Triple-spoke compared with Elliptical-cell Cavities

Ken Shepard
- ANL Physics Division

12th International Workshop on RF Superconductivity

(29

RIA Driver: Elliptical Cell or Triple Spoke Option?

- Frequency

345 MHz at 4K

- Voltage
- Cryogenics
- Microphonics

805 MHz at 2 K
SRF 2005

Triple-spoke vs E-cell for the RIA Driver

SRF 2005
July 10-15, 2005
Ithaca, NY

Triple-spoke vs E-cell RIA Driver: High-energy Section

CAVITY TYPE:
Operating Temperature
Beta Geometric
Frequency
Active Length
QRs
R/Q
Epeak
Bpeak
RF Energy

E-CELL

K	2			4.2	
	0.47	0.61	0.81	0.5	0.63
MHz	805	805	805	345	345
cm	52.6	68.2	90.6	65.2	82.15
ohm	155	179	260	86	97
ohm	173	279	483	494	513
MV/m	3.34	2.79	2.19	3.0	2.9
Gauss	66	57.2	47.2	88.9	90.3
mJoule	316	330	336	419	607

$345 \mathrm{MHz} \beta=0.63$ Triple-spoke cold tests

$345 \mathrm{MHz} \beta=0.5$ Triple-spoke cold tests

JLAB/MSU (2) $\beta=0.47$ Elliptical-cell at 2 K

SRF 2005
July 10-15, 2005
Ithaca, NY

Present performance level 'bottom line’

	Six-cell Elliptical		Three-spoke	
Parameter	$\beta=0.47$	$\beta=0.62$	$\beta=0.50$	$\beta=0.63$
Frequency (MHZ)	805	805	345	345
Length (cm)	52.7	68.2	65.2	82.15
$\mathrm{E}_{\mathrm{A}}(\mathrm{MV} / \mathrm{m})$	10	12	9.9	9.4
$\mathrm{E}_{\text {PEAK }}(\mathrm{MV} / \mathrm{m})$	33.4	32.5	27.5	27.5
$\mathrm{~B}_{\text {PEAK }}(\mathrm{Gauss})$	660	572	845	849
R/Q (Ω)	173	279	492	549
Q at E_{A}	$9.50 \mathrm{E}+09$	$7.00 \mathrm{E}+09$	$8.80 \mathrm{E}+08$	$6.50 \mathrm{E}+08$
Voltage (MV)	5.3	8.2	6.5	7.7
Temperature (K)	2	2	4.2	4.2
Heat Load*	12.8	16.8	14.9	21.6
*Watts per MV - at 4.2 K				

Longitudinal Acceptance: Spoke vs. E-cell

Triple-spoke resonators
345 MHz
$E_{\text {peak }}=27.5 \mathrm{MV} / \mathrm{m}$

Baseline Design: 6-cell elliptical cavities 805 MHz
$E_{\text {peak }}=27.5 \mathrm{MV} / \mathrm{m}$

\square

ANL: Triple-spoke option is favored for RIA

- The beam dynamics are better
- Can operate at 4 K
- The mechanical stability is excellent
- linac costs will be less than for SNS, probably less than E-cell with re-designed cryostat

RIA Driver Partial beamlist: r-process beams

Ion (\%)	$\mathbf{Q}_{\text {source }}$	$\mathbf{Q}_{\text {strip1 }}$	$\mathbf{Q}_{\text {strip2 }}$	$\mathrm{I}_{\text {published }}(\mathrm{p} \mu \mathrm{A})$	Energy/A	Power (kW)
${ }^{1} \mathrm{H} /{ }^{2} \mathrm{H}$	1	-	-	>>1000	900 / 600	>400
${ }^{64} \mathrm{Ni}$ (0.91\%)	12	28	-	8*	530	174
${ }^{70} \mathrm{Zn}$ (0.6\%)	13	29-30	30	12**	521	284
${ }^{76} \mathrm{Ge}$ (7.8\%)	14	31-32	32	<1*	513	<22
${ }^{82} \mathrm{Se}$ (9.4\%)	15	32-33	34	<1*	493	<23
${ }^{86} \mathrm{Kr}$ (17.3\%)	15	33-34	36	18**	505	>400
${ }^{96} \mathrm{Zr}$ (2.8\%)	15	37-39	40	<1*	504	<28
${ }^{124} \mathrm{Sn}$ (5.6\%)	16	44-46	48-49	2.8**	468	90
${ }^{136} \mathrm{Xe}$ (17.3\%)	18	47-49	52-53	11**	460	357
${ }^{176} \mathrm{Yb}$ (12.7\%)	20-21	58-60	68-69	????	453	????
${ }^{192} \mathrm{Os} \mathrm{(41}. \mathrm{\%)}$	22-23	61-64	70-73	????	429	????
${ }^{198} \mathrm{Pt}$ (7.2\%)	23-24	62-65	72-75	????	425	????
${ }^{204} \mathrm{Hg}$ (6.8\%)	24-25	64-67	74-77	????	412	????
${ }^{208} \mathrm{~Pb}$ (52.4\%)	24-25	65-68	76-80	2x4.3**	429	359
${ }^{232}$ Th (100\%)	27-28	69-73	85-88	????	416	????
${ }^{238} \mathrm{U} \quad$ (99.3\%)	28-29	70-74	87-90	2x1.25	412	114

Beam-Loss Calculations

- Final step of BD design studies
- Simulations on the multi-processor computer
- Up to 500 randomly seeded accelerators with all types of errors and misalignments, typically 200 seeds
- Beam steering is applied
- Wide range of rf errors, thickness fluctuation and their combinations have been studied
- Number of tracked particles:
- Up to 10^{6}, typically $2 \cdot 10^{5}$ in each seed
- Total number of simulated particles 40 million, some cases up to 200 million.

The RIA Driver Linac

Baseline: About 1200 beam line elements: ~ 400 rf resonators, 90 solenoids, 100 quads, 16 bending magnets, ...

805 MHz Elliptical-cell design: Losses in Watts/m

Static /Dynamic err.

$$
\begin{aligned}
& 1.5 \% \quad / 0.3 \% \\
& 1.5 \mathrm{deg} / 0.3 \mathrm{deg}
\end{aligned}
$$

2.0 \% / 0.3 \%
$2.0 \mathrm{deg} / 0.3 \mathrm{deg}$
1.0 \% / 0.5%
$1.0 \mathrm{deg} / 0.5 \mathrm{deg}$
$1.5 \% \quad 0.5 \%$
$1.5 \mathrm{deg} / 0.5 \mathrm{deg}$

- Misalignment errors are kept at their typical values.
- Stripper thickness fluctuation: 10\% FWHM.
- Transverse correction applied
- Correction for RF static error applied
- Simulated: 50 seeds with 2E+5 particles.
$>$ To keep the losses below the 1 W/ m limit, the static errors should be about (1\% , 1 deg) and the dynamic errors about (0.5%, 0.5 deg).

345 MHz Triple-Spoke design: Losses in Watts/m

Static /Dynamic err.
$\begin{array}{ll}3.0 \% & 0.3 \% \\ 3.0 \mathrm{deg} / 0.3 \mathrm{deg}\end{array}$
4.0 \% / 0.3 \%
$4.0 \mathrm{deg} / 0.3 \mathrm{deg}$
3.0 \% / 0.5 \%
$3.0 \mathrm{deg} / 0.5 \mathrm{deg}$
4.0 \% / 0.5 \%
$4.0 \mathrm{deg} / 0.5 \mathrm{deg}$

- Same conditions as for the Baseline design except for RF static and dynamic err.
- Double the RF static \& dynamic errors used for the Baseline design.
$>$ No losses observed at the typical error values of (2\% , 2 deg) static and (0.5%, 0.5 deg) dynamic
$>$ Up to static errors of (4\% , 4 deg) and dynamic errors of ($0.5 \%, 0.5 \mathrm{deg}$) the losses are still below the $1 \mathrm{~W} / \mathrm{m}$ limit.
> The Triple-Spoke design is more tolerant of errors

Proton Driver Linac Structure - Spoke cavities to 410 MeV

Major Linac Sections

Front end	Squeezed ILC-style	ILS-style
325 MHz	1300 MHz	1300 MHz

Stability Diagram (transverse motion)

Unstable due to parametric resonance

$$
\mu_{T}=\frac{\mu_{L}}{2}
$$

Linac operating tunes (black dots)

Stable for all particles inside the separatrix

$\Delta_{s}=\frac{\pi}{2} \frac{1}{(\beta \gamma)^{3}} \frac{S_{f}^{2}}{\lambda} \frac{e E_{m} \sin \varphi_{s}}{m_{0} c^{2}}$
Defocusing Factor

