

Triple-spoke compared with Elliptical-cell Cavities

Ken Shepard - ANL Physics Division

12th International Workshop on RF Superconductivity

Argonne National Laboratory Operated by The University of Chicago for the U.S. Department of Energy

RIA Driver: Elliptical Cell or Triple Spoke Option?

- Voltage
- Cryogenics
- Microphonics

345 MHz at 4K

805 MHz at 2K

SRF 2005

July 10-15, 2005

Ithaca, NY

Triple-spoke vs E-cell for the RIA Driver

3

CAVITY TYPE:	E-CELL			TRIPLE SPOKE		
Operating Temperature	K	2			4.2	
Beta Geometric		0.47	0.61	0.81	0.5	0.63
Frequency	MHz	805	805	805	345	345
Active Length	ст	52.6	68.2	90.6	65.2	82.15
QRs	ohm	155	179	260	86	97
R/Q	ohm	173	279	483	494	513
Epeak	MV/m	3.34	2.79	2.19	3.0	2.9
Bpeak	Gauss	66	57.2	47.2	88.9	90.3
RF Energy	mJoule	316	330	336	419	607

345 MHz β=0.63 Triple-spoke cold tests

5

345 MHz β =0.5 Triple-spoke cold tests

JLAB/MSU (2) β=0.47 Elliptical-cell at 2 K

Present performance level 'bottom line'

Paramotor	Six-cell	Elliptical	Three-spoke			
Falametei	β = 0.47	β = 0.62	β = 0.50	β = 0.63		
Frequency (MHZ)	805	805	345	345		
Length (cm)	52.7	68.2	65.2	82.15		
E _A (MV/m)	10	12	9.9	9.4		
Е _{РЕАК} (MV/m)	33.4	32.5	27.5	27.5		
B _{PEAK} (Gauss)	660	572	845	849		
R/Q (Ω)	173	279	492	549		
Q at E _A	9.50E+09	7.00E+09	8.80E+08	6.50E+08		
Voltage (MV)	5.3	8.2	6.5	7.7		
Temperature (K)	2	2	4.2	4.2		
Heat Load*	12.8	16.8	14.9	21.6		
*Watts per MV - at 4.2 K						

Longitudinal Acceptance: Spoke vs. E-cell

Triple-spoke resonators 345 MHz E_{peak}= 27.5 MV/m Baseline Design: 6-cell elliptical cavities 805 MHz E_{peak}=27.5 MV/m

ANL: Triple-spoke option is favored for RIA

The beam dynamics are better

- Can operate at 4 K
- The mechanical stability is excellent

 linac costs will be less than for SNS, probably less than E-cell with re-designed cryostat

RIA Driver Partial beamlist: r-process beams

lon (%)	Q _{source}	Q _{strip1}	Q _{strip2}	I _{published} (pμA)	Energy/A	Power (kW)
¹ H / ² H	1	-	-	>>1000	900 / 600	>400
⁶⁴ Ni (0.91%)	12	28	-	8*	530	174
⁷⁰ Zn (0.6%)	13	29-30	30	12**	521	284
⁷⁶ Ge (7.8%)	14	31-32	32	<1*	513	<22
⁸² Se (9.4%)	15	32-33	34	<1*	493	<23
⁸⁶ Kr (17.3%)	15	33-34	36	18**	505	>400
⁹⁶ Zr (2.8%)	15	37-39	40	<1*	504	<28
¹²⁴ Sn (5.6%)	16	44-46	48-49	2.8**	468	90
¹³⁶ Xe (17.3%)	18	47-49	52-53	11**	460	357
¹⁷⁶ Yb (12.7%)	20-21	58-60	68-69	????	453	????
¹⁹² Os (41.%)	22-23	61-64	70-73	????	429	????
¹⁹⁸ Pt (7.2%)	23-24	62-65	72-75	????	425	????
²⁰⁴ Hg (6.8%)	24-25	64-67	74-77	????	412	????
²⁰⁸ Pb (52.4%)	24-25	65-68	76-80	2x4.3**	429	359
²³² Th (100%)	27-28	69-73	85-88	????	416	????
²³⁸ U (99.3%)	28-29	70-74	87-90	2x1.25	412	114

Beam-Loss Calculations

- Final step of BD design studies
- Simulations on the multi-processor computer
- Up to 500 randomly seeded accelerators with all types of errors and misalignments, typically 200 seeds
- Beam steering is applied
- Wide range of rf errors, thickness fluctuation and their combinations have been studied
- Number of tracked particles:
 - □ Up to 10^6 , typically $2 \cdot 10^5$ in each seed
 - Total number of simulated particles 40 million, some cases up to 200 million.

The RIA Driver Linac

Baseline: About 1200 beam line elements: ~ 400 rf resonators, 90 solenoids, 100 quads, 16 bending magnets, ...

805 MHz Elliptical-cell design: Losses in Watts/m

- Misalignment errors are kept at their typical values.
- Stripper thickness fluctuation: 10% FWHM.
- Transverse correction applied
- Correction for RF static error applied
- Simulated: 50 seeds with 2E+5 particles.
- To keep the losses below the 1 W/m limit, the static errors should be about (1%, 1 deg) and the dynamic errors about (0.5 %, 0.5 deg).

Ithaca. NY

345 MHz Triple-Spoke design: Losses in Watts/m

- Same conditions as for the Baseline design except for RF static and dynamic err.
- Double the RF static & dynamic errors used for the Baseline design.
- No losses observed at the typical error values of (2%, 2 deg) static and (0.5%, 0.5 deg) dynamic
- Up to static errors of (4%, 4 deg) and dynamic errors of (0.5%, 0.5 deg) the losses are still below the 1 W/m limit.
- The Triple-Spoke design is more tolerant of errors

Technology

SRF 2005

Major Linac Sections

Stability Diagram (transverse motion)

