

Beam Line Absorbers at DESY

J. Sekutowicz

Beam Line Absorber (BLA)

- Motivation
- Design of the BLA
- Tests in 2008 and 2009
- Thermal Connection to 40 (70) K and Mechanical Support

Final Remarks

Nominal beam of the European XFEL:

2700 bunches/rf pulse, σ_z = 25 μ m, 1 nC, t_b =220 ns. RF-pulse rep. rate 10 Hz.

The longitudinal HOM loss factor of the XFEL cryomodule is 141 V/pC.

XFEL Design of the BLA

Assumptions for the design:

- Iow cost
- capacity ~ 100 W

Lossy ceramic (final choice CA137)

Mechanical design by Nils Mildner

Absorbing ceramic ring brazed to the Cu stub

Housing

European Design of the BLA XFEL

Permittivity of sample CA137(or C7Y1) hot pressed (measured at Univ. of Magdeburg).

Permittivity: ε[´] = <18, 25>

tanδ = <0.2, 0.3>

XFEL Design of the BLA

Modeling:

Heat to 70 (40) K

Tests:

- 10 x fast cool-down to 70 K
- 140 K △T across the ceramic and stub
- Several times cool-down to 4K

XFEL Design of the BLA

The damping properties of ceramic rings were tested before and after heating at 900° C (brazing temperature). No change was observed.

DC-resistivity of the ceramic CA 137 was recently measured at 300K and 70 K.

 $\rm R_{dc}$ < 1 k\Omega at 70 K

Beam Tests in September 2008 and 2009: High current runs at FLASH

HELMHOLTZ

ASSOCIATIO

Thermal connection to 42 K tube

XFEL Beam tests in 2008 and 2009

1st Test in September 2008

- Charge/bunch was up to 3 nC
- Number of bunch/pulse was up to 500
- The nominal bunch length σ_z was 1.5 mm (k_{||} = 54 V/pC)
- Run was not very stable, we did not observe the steady state in the absorption process
- The beam induced HOM power and the temperature of two thermometers on the stub increase and decrease synchronously.

2nd Test in September 2009

- Charge/bunch was up to 3.2 nC
- Number of bunches/pulse was 800 (2400 with lower charge)
- The nominal bunch length σ_z was 1.5 mm (k_{||} = 54 V/pC)
- This time we observed steady state in the absorption process
- The beam induced HOM power and the temperature of two thermometers on the stub increase and decrease synchronously.

EuropeanXFELBeam tests in 2008 and 2009

Example: 2nd Test in September 2009

< 1.7 W > 2.5 **HOM** Power in HOM power 2 Cryomodule ACC6 P hom [W] 1.5 1 1: 1 0.5 0 12:00 18:00 0:00 3:00 6:00 9:00 15:00 21:00 time [h] 46.0 BLA T1 45.5 BLA T2 Monitored BLA 45.0 ▲ 2-Ph-Line Temperatures Σ 44.5 2.5 K ⊢ 44.0 43.5 43.0 0:00 3:00 6:00 9:00 12:00 15:00 18:00 21:00 time [h]

12

DESY

HELMHOLTZ

ASSOCIATION

Example: 2nd Test in September 2009, cont.

Measured Absorbed Power:

0.13 W/K * 2.5K= 0.325 W

Computer modeling (*M. Dohlus*): 15% of the HOM power should be absorbed in the BLA.

Results of two tests at FLASH

	September 08	September 09
Computed Absorbed Power [W]	0.180	0.255
Measured Absorbed Power [W]	0.143 (-21%)	0.325 (+27%)

Modeling showed that thermal connection is not a trivial part of the BLA.

It is rather complicated due to very little space between cryomodules.

Thermal Connection to 40 (70) K and Support

European

Nominal Pulse Operation Absorbed Power: 3W Temperature at the ceramic -214°C (=59K)

This is OK

CW Operation Absorbed Power: 30 W Temperature at the ceramic -43°C (=230K) ???

More expensive connection with better heat conduction must be implemented

XFEL Thermal Connection to 40 (70) K and Support

The BLA weights 21 kg. The device should be held by a support to avoid mechanical deformations of the beam line.

The support is not designed yet. We are working on it.

- The performed beam tests at FLASH proved the concept of BLA design.
- The only one ceramic-to-copper brazing made the BLA cost acceptable.
- We are preparing production of ~ 100 BLAs for the XFEL linac.
- We think, that 100 W heat capacity of the existing design can be extended.

DESY

- N. Mildner
- T. Ramm
- A. Gössel
- K. Jensch

A. Soltan INS

- E. Pławski
- H. Wojnarowski

Thank you

