{3} P_{2} \rightarrow \gamma \gamma\right)}{\Gamma\left(n^{3} P_{0} \rightarrow \gamma \gamma\right)} & =\frac{4}{15}\left[1-\frac{\alpha_{s}}{3 \pi}\left(\pi^{2}+\frac{20}{3}\right)\right] \\
\frac{\Gamma\left(n^{1} S_{0} \rightarrow g g\right)}{\Gamma\left(n^{1} S_{0} \rightarrow \gamma \gamma\right)} & =\frac{2}{9}\left|\frac{\alpha_{s}\left(m_{q}\right)}{e_{Q}^{2} \alpha}\right|^{2}\left(1+8.2 \frac{\alpha_{s}}{\pi}\right) \\
\frac{\Gamma\left(n^{3} P_{0} \rightarrow g g\right)}{\Gamma\left(n^{3} P_{0} \rightarrow \gamma \gamma\right)} & =\frac{2}{9}\left|\frac{\alpha_{s}\left(m_{q}\right)}{e_{Q}^{2} \alpha}\right|^{2}\left(1+9.3 \frac{\alpha_{s}}{\pi}\right) \\
\frac{\Gamma\left(n^{3} P_{2} \rightarrow g g\right)}{\Gamma\left(n^{3} P_{2} \rightarrow \gamma \gamma\right)} & =\frac{2}{9}\left|\frac{\alpha_{s}\left(m_{q}\right)}{e_{Q}^{2} \alpha}\right|^{2}\left(1+3.1 \frac{\alpha_{s}}{\pi}\right)
\end{aligned}
$$

More work for theorists

O Inclusive $\gamma\left(n^{3} S_{1}\right) \rightarrow Y+X$
Fleming and Leibovich;
Garcia and Soto
The differential photon spectrum
$d N / d x_{y}$ for $0.4 \leq x_{y} \leq 0.95$
is determined in NRQCD (+SCET)

$$
\mathcal{R}_{n}=\frac{\Gamma\left(\Upsilon\left(n^{3} S_{1}\right) \rightarrow \gamma g g\right)}{\Gamma\left(\Upsilon\left(n^{3} S_{1}\right) \rightarrow g g g\right)}=\frac{4}{5} \frac{\alpha}{\alpha_{s}\left(m_{Q}\right)}\left[1+2.2 \frac{\alpha_{s}}{\pi}\right]
$$

\square Factory mode:

- Access to known lighter states.

O Search for new states: glueballs, axions, light a^{0} (SUSY), narrow resonances, ...

D. Besson et al., PRD 74012003 (2006)

$$
\begin{aligned}
& \mathcal{R}_{1}=(2.70 \pm 0.01 \pm 0.13 \pm 0.24) \% \\
& \mathcal{R}_{2}=(3.18 \pm 0.04 \pm 0.22 \pm 0.41) \% \\
& \mathcal{R}_{3}=(2.72 \pm 0.06 \pm 0.32 \pm 0.37) \%
\end{aligned}
$$

Why it works so well

- What about the gluon and light quark degrees of freedom of QCD?
- Two thresholds:
- Usual $(Q \bar{q})+(q \bar{Q})$ decay threshold

O Excite the string - hybrids
\square Hybrid states will appear in the spectrum associated with the potential Π_{u}...
\square In the static limit this occurs at

separation: $r \approx 1.2 \mathrm{fm}$.
Between 3S-4S in (c̄$)$; just above the 5 S in(bb).
\square Hybrid states and Lattice QCD

$$
-\frac{1}{2 \mu} \frac{d^{2} u(r)}{d r^{2}}+\left\{\frac{\left\langle\boldsymbol{L}_{Q \bar{Q}}^{2}\right\rangle}{2 \mu r^{2}}+V_{Q \bar{Q}}(r)\right\} u(r)=E u(r)
$$

Spectroscopic notation of diatomic molecules

$$
\begin{aligned}
& P=\varepsilon(-1)^{L+\Lambda+1}, \quad C=\eta \varepsilon(-1)^{L+S+\Lambda} \\
& \Lambda=0,1,2, \ldots \text { denoted } \Sigma, \Pi, \Delta, \ldots
\end{aligned}
$$

$$
\begin{aligned}
& \Psi_{Q \bar{Q}}(\vec{r})=\frac{u_{n l}(r)}{r} \mathrm{Y}_{\operatorname{lm}}(\theta, \phi) \\
& \boldsymbol{J}=\boldsymbol{L}+\boldsymbol{S}, \quad \boldsymbol{S}=\boldsymbol{s}_{Q}+\boldsymbol{s}_{\bar{Q}}, \quad \boldsymbol{L}=\boldsymbol{L}_{Q \bar{Q}}+\boldsymbol{J}_{\varepsilon} \\
& \left\langle L_{r} J_{g r}\right\rangle=\left\langle J_{g r}^{2}\right\rangle=\Lambda^{2} \\
& \left\langle\boldsymbol{L}_{Q \bar{Q}}^{2}\right\rangle=L(L+1)-2 \Lambda^{2}+\left\langle\boldsymbol{J}_{g}^{2}\right\rangle . \\
& \left.<J_{g}^{2}\right\rangle=0,2,6, \ldots
\end{aligned}
$$

naively $0,1,2$,... valence gluons
$\eta= \pm 1$ (symmetry under combined charge conjugation and spatial inversion) denoted $g(+1)$ or $u(-1)$.
$|L S J M ; \lambda \eta\rangle+\varepsilon|L S J M ;-\lambda \eta\rangle$ with $\epsilon=+1$ for Σ^{+}and $\epsilon=-1$ for Σ^{-} both signs for $\Lambda>0$.
\square Potentials computed by lattice QCD
K.J. Juge, J. Kuti and C. Morningstar [PRL 90, 161601 (2003)]

Short distance: gluelumps Perturbative QCD, pNRQCD singlet: $-4 / 3 \alpha_{s} / r$ octet: $2 / 3 \alpha_{s} / r$

Large distance: String
$\sigma r+\pi N / r$
Nambu-Gato string behavour

FIG. 2: Short-distance degeneracies and crossover in the spectrum. The solid curves are only shown for visualization. The dashed line marks a lower bound for the onset of mixing effects.

Hadronic Transitions

- Multipole expansion

For lowest order gluon emission:
Gottfried
$\mathcal{H}_{I}=i \psi^{\dagger \prime} \frac{\mathbf{r}}{\mathbf{2}} \cdot \mathbf{g} \mathbb{E}_{\mathbf{a}}^{\prime} \mathbf{t}^{\mathbf{a}} \psi^{\prime}+\frac{\mathbf{c}_{\mathbf{F}}}{\mathbf{m}_{\mathbf{Q}}} \psi^{\dagger \prime} \mathbf{s}_{\mathbf{Q}} \cdot \mathbf{g t}^{\mathbf{a}} \mathrm{B}_{\mathbf{a}}^{\prime} \psi^{\prime}+[\mathbf{Q}->\overline{\mathbf{Q}}]+\cdots$
with dressed fields $\quad \psi^{\prime}=U^{-1}, \psi \quad \mathbf{t}^{\mathbf{a}} \mathrm{A}_{\mathbf{a}}^{\mu}=U^{-1} \mathbf{t}^{\mathbf{a}} \mathrm{A}_{\mathbf{a}}^{\mu} U-\frac{i}{g} U^{-1} \partial^{\mu} U$

But single emission takes color singlet state (S) to unphysical octet state (O).

Double transitions dominate: E1-E1, E1-M1, M1-M1, E1-M2, ... O
D Factorization

electric polarizability chiral methods Brown \& Cahn, model $\begin{array}{r}\mathcal{G}=\left(\mathrm{E}_{\mathrm{A}}-\mathcal{H}_{\mathrm{NR}}^{0}\right)^{-1}=\sum_{\mathrm{KL}} \frac{|\mathrm{KL}><\mathrm{KL}|}{\mathrm{E}_{\mathrm{A}}-\mathrm{E}_{\mathrm{KL}}} \\ \text { quark confining string }\end{array}$

$$
\begin{equation*}
\mathcal{M}_{i f}^{g g}=\frac{1}{16}<B\left|\mathbf{r}_{i} \xi^{a} \mathcal{G} \mathbf{r}_{j} \xi^{a}\right| A>\frac{g_{E}^{2}}{6}<\pi_{\alpha} \pi_{\beta}\left|\operatorname{Tr}\left(E^{i} E^{j}\right)\right| 0> \tag{AB}
\end{equation*}
$$

Model: Kuang \& Yan [PR D24, 2874 (1981)]

S-wave
$\frac{\delta_{\alpha \beta}}{\sqrt{\left(2 \omega_{1}\right)\left(2 \omega_{2}\right)}}\left[C_{1} \delta_{k l} q_{1}^{\mu} q_{2 \mu}+C_{2}\left(q_{1 k} q_{2 l}+q_{1 l} q_{2 k}-\frac{2}{3} \delta_{k l}\left(q_{1} \cdot q_{2}\right)\right)\right]$
S state -> S state

$$
d \Gamma \sim K \sqrt{1-\frac{4 m_{\pi}^{2}}{M_{\pi \pi}^{2}}}\left(M_{\pi \pi}^{2}-2 m_{\pi}^{2}\right)^{2} d M_{\pi \pi}^{2} \quad K \equiv \frac{\sqrt{\left(M_{A}+M_{B}\right)^{2}-M_{\pi \pi}^{2}} \sqrt{\left(M_{A}-M_{B}\right)^{2}-M_{\pi \pi}^{2}}}{2 M_{A}}
$$

$$
\psi(2 S) \rightarrow \pi \pi+J / \psi
$$

H. Mendez et al. [arXiv:0804.4432] [hep-ex]

FIG. 2: Plots relevant to the decay $\psi(2 S) \rightarrow \pi^{+} \pi^{-} J / \psi($ top $)$ and $\psi(2 S) \rightarrow \pi^{0} \pi^{0} J / \psi$ (bottom). The left plots show the dipion recoil mass spectrum and the right plots the dipion mass spectrum. The J / ψ candidates in the continuum sample arise from the tail of the $\psi(2 S)$. Symbols are as in Fig. 1.

D state -> S state
Determines
$C_{2} / C_{1}=1.52_{-0.45}^{+0.35}$

CLEO [N. E. Adam et al., PRL 96, 082004 (2006)]

FIG. 4: Distributions in $\pi^{+} \pi^{-} \ell^{+} \ell^{-}$events of the $\pi^{+} \pi^{-}$mass (left) and polar angle (right) of the positively charged lepton from data (open circles) and MC (solid line line).

P state -> P state
Assume only S wave term => $\mathrm{J}=\mathrm{J}^{\prime}$

$$
\Gamma_{\pi \pi}=(0.83 \pm 0.22 \pm 0.08 \pm 0.19) \mathrm{keV}
$$

CLEO [C. Cawfield et al.,PR D73, 012003 (2006)]
$2 \mathrm{P}_{\mathrm{J}} \rightarrow \mathrm{P}_{\mathrm{J}^{\prime}}+2 \pi-$ First observation[CLEO] Results agree with Kuang and Yan (1988)

Model generally in good agreement with experiment

Table 4: Two pion transitions observed in the $c \bar{c}$ system.

Transition		$\begin{aligned} & \hline m_{\pi \pi}^{(\max)} \\ & (\mathrm{MeV}) \\ & \hline \end{aligned}$	Branching Fraction (\%)	$\begin{array}{r} \hline \hline \text { Partial Width }{ }^{1} \\ (\mathrm{keV}) \end{array}$	$\Rightarrow\left\|C_{1}\right\|=8.87 \times 10^{-3}$
$\psi(2 S) \rightarrow J / \psi$	$\pi^{+} \pi^{-}$	589	$33.54 \pm 0.14 \pm 1.10$	113.0 ± 8.4	
	$\pi^{0} \pi^{0}$		$16.52 \pm 0.14 \pm 0.58$	55.7 ± 4.1	
$\psi(3770) \rightarrow J / \psi$	$\begin{aligned} & \pi^{+} \pi^{-} \\ & \pi^{0} \pi^{0} \end{aligned}$	676	$\begin{aligned} & (1.89 \pm 0.20 \pm 0.20) \times 10^{-1} \\ & (0.80 \pm 0.25 \pm 0.16) \times 10^{-1} \end{aligned}$	$\begin{array}{r} 43.5 \pm 11.5 \\ 18.4 \pm 9.8 \end{array}$	$\Rightarrow\left\|C_{2}\right\| /\left\|C_{1}\right\|=1.52{ }_{-0.45}^{+0.35}$

Table 5: Two pion transitions observed in the $b \bar{b}$ system.

Transition		$\begin{aligned} & \hline m_{\pi \pi}^{(\max)} \\ & (\mathrm{MeV}) \end{aligned}$	Branching Fraction (\%)	Partial Width ${ }^{2}$ (keV)
$\Upsilon(2 S) \rightarrow \Upsilon(1 S)$	$\pi^{+} \pi^{-}$	563	18.8 ± 0.6	6.0 ± 0.5
	$\pi^{0} \pi^{0}$		9.0 ± 0.8	2.6 ± 0.2
$\Upsilon(3 S) \rightarrow \Upsilon(1 S)$	$\pi^{+} \pi^{-}$	895	4.48 ± 0.21	0.77 ± 0.06
	$\pi^{0} \pi^{0}$		2.06 ± 0.28	0.36 ± 0.06
$\Upsilon(3 S) \rightarrow \Upsilon(2 S)$	$\pi^{+} \pi^{-}$	332	2.8 ± 0.6	0.48 ± 0.12
	$\pi^{0} \pi^{0}$		2.00 ± 0.32	0.35 ± 0.07
$\Upsilon(4 S) \rightarrow \Upsilon(1 S)$	$\pi^{+} \pi^{-}$	1120	$(0.90 \pm 0.15) \times 10^{-2}$	1.8 ± 0.4
$\Upsilon(4 S) \rightarrow \Upsilon(2 S)$	$\pi^{+} \pi^{-}$	557	$(0.83 \pm 0.16) \times 10^{-2}$	1.7 ± 0.5
$\chi_{b 2}(2 P) \rightarrow \chi_{b 2}(1 P)$	$\pi^{+} \pi$	356	$(6.0 \pm 2.1) \times 10^{-1}$	0.83 ± 0.32
$\chi_{b 1}(2 P) \rightarrow \chi_{b 1}(1 P)$	$\pi^{+} \pi^{-}$	363	$(8.6 \pm 3.1) \times 10^{-1}$	0.83 ± 0.32

Rescaled Kuang \&Yan model
$\begin{aligned} &\} 9.4 \\ &\} 1.4 \\ &\} 0.6 \\ & \\ & 0.6 \\ & 0.6\end{aligned}$
\square Puzzle

$$
\begin{aligned}
& \Upsilon(3 \mathrm{~S}) \rightarrow \Upsilon+\pi \pi \\
& \Upsilon(4 \mathrm{~S}) \rightarrow \Upsilon(2 \mathrm{~S})+\pi \pi
\end{aligned}
$$

don't show leading (S-wave) two pion invariant mass distribution

Many proposals for explaining the $Y(3 S)->Y$ transition but most don't survive results for $\gamma(4 \mathrm{~S})$:

Final State Interactions
Problem: Compare $Y(4 \mathrm{~S})->Y(2 S), Y(2 S)->Y(1 S)$ and $\psi(2 S) \rightarrow J / \Psi$ essentially the same phase space but different distributions.
\diamond Coupling to decay channels
Problem: Compare $\Upsilon(3 S)->Y(1 S)$ to $\Psi(2 S)->J / \Psi, ~ \Upsilon(4 S)->Y(1 S)$
Coupled channel effects should be larger in second set.
$\diamond 4$ quark intermediate state
Problem: Compare $\Upsilon(4 S)->Y(2 S), \gamma(3 S)->Y(1 S)$
similiar distributions but shifted masses
dynamical accident - suppress the leading E1 E1 term $\quad \Rightarrow$

$\mathrm{M}_{\pi \pi}$ distributions

$Y(2 S)$ and $Y(3 S) \rightarrow Y(1 S)$ are well described by Brown-Cahn and Moxhay models. \rightarrow consistent with CLEO measurement(PRD58 052004, PRD49 40).

Like the El case?
$\Delta \mathrm{n}=2$ overlap suppressed.

Predicted for $\Upsilon(3 S)->Y(1 S)$

Below lowest intermediate state threshold

$$
\sum_{n l} \frac{\left|\Psi_{n l}><\Psi_{n l}\right|}{E_{i}-E_{n l}} \sim \frac{1}{E_{i}-E_{\mathrm{string}}^{\mathrm{TH}}}+\cdots
$$

Hence transition rates fairly insensitive to intermediate states details

Transition	G $\left(\mathrm{GeV}^{7}\right)$	$\|<i\| r^{2}\|f>\|$ $\left(\mathrm{GeV}^{-2}\right)$	$G<i\left\|r^{2}\right\| f>^{2}$ $\times 10^{2}$
$\psi(2 S) \rightarrow J / \psi$	3.56×10^{-2}	3.36	40.2
$\Upsilon(2 S) \rightarrow \Upsilon(1 S)$	2.87×10^{-2}	1.19	4.06
$\Upsilon(3 S) \rightarrow \Upsilon(1 S)$	1.09	2.37×10^{-1}	0.61
$\Upsilon(3 S) \rightarrow \Upsilon(2 S)$	9.09×10^{-5}	3.70	0.12
$\Upsilon(4 S) \rightarrow \Upsilon(1 S)$	5.58	9.74×10^{-2}	0.48
$\Upsilon(4 S) \rightarrow \Upsilon(2 S)$	2.61×10^{-2}	4.64×10^{-1}	0.56

Note the large variations in phase space and overlaps for the various γ states.

If leading <E1-E1> suppressed, can the <M1-M1> significant?

Detailed study: S-wave

$$
\mathcal{M}=S\left(\epsilon_{1} \cdot \epsilon_{2}\right)+D_{1} \ell_{\mu \nu} \frac{P^{\mu} P^{\nu}}{P^{2}}\left(\epsilon_{1} \cdot \epsilon_{2}\right)+D_{2} q_{\mu} q_{\nu} \epsilon^{\mu \nu}+D_{3} \ell_{\mu \nu} \epsilon^{\mu \nu}
$$

S-wave

$$
\begin{align*}
& S\left(\psi_{2} \rightarrow \pi^{+} \pi^{-} \psi_{1}\right)= \tag{25}\\
& -\frac{4 \pi^{2}}{b} \alpha_{0}^{(12)}\left[\left(1-\chi_{M}\right)\left(q^{2}+m^{2}\right)-\left(1+\chi_{M}\right) \kappa\left(1+\frac{2 m^{2}}{q^{2}}\right)\left(\frac{(q \cdot P)^{2}}{P^{2}}-\frac{1}{2} q^{2}\right)\right]\left(\psi_{1} \cdot \psi_{2}\right),
\end{align*}
$$

and three D-waves $\quad P_{\mu}=M_{A} \delta_{\mu}^{0} \quad r_{\mu}=\left(k_{1 \mu}-k_{2 \mu}\right)$

$$
\begin{aligned}
& D_{1}\left(\psi_{2} \rightarrow \pi^{+} \pi^{-} \psi_{1}\right)=-\frac{4 \pi^{2}}{b} \alpha_{0}^{(12)}\left(1+\chi_{M}\right) \frac{3 \kappa}{2} \frac{\ell_{\mu \nu} P^{\mu} P^{\nu}}{P^{2}}\left(\psi_{1} \cdot \psi_{2}\right), \\
& D_{2}\left(\psi_{2} \rightarrow \pi^{+} \pi^{-} \psi_{1}\right)=\frac{4 \pi^{2}}{b} \alpha_{0}^{(12)}\left(\chi_{2}+\frac{3}{2} \chi_{M}\right) \frac{\kappa}{2}\left(1+\frac{2 m^{2}}{q^{2}}\right) q_{\mu} q_{\nu} \psi^{\mu \nu}
\end{aligned}
$$

spin independent
magnetic

$$
\begin{equation*}
\chi_{M}=\frac{\alpha_{M}}{\alpha_{0}}, \tag{2}
\end{equation*}
$$

$\chi_{M}=\frac{\alpha_{M}}{\alpha_{0}}$,
$O\left(v^{2}\right)$

S-D mixing
$\psi^{\mu \nu}=\psi_{1}^{\mu} \psi_{2}^{\nu}+\psi_{1}^{\nu} \psi_{2}^{\mu}-(2 / 3)\left(\psi_{1} \cdot \psi_{2}\right)\left(P^{\mu} P^{\nu} / P^{2}-g^{\mu \nu}\right)$
$\ell_{\mu \nu}=r_{\mu} r_{\nu}+\frac{1}{3}\left(1-\frac{4 m^{2}}{q^{2}}\right)\left(q^{2} g_{\mu \nu}-q_{\mu} q_{\nu}\right)$
spin dependent

$$
D_{3}\left(\psi_{2} \rightarrow \pi^{+} \pi^{-} \psi_{1}\right)=\frac{4 \pi^{2}}{b} \alpha_{0}^{(12)}\left(\chi_{2}+\frac{3}{2} \chi_{M}\right) \frac{3 \kappa}{4} \ell_{\mu \nu} \psi^{\mu \nu}
$$

$$
\chi_{2}=\frac{\alpha_{2}}{\alpha_{0}}
$$

If <M1-M1> term significant, expect noticeable presence of D2 and D3 in $\gamma(3 S)->Y+\pi \pi$

BUT - In addition to the suppression of the M1-M1 term by $\left\langle v^{2}\right\rangle$ relative to the dominate E1-E1 term:

Radial overlap amplitude:

$$
\sum_{n, l} \frac{\left.<f \mid \Psi_{n l}\right)><\Psi_{n l} \mid i>}{E_{i}-E_{X(n l)}}
$$

with the hybrid states

$$
\Psi_{n l}=\Pi_{u}^{+}(n P)
$$

Again below lowest intermediate state threshold

$$
\sum_{n l} \frac{\left|\Psi_{n l}><\Psi_{n l}\right|}{E_{i}-E_{n l}} \sim \frac{1}{E_{i}-E_{\text {string }}^{\mathrm{TH}}}+\cdots
$$

In this limit the overlap vanishes since $<f \mid i>=0(i \neq f)$

The M1-M1 term is highly suppressed!

$$
M_{\pi \pi}=\sqrt{q^{2}}\left(\mathrm{GeV} / c^{2}\right)
$$

CLEO
[D. Cronin-Hennessy et al., PRD 76:072001 (2007)]

$Q Q\left(n^{3} S_{1}\right) \Rightarrow Q Q\left(m^{3} S_{1}\right)+\pi^{+} \pi^{-}$

$$
M=\mathrm{A}\left(\varepsilon^{\prime} \cdot \varepsilon\right)\left(q^{2}-2 m_{\pi}{ }^{2}\right)+\mathrm{B}\left(\varepsilon^{\prime} \cdot \varepsilon\right) E_{1} E_{2}+\mathrm{C}\left[\left(\varepsilon^{\prime} \cdot q_{1}\right)\left(\varepsilon \cdot q_{2}\right)+\left(\varepsilon^{\prime} \cdot q_{2}\right)\left(\varepsilon \cdot q_{1}\right)\right]
$$

- Hindered M1-M1 term => C C 0 . Consistent with CLEO results.
- Small D-wave contributions
- Useful to look at polarization info.

Dubynskiy \& Voloshin [hep-ph/0707.1272]

3S->1S

[D. Cronin-Hennessy et al., CLEO PRD 76:072001 (2007)]

Fit, No \mathcal{C}			stat.	effcy. ($\pi^{ \pm}$)	effcy. π^{0}) bg. sub.	
$\Upsilon(3 S) \rightarrow \Upsilon(1 S) \pi \pi$	$\Re(\mathcal{B} / \mathcal{A})$	-2.523	± 0.031	± 0.019	± 0.011	± 0.001
	$\Im(\mathcal{B} / \mathcal{A})$	± 1.189	± 0.051	± 0.026	± 0.018	± 0.015
$\Upsilon(2 S) \rightarrow \Upsilon(1 S) \pi \pi$	$\Re(\mathcal{B} / \mathcal{A})$	-0.753	± 0.064	± 0.059	± 0.035	± 0.112
	$\Im(\mathcal{B} / \mathcal{A})$	0.000	± 0.108	± 0.036	± 0.012	± 0.001
$\Upsilon(3 S) \rightarrow \Upsilon(2 S) \pi \pi$	$\Re(\mathcal{B} / \mathcal{A})$	-0.395	± 0.295		± 0.025	± 0.120
	$\Im(\mathcal{B} / \mathcal{A})$	± 0.001	± 1.053		± 0.180	± 0.001
Fit, float \mathcal{C}			stat.	effcy. ($\pi^{ \pm}$)	effcy. $\left(\pi^{0}\right)$	bg. sub.
$\Upsilon(3 S) \rightarrow \Upsilon(1 S) \pi \pi$	$\|\mathcal{B} / \mathcal{A}\|$	2.89	± 0.11	± 0.19	± 0.11	± 0.027
	$\|\mathcal{C} / \mathcal{A}\|$	0.45	± 0.18	± 0.28	± 0.20	± 0.093

\square Single hadron transitions

higher order <E1 M1>; <M1 M1>, <E1 M2>

$$
\mathrm{C}_{i} \mathrm{C}_{f}=-1 \quad+1
$$

$$
O(v) \quad O\left(v^{2}\right)
$$

symmetry
breaking:
$\pi ; \eta, \omega$
$\tilde{\pi}^{0}=\pi^{0}+\epsilon \eta+\epsilon^{\prime} \eta^{\prime}$

Transition		Branching Fraction ${ }^{3}$	Partial Width
$i \rightarrow f(\%)$	(keV)		
$\psi(2 S) \rightarrow J / \psi$	η	$3.25 \pm 0.06 \pm 0.11$	11.0 ± 0.84
	π^{0}	$0.13 \pm 0.01 \pm 0.01$	0.44 ± 0.06
$\psi(2 S) \rightarrow h_{c}(1 P)$	π^{0}	$(1.0 \pm 0.2 \pm 0.18) \times 10^{-1}$	0.34 ± 0.10
$\psi(3770) \rightarrow J / \psi$	η	$(0.87 \pm 0.33 \pm 0.22) \times 10^{-1}$	20 ± 11

$\tilde{\eta}=\eta-\epsilon \pi^{0}+\theta \eta^{\prime}$
$\tilde{\eta}^{\prime}=\eta^{\prime}-\theta \eta-\epsilon^{\prime} \pi^{0}$,

Transition		Branching Fraction (\%)	$\begin{array}{r} \hline \hline \text { Partial Width }{ }^{4} \\ (\mathrm{keV}) \end{array}$
$i \rightarrow f$			
$\Upsilon(2 S) \rightarrow \Upsilon(1 S)$	η	$(2.5 \pm 0.7 \pm 0.5) \times 10^{-2}$	$(7.2 \pm 2.3) \times 10^{-3}$
$\chi_{b 1}(2 P) \rightarrow \Upsilon(1 S)$	ω	$1.63 \pm 0.33 \pm 0.16$	1.56 ± 0.59
$\chi_{b 2}(2 P) \rightarrow \Upsilon(1 S)$	ω	$1.10 \pm 0.30 \pm 0.11$	1.52 ± 0.64

chiral effective theory:

$$
\epsilon=\frac{\left(m_{d}-m_{u}\right) \sqrt{3}}{4\left(m_{s}-\frac{m_{u}+m_{d}}{2}\right)}, \quad \epsilon^{\prime}=\frac{\tilde{\lambda}\left(m_{d}-m_{u}\right)}{\sqrt{2}\left(m_{\eta^{\prime}}^{2}-m_{\pi^{0}}^{2}\right)}, \quad \theta=\sqrt{\frac{2}{3}} \frac{\tilde{\lambda}\left(m_{s}-\frac{m_{u}+m_{d}}{2}\right)}{m_{\eta^{\prime}}^{2}-m_{\eta}^{2}} .
$$

New Belle Measurements - [hep-ex/0710.2577]

$$
Y(5 S)->\pi^{+} \pi^{-}+Y(n S) \quad(n=1,2,3)
$$

Process	N_{s}	Σ	Eff. $(\%)$	$\sigma(\mathrm{pb})$	$\mathcal{B}(\%)$	$\Gamma(\mathrm{MeV})$
$\Upsilon(1 S) \pi^{+} \pi^{-}$	325_{-19}^{+20}	20σ	37.4	$1.61 \pm 0.10 \pm 0.12$	$0.53 \pm 0.03 \pm 0.05$	$0.59 \pm 0.04 \pm 0.09$
$\Upsilon(2 S) \pi^{+} \pi^{-}$	186 ± 15	14σ	18.9	$2.35 \pm 0.19 \pm 0.32$	$0.78 \pm 0.06 \pm 0.11$	$0.85 \pm 0.07 \pm 0.16$
$\Upsilon(3 S) \pi^{+} \pi^{-}$	$10.5_{-3.3}^{+4.0}$	3.2σ	1.5	$1.44_{-0.45}^{+0.55} \pm 0.19$	$0.48_{-0.15}^{+0.18} \pm 0.07$	$0.52_{-0.17}^{+0.20} \pm 0.10$
$\Upsilon(1 S) K^{+} K^{-}$	$20.2_{-4.5}^{+5.2}$	4.9σ	20.3	$0.185_{-0.041}^{+0.048} \pm 0.028$	$0.061_{-0.014}^{+0.016} \pm 0.010$	$0.067_{-0.015}^{+0.017} \pm 0.013$

- Large partial rates.

Continuum $e^{+} e^{-}->\pi \pi Y(n S)$ background not subtracted.

- $M(\pi \pi)$ and angular distribution. Compare to $\mathrm{Y}(4 \mathrm{~S})$.

Transition Ratio	Belle
$R(2,1)$	$1.47 \pm 0.15 \pm 0.20$
$R(3,1)$	$0.91 \pm 0.35 \pm 0.15$

$$
R(n, m) \equiv \frac{\Gamma\left(\Upsilon(5 S) \rightarrow \pi^{+} \pi^{-}+\Upsilon(n S)\right)}{\Gamma\left(\Upsilon(5 S) \rightarrow \pi^{+} \pi^{-}+\Upsilon(m S)\right)}
$$

$$
\begin{array}{lc}
\Gamma\left(\Upsilon(5 S) \rightarrow \pi^{+} \pi^{-}+\Upsilon(n S)\right) \propto G(n)|f(n)|^{2} & \text { phase space }\left(\mathrm{GeV}^{-7}\right) \\
\quad \text { with } f(n)=\left.\sum_{l} \frac{<\Upsilon(5 S)|r| \Sigma_{g}^{+^{\prime}}(l P)><\Sigma_{g}^{+^{\prime}}(l P)|r| \Upsilon(n S)>}{M_{\Upsilon(5 S)}-E_{l}(\Sigma)+i \Gamma_{l}(\Sigma)}\right|^{2} & G(n)=28.7,0.729,1.33 \times 10^{-2} \\
& \text { for } n=1,2,3
\end{array}
$$

theory - hadronic transition rates

- If lowest hybrid mass near $Y(5 S)$ a few states dominate sum. Results sensitive to mass value.
- If hybrid mass $10.75+i(0.1)(\mathrm{GeV})$, obtain $R(2,1) \approx 1.1$ and $R(3,1) \approx 0.08$.
- Overall scale of transitions more than an order of magnitude larger than theory expects.

Above Threshold

Heavy Flavor Factories

D $Y(4 \mathrm{~S})$ ideal for study of $B^{ \pm}, B^{0}$ mesons $Y(5 S)$ ideal for study of $B_{s}{ }^{ \pm}$mesons
$\square \psi(3770)$

$$
\text { Mass } \boldsymbol{m}=3772.4 \pm 1.1 \mathrm{MeV}, \quad(S=1.8)
$$

$$
\text { Full width } \Gamma=25.2 \pm 1.8 \mathrm{MeV}
$$

O Ideal for D^{+}, D^{0} studies. CLEO has exploited this for f_{D}, D decays and $m_{D}\left(572 \mathrm{pb}^{-1}\right)$

O Decays into charmed mesons

Decay width in good agreement with theory (CCCM)

O More details

- Charged/neutral ratios

The ratio, $R^{0 /+}$, of $D^{0} D^{0}$ to $D^{+} D^{-}$ production deviates from one due to isospin violating terms:
(a) up-down mass difference
(b) EM interactions
$\rightarrow m\left(D^{+}\right)-m\left(D^{0}\right)=4.78 \pm 0.10 \mathrm{MeV}$
\rightarrow different final state interactions

$\mathrm{R}^{0 /+}$		
PDG07	p^{3}	CCCM
1.28 ± 0.14	1.47	1.36

$\Gamma(p) \sim A \frac{p^{3}}{\Lambda^{2}} \exp \left(-\frac{p^{2}}{\Lambda^{2}}\right)$ $A=.18 \quad \Lambda=.57 \mathrm{GeV}$ $p_{0}=283 \mathrm{MeV} \quad p_{+}=250 \mathrm{MeV}$

- Mixing with $\Psi(2 S)$

The shape of the resonance differs from
The shape of the resonance diff
the usual Breit-Wigner:
(1) width $\Gamma(p)$ not pure p wave
(2) interference with $2 S$ state.
The shape of the resonance diff
the usual Breit-Wigner:
(1) width $\Gamma(p)$ not pure p wave
(2) interference with $2 S$ state.
The shape of the resonance diff
the usual Breit-Wigner:
(1) width $\Gamma(p)$ not pure p wave
(2) interference with $2 S$ state.

- Shape of resonance

Parameterizing the $\Psi(3770)$ as a simple mixture of
|1D> and |2S> state is inadequate

Production in $e^{+} e^{-}$due to relativistic terms:
(a) Expansion of EM current

$$
\begin{aligned}
& j_{c}^{i}= s_{1} \psi^{\dagger} \sigma^{i} \chi+\frac{s_{2}}{m_{c}^{2}} \psi^{\dagger} \sigma^{i} \mathcal{D}^{2} \chi \\
&+\frac{d_{2}}{m_{c}^{2}} \psi^{\dagger} \sigma^{j}\left[\frac{1}{2}\left(\mathcal{D}^{i} \mathcal{D}^{j}+\mathcal{D}^{j} \mathcal{D}^{i}\right)-\frac{1}{3} \delta^{i j} \mathcal{D}^{2}\right] \chi+\ldots \quad \text { S-wave } \\
& \text { D-wave }
\end{aligned}
$$

(b) S-D mixing terms - short range
(c) Induced mixing from $D^{*}-D$ mass difference - long range

$$
\begin{aligned}
\psi(3772)= & 0.10|2 \mathrm{~S}\rangle+0.01 e^{+0.22 i \pi}|3 \mathrm{~S}\rangle+\ldots \\
& +0.69 e^{-0.59 i \pi}|1 \mathrm{D}\rangle+0.10 e^{+0.27 i \pi}|2 \mathrm{D}\rangle+\ldots
\end{aligned}
$$

- Two important measurement:
(1) Resonance shape in each channel
(2) Ratio of charge to neutral DD final states over the whole resonance region
G.P. Lepage, Phys.Rev. D 42, 3251 (1990).
N. Byers and E. Eichten, Phys.Rev. D 42, 3885 (1990).
R. Kaiser, A.V. Manohar, and T. Mehen, Report hep-ph/0208194, Aug. 2002 (unpublished)
M.B. Voloshin, Mod.Phys.Lett. A 18, 1783 (2003).
M.B. Voloshin, Phys.Atom.Nucl. 68, 771 (2005) [Yad.Fiz. 68, 804 (2005)].
S. Dubynskiy, A. Le Yaouanc, L. Oliver, J.-C. Raynal, and M. B. Voloshin [arXiv:0704.0293]

FIG. 9. Argand plot of the $D \bar{D} S$ matrix in the 1^{--} state. The rather narrow elastic ${ }^{3} D_{1}$ resonance ψ (3772) \sim_{4} clearly GeV duence, as is an inelastic resonance at the same as in Figs. 7 and 8 .
E. Eichten, K. Gottfried, T. Kinoshita, K. Lane and T.M. Yan PR D17, 3090 (1978)

O Non DD decays of the $\psi(3770)$

-X J/ Ψ

Theory expectation for $\pi^{+} \pi^{-} J / \Psi: 0.1-0.7 \%$

- $\gamma_{C J}$

Good agreement with theory expectations including relativistic effects

Mode	$E_{\gamma}(\mathrm{MeV})$	Predicted (keV)					CLEO (keV)
	$[55]$		(a)	(b)	(c)	(d)	(e)
$[136]$							
$\gamma \chi_{c 2}$	208.8	3.2	3.9	4.9	3.3	24 ± 4	<21
$\gamma \chi_{c 1}$	251.4	183	59	125	77	73 ± 9	70 ± 17
$\gamma \chi_{c 0}$	339.5	254	225	403	213	523 ± 12	172 ± 30

-light hadrons

No evidence for direct decays
to light hadrons seen yet.
Puzzle of missing decays

$$
\begin{array}{r}
\sigma_{\psi(3770)}=6.38 \pm 0.08_{-0.30}^{+0.41} \mathrm{nb} \\
\sigma_{\psi(3770)}-\sigma_{\psi(3770) \rightarrow D \bar{D}}=-0.01 \pm 0.08_{-0.30}^{+0.41} \mathrm{nb}
\end{array}
$$

$$
\sigma_{\psi(3770)}=7.25 \pm 0.27 \pm 0.34 \mathrm{nb}
$$

Decay Mode	$\begin{gathered} \sigma_{\psi(3770) \rightarrow f} \\ {[\mathrm{pb}]} \\ \hline \end{gathered}$	$\begin{gathered} \hline \sigma_{\psi(3770) \rightarrow f}^{\text {up }} \\ {[\mathrm{pb}]} \end{gathered}$	$\begin{gathered} \mathcal{B}_{\psi(3770) \rightarrow f}^{\text {up }} \\ {\left[\times 10^{-3}\right]} \\ \hline \end{gathered}$
$\phi \pi^{0}$	$<3.5{ }^{\text {tn }}$	< 3.5	<0.5
$\phi \eta$	$<12.6^{\text {tn }}$	<12.6	<1.9
$2\left(\pi^{+} \pi^{-}\right)$	$7.4 \pm 15.0 \pm 2.8 \pm 0.8$	<32.5	< 4.8
$K^{+} K^{-} \pi^{+} \pi^{-}$	$-19.6 \pm 19.6 \pm 3.3 \pm 2.1^{z}$	<32.7	< 4.8
$\phi \pi^{+} \pi^{-}$	$<11.1^{\text {tn }}$	<11.1	< 1.6
$2\left(K^{+} K^{-}\right)$	$-2.7 \pm 7.1 \pm 0.5 \pm 0.3^{z}$	<11.6	<1.7
$\phi K^{+} K^{-}$	$-0.5 \pm 10.0 \pm 0.9 \pm 0.1^{z}$	<16.5	<2.4
$p \bar{p} \pi^{+} \pi^{-}$	$-6.2 \pm 6.6 \pm 0.6 \pm 0.7^{z}$	<11.0	< 1.6
$p \bar{p} K^{+} K^{-}$	$1.4 \pm 3.5 \pm 0.1 \pm 0.2$	<7.2	< 1.1
$\phi p \bar{p}$	$<5.8{ }^{\text {tn }}$	<5.8	< 0.9
$3\left(\pi^{+} \pi^{-}\right)$	$16.9 \pm 26.7 \pm 5.5 \pm 2.4$	< 61.7	<9.1
$2\left(\pi^{+} \pi^{-}\right) \eta$	$72.7 \pm 55.0 \pm 7.3 \pm 8.2$	< 164.7	<24.3
$2\left(\pi^{+} \pi^{-}\right) \pi^{0}$	$-35.4 \pm 24.6 \pm 6.6 \pm 4.0^{z}$	< 42.3	<6.2
$K^{+} K^{-} \pi^{+} \pi^{-} \pi^{0}$	$-36.9 \pm 43.8 \pm 12.8 \pm 4.2^{z}$	< 75.2	<11.1
$2\left(K^{+} K^{-}\right) \pi^{0}$	$18.1 \pm 7.7 \pm 0.7 \pm 2.0^{n}$	<31.2	< 4.6
$p \bar{p} \pi^{0}$	$1.5 \pm 3.9 \pm 0.5 \pm 0.1$	<7.9	<1.2
$p \bar{p} \pi^{+} \pi^{-} \pi^{0}$	$26.0 \pm 13.9 \pm 2.6 \pm 3.2$	<49.7	<7.3
$3\left(\pi^{+} \pi^{-}\right) \pi^{0}$	$-12.7 \pm 55.9 \pm 8.7 \pm 1.8^{z}$	<92.8	<13.7

BES [hep-ex/0705.2276]

$\square \Delta \mathrm{R}$ - Total

$\square \Delta R$ - Exclusive channels

O First: a caution
This rich structure arises simply from the 3S and 2D states

Interference between the $3 S$ and 2 D plays an important role.
Decay amplitudes for radially excited states have oscillatory structure

The peaks for individual final states do not coincide

Determining the number and properties of the resonances is impossible without a detail decay model.

Updated Cornell Coupled Channel Model

O CLEO $-\psi(4170)$ an excellent D_{s} factory

Study $f_{D s}, D_{s}$ decays, $M_{D s}$ with $314 \mathrm{pb}^{-1}$

O Opening of the DDp $^{\text {channel }}{ }_{\text {New }}$
These channels are small

for $\mathrm{E}_{\mathrm{cm}} \leq 4.26 \mathrm{GeV}$ But will become very significant at the $\psi(4 \mathrm{~S})$

- Surprises in existing data

Discovery of $D_{s 1}(2460)$ in $13 \mathrm{pb}^{-1}$
data collected from 1990-1998
Besson et al., PR D68, 032002 (2003)

New States Near Charm Threshold

State	EXP	$M+i \Gamma(M e V)$	JPC	Decay Modes Observed	Production Modes Observed
X(3872)	$\begin{gathered} \text { Belle,CDF, DO, } \\ \text { BaBar } \end{gathered}$	$3871.2 \pm 0.5+\mathrm{i}<2.3)$	1^{++}	$\begin{gathered} \pi^{+} \pi^{-J /} / \psi, \pi^{+} \pi^{-} \pi^{0} J / \psi \\ Y J / \psi \end{gathered}$	B decays, ppbar
	Belle BaBar	$\begin{aligned} & 3875.4 \pm 0.7^{+1.2}-2.0 \\ & 3875.6 \pm 0.7^{+1.4-4.5} \end{aligned}$		$D^{0} D^{0} \pi^{0}$	B decays
Z(3930)	Belle	$3929 \pm 5 \pm 2+i(29 \pm 10 \pm 2)$	2^{++}	$D^{0} D^{0}, D^{+} D^{-}$	r
$Y(3940)$	Belle BaBar	$\begin{gathered} 3943 \pm 11 \pm 13+i(87 \pm 22 \pm 26) \\ 3914.3^{+3.8}-3.4 \pm 1.6+i\left(33^{+12}-8 \pm 0.60\right) \end{gathered}$	1^{--}	$\omega J / \psi$	B decays
X(3940)	Belle	$3942{ }^{+7}-6 \pm 6+i\left(37^{+26}-15 \pm 8\right)$	$J^{P_{+}}$	DD*	$e^{+} e^{-}$(recoil against J / Ψ)
$Y(4008)$	Belle	$4008 \pm 40^{+72}-28+i\left(226 \pm 44^{+87}-79\right)$	1^{--}	$\pi^{+} \pi^{-J / \psi}$	$e^{+} e^{-}$(ISR)
$x(4160)$	Belle	$4156+25-20 \pm 15+i(139++11-61 \pm 21)$	$\mathrm{J}^{\mathrm{P}_{+}}$	$D^{*} D^{*}$	B decays
$Y(4260)$	BaBar Cleo Belle	$\begin{gathered} 4259 \pm 8^{+8}-6+i(88 \pm 23+6-4) \\ 4284^{1+1}-16 \pm 4+i\left(73+39^{-25 \pm 5)}\right. \\ 4247 \pm 12^{2+17}-32+i(108 \pm 19 \pm 10) \end{gathered}$	1^{--}	$\begin{gathered} \pi^{+} \pi^{-J} / \Psi, \pi^{0} \pi^{0}{ }^{0}-J / \Psi / \Psi \end{gathered}$	$e^{+} e^{-}$(ISR), $e^{+} e^{-}$
Y(4350)	BaBar Belle	$\begin{gathered} 4324 \pm 24+i(172 \pm 33) \\ 4361 \pm 9 \pm 9+i(74 \pm 15 \pm 10) \end{gathered}$	1^{--}	$\pi^{+} \pi^{-} \Psi(2 S)$	$e^{+} e^{-}$(ISR)
$\mathrm{Z}^{+}(4430)$	Belle	$4433 \pm 4 \pm 1+\mathrm{i}\left(44^{+17}-13^{+30}-11\right)$	J^{P}	$\pi^{+} \Psi(2 S)$	B decays
$Y(4660)$	Belle	$4664 \pm 11 \pm 5+i(48 \pm 15 \pm 3)$	1^{--}	$\pi^{+} \pi^{-} \psi(2 S)$	$e^{+} e^{-}$(ISR)

Basic Questions:

Is it a new state?
What are its properties? Charmonium or not? If not what? New spectroscopy?

- Decay Modes

- $X(3872) \rightarrow \pi^{+} \pi^{-}+J / \Psi\left(\Gamma_{0}\right)$ (ρ like) (Belle, CDF, DO, BaBar)
- $\Gamma\left(X(3872)->^{\prime} \omega^{\prime}+J / \Psi\right) / \Gamma_{0}=1.0 \pm 0.4 \pm 0.3$
\Rightarrow Isospin violating (Belle)
- $\Gamma\left(X(3872->Y+J / \Psi) / \Gamma_{0}=0.14 \pm 0.05\right.$

$$
\Rightarrow C=+\quad \text { (Belle, BaBar) }
$$

- $J^{P C}=1^{++}$Strongly favored (Belle, CDF)
- $\Gamma\left(X(3875)->D^{0} D^{* 0}+D^{* 0} D^{0}\right) / \Gamma_{0}=12.2 \pm 3.1_{-3.0}^{+2.3}$ (Belle, BaBar)

Same state ? $M=3875.4_{-2.0}^{+1.2} \pm 0.7 \mathrm{Mev} / \mathrm{c}^{2}$

O What is the X ?

- Key feature $X(3872)$ extremely close to threshold.

CLEO precise D^{0} mass measurement [PRL 98,092002 (2007)]

$$
\begin{gathered}
1864.847 \pm 0.150 \pm 0.095 \mathrm{MeV} \\
\Rightarrow M(X)-M\left(D^{0}\right)-M\left(D^{0 *}\right)=-0.6 \pm 0.6 \mathrm{MeV}
\end{gathered}
$$

DD* "Binding Energy?":

$$
M-\left(m_{D 0^{+}}+m_{D^{*} 0}\right)=+4.3 \pm 0.7_{-1.7}^{+0.7} \mathrm{MeV}
$$

- Options - Tetraquark state or Hybrid state highly improbable to be this near threshold. $2^{3} P_{1}$ charmonium state ($X^{\prime}{ }_{c 1}$) expected 50 MeV higher and isosinglet.
- $D^{0} D^{* 0}$ molecule with binding provided mainly by nearby $X^{\prime}{ }_{c 1}$ most likely possibility.
- Need to measure the line shape of the X in various production modes and decay channels to establish it's true mass.
Braaten and Lu [PR D 76:094028 (2007)]
Dependence of $\mathrm{d} \Gamma / \mathrm{dE}$ on inverse scattering length γ

Requires S-wave threshold;
Decay into two very narrow hadrons Nearby state ($\mid M_{s}-M$ (threshold) $\mid \leq \Gamma_{s}$) with strong coupling to decay channel.
$B^{0} \rightarrow K^{0}+X$

I $Y(4260)$ and beyond

O Y(4260) discovery
Seen by BaBar in ISR production confirmed by CLEO and Belle $\Rightarrow J^{P C}=1^{--}$
Mass $=4264 \pm{ }_{12}^{10} \mathrm{MeV}$; Width $=83 \pm{ }_{17}^{20} \mathrm{MeV}$
O Decays

- $Y(4260) \rightarrow \pi^{+} \pi^{-}+J / \Psi$
(BaBar, CLEO, Belle)
- $Y(4260) \rightarrow \pi^{0} \pi^{0}+J / \Psi$ (CLEO)
- $Y(4260)->K^{+} K^{-}+J / \Psi(C L E O)$
consistent with $\mathrm{I}=0$
O Not a charmonium state

- Small $\Delta R-4^{3} S_{1}$ state at 4.26 would have $\Delta R \approx 2.5$
- $1^{3} D_{1}$ state $\Psi(4160)$
- X(4008)

Mass $=4008 \pm 40_{-28}^{+72} \mathrm{MeV} / \mathrm{c}^{2}$
Width $=226 \pm 44+-79 \mathrm{MeV}$
Seen by Belle in $\pi^{+} \pi^{-}+J / \Psi$ final state

O $Y(4350)$
Mass $=4361 \pm 9 \pm 9 \mathrm{MeV} / \mathrm{c}^{2}$ Width $=74 \pm 15 \pm 10 \mathrm{MeV}$ Seen by BaBar, Belle in $\pi^{+} \pi^{-}+\psi(2 S)$ final state

$$
J^{P C}=1^{--}
$$

O $Y(4660)$
Mass $=4664 \pm 11 \pm 5 \mathrm{MeV} / \mathrm{c}^{2}$ Width $=48 \pm 15 \pm 3 \mathrm{MeV}$
Seen by Belle in $\pi^{+} \pi^{-}+\Psi(2 S)$ final state

PRL 99, 182004 (2007)

X. L. Wang, et al. PRL 99:142002 (2007)

O What are the $X(4008), Y(4260), Y(4350)$ and $Y(4660)$?

- Various options - see Stephen Godfrey, Hanna Mahlke, Jonathan L. Rosner and E.E. [hep-ph/0701208]
- One attractive possibility - hybrid states
- Lattice calculations put states in this region
- The $Y(4660)$ state could be the first radial excitation of the charm quarks from the ground state $Y(4260)$ (analog of Ψ^{\prime} to J / Ψ). This would naturally explain its preference for decays to $\pi \pi+\psi^{\prime}$.

- Similarly, the $Y(4360)$ would the radial excitation of the charm quarks from a ground state $X(4008)$.
- Heavy quark spin symmetry: $1^{--}->0^{-+}, 1^{-+}, 2^{-+}$ states nearby (for Π_{u} potential)
- How many states would be narrow?

$V_{\Pi_{u}}$	4664
4361	
	4264
4008	$V_{\Sigma_{g}^{+}}$

Summary

- CLEO has been in the forefront of quarkonium physics from beginning to end. The wealth of precision data has solidified our confidence in the NRQCD approach.
- The velocity expansion for the spectrum and the multipole expansions for both electromagnetic and hadronic transitions hold up well.
- Relativistic corrections: Significant relativistic for the cc system. Reduced for the bb system. Generally consistent with velocity scaling expectations. Phenomenological models inadequate. Need lattice QCD and pNRQCD.
- Below threshold - puzzling exceptions are resolved:
- By new CLEO measurement: $J / \Psi \rightarrow \gamma+\eta_{c}$ M1 rate
- By well understood dynamical suppression of the leading order expansion coefficient: $\Upsilon(3 S)$-> $\gamma+\chi_{b}(1 \mathrm{P})$ E1 rate;
$\psi(2 S) \rightarrow \gamma+\eta_{c}, \gamma(2 S) \rightarrow \gamma+\eta_{b}(1 S)$ and $\gamma(3 S) \rightarrow \gamma+\eta_{b}(1 S) M 1$ rates; $\Upsilon(3 S) \rightarrow \Upsilon(1 S)+2 \pi$ E1-E1 term; $\Upsilon(\mathrm{nS}) \rightarrow \Upsilon(\mathrm{mS})+2 \pi$, M1-M1 terms
- CLEO has exploited quarkonium resonances as factories:
- $Y(4 S), Y(5 S)-B^{ \pm}, B^{0}, B_{S^{ \pm}}$studies
- $\Psi(3772)-D^{ \pm}, D^{0}$ studies
- $\Psi(4160)-D_{s}{ }^{ \pm}$studies
- J/ $\Psi, \Psi^{\prime}, \Upsilon, Y^{\prime \prime}, \ldots$ - direct decays
- The situation above threshold is not yet clear:
- Unexpected large hadronic transition rates: $Y(5 S)$) $Y(n S)+2 \pi(n=1,2,3)$
- New states and possibly a new spectroscopy: $X(3872)$, $X(4008), Y(4260), Y(4350), Y(4660)$
- NRQCD and HQET allows scaling from c to b systems. This will eventually provide critical tests of our understanding of new charmonium states.
- Lattice calculations will provide insight into theoretical issues
- Answers in many cases will require the next generation of heavy flavor experiments - BES III, LHCb and Super-B factories.

