ATOM-PROBE TOMOGRAPHIC ANALYSES OF NIOBIUM SUPERCONDUCTING RF CAVITY MATERIALS

Jason T. Sebastian*

David N. Seidman

Northwestern University Department of Materials Science and Engineering Cook Hall, 2220 North Campus Drive, Evanston, IL 60208 Northwestern University Center for Atom-Probe Tomography (NUCAPT) <u>http://arc.nucapt.northwestern.edu</u>

Jim Norem

High Energy Physics Division, Argonne National Laboratory (ANL), Argonne, IL 60439 Pierre Bauer

Technical Division, Fermi National Accelerator Laboratory (FNAL), Batavia, IL 60510

*Now at Imago Scientific Instruments, Madison, Wisconsin

1

Agenda

- Background
 - Superconducting Nb rf cavities
 - Atom-Probe Tomography (APT)
- Specimen preparation
- Preliminary APT results
 - Three analyses (separate tips)
- Conclusions and next steps

The Nb-O phase diagram - a variety of different oxide phases can form

- NbO, NbO₂, and Nb₂O₅ are the thermodynamic equilibrium phases
- Other phases (e.g., Nb_2O_3 and Nb_2O) also reported Kinetic effects must also be considered
- •

<u>Phase</u>	Composition (at. % 0)	<u>Pearson</u> symbol	Space group	Prototype
(Nb)	0 to ~9	cl2(bar)	Im3(bar)m	w
NbO	50	cP6	Pm3(bar)m	NbO
NbO ₂	66.7	t196	I41/a	
Nb ₂ O ₅	~71.4	mP99	P2/m	

Atom-probe tomography (APT) - schematic

Field evaporation - schematic

- A thermallyactivated process involving the excitation of a surface atom over a Schottky hump in the presence of an electric field
 - In an atom probe, evaporation is controlled via the use of a highvoltage pulser, or high frequency (femtosecond) pulsing laser

David N Seidman 13 July 2005

٠

NUCAPT's new local electrode atom-probe (LEAP) tomograph takes atom-probe microscopy to a new level

- Increased data collection rate (up to 72 million ions hr⁻¹)
- Expanded specimen geometry capabilities
- Analysis volumes of, for example, 50 nm \times 50 nm \times 400 nm (= 10⁶ nm³ = 10⁻³ μ m³)

Figure courtesy of Imago Scientific Instruments

David N Seidman 13 July 2005 NUCAPT'S LEAP Tomograph

Specimen preparation

1. Electropolishing

•

- 10% HF (48%) in 90% HNO₃ (68%)
- DC voltage
- "Drop off" technique
- Keep things as clean as possible
 - Rinsing (UHP water)
 - Minimal time in air (stored in desiccator under dry N_2)
- 2. Buffered Chemical Polishing (BCP)
 - 1 : 1 : 2 HF (49%) : HNO₃ (68%) : H_3PO_4 (85%)
 - No voltage
 - Replicating the setup at FNAL
- 3. Focused ion beam (FIB) milling at ANL to be done soon
 - "Site-specific" specimen preparation

Specimen preparation - electropolishing and buffered chemical polishing

Specimen preparation - electropolishing and buffered chemical polishing

Atomic sensitivity of the technique - individual fluorine atoms on and near the surface (propensity for the oxide)

13 July 2005

Center for Atom-Probe

Tomography

Complex mass spectrum - lots of complex ions

- Resolution ≈ 1/250 (FWHM)
- T = 50K
- f = 15%
- $p \approx 8 \times 10^{-11}$ torr

Nb LEAP analysis - field evaporation

Evaporation of complex ions (*very* schematic) - many different complex ions are field evaporated from the oxide layer of the tip

David N Seidman 13 July 2005

12

Atomic reconstruction of the transition through the oxide layer

We see a clear transition from oxygen (cyan) to niobium (magenta) as we move along the analysis direction

A 30 atomic percent Nb isosurface gives a better representation of the spatial gradients in atomic concentration

13 July 2005

Center for Atom-Probe

Tomography

Proxigram

The proximity histogram (proxigram) allows for the determination of quantitative concentration profiles relative to the position of an irregularly-shaped interface

Northwestern University Center for Atom-Probe Tomography

30 atomic percent Nb proxigram - we see the transition from oxygen to niobium

Hydrogen, residual gas atoms, and other "UFO" peaks make up nearly 50% of the ions collected

Hydrogen and residual gas atoms can come from "outside the specimen"

Hydrogen is extremely mobile in niobium (even at room temperature)

Removal of the hydrogen and residual gas atoms from the concentration gives a better picture of the transition through the oxide layer

We see a clear and smooth transition from Nb_2O_5 to $NbO_{0.5}$ (= Nb_2O)

Northwestern University Center for Atom-Probe Tomography

The profile corresponds, to first order, to the current models of oxide and suboxide formation on Nb

Second Nb analysis - more Nb-rich

David N Seidman 13 July 2005

22

Second Nb analysis proxigram - a glimpse at the transition from oxide to Nb metal (?)

Distance into bulk (nm)

Second analysis ... a "continuation" of the first analysis

Second analysis (Nb₂O to Nb metal [?])

First analysis (Nb₂O₅ to Nb₂O)

Third Nb analysis - an oxide metal interface

55% Nb isosurface and proxigram

Atomic sensitivity of the technique - individual fluorine atoms on and near the surface (propensity for the oxide)

13 July 2005

Center for Atom-Probe

Tomography

Conclusions and next steps

- Nanochemical, atomic scale analyses of the oxide surface and of the near-surface bulk niobium are being performed
 - "Smooth" transition from surface Nb₂O₅ to Nb₂O (and into the bulk Nb)
 - Ability to detect small number of contaminant atoms in the oxide surface and in the near-surface bulk niobium
 - Levels of oxygen in the near-surface bulk niobium (metal) of 5-10 atomic percent, which is consistent with bulk Nb-O phase diagram
- More analysis to come
 - Interpretation of mass spectra
 - Improved analysis conditions
 - Improved specimen preparation techniques (reliability and repeatability)
 - Focused ion beam (FIB) milling and/or femtosecond laser ablation
 - Many classes of samples

Classes of samples - effects of many, many variables on the atomic chemistry

Northwestern University Center for Atom-Probe Tomography

Nb LEAP analysis

A "more complete" run would capture much more of the atomic chemistry of the oxide surface and of the nearsurface bulk niobium

David N Seidman 13 July 2005

30

Specimen preparation - focused ion beam (FIB) milling of "sitespecific" LEAP specimens from niobium cavity materials

REFERENCE

Strategies for Fabricating Atom Probe Specimens with a Dual Beam FIB, M.K. Miller, K.F. Russell and G.B. Thompson Ultramicroscopy, 102 (2005) 287-298.

David N Seidman 13 July 2005

Possibility of centering a specimen on a region of interest (e.g., a grain boundary)

We will use the ANL Zeiss 1540XB dual-beam FIB to attempt "sitespecific" specimen preparation

Studies of Nb cavity materials

• SEM micrographs from P. Bauer et al.

Surfaces:

C. Chapman, D. Hicks, C. Boffo

