

Rare Isotope Accelerator RIA Project

MICHICAN STATE MICHICAN STATE

Richard C. York July 2005

12th International Workshop on SRF

RIA Status

- **Strong Nuclear Science community support**
- Nuclear Science Advisory Committee (NSAC) Long Range Plan (April 2002) – RIA highest priority new facility
- "The Rare Isotope Accelerator (RIA) is our highest priority for major new construction...'
 - <u>Reaffirmed by NSAC June 2005</u>
- Tied for third position for *near term* priorities in DOE 20-year plan (November 2003)
 - RIA CD-0 done early 2004

21
\bigcirc
S
Z

DOE 20-Year Facilities Outlook

Near-Term Priorities

- 1. ITER
- **UltraScale Scientific Computing Capability** પં
- 3. Tie for 3rd position
- Joint Dark Energy Mission
- Linac Coherent Light Source Protein Production & Tags
- Rare Isotope Accelerator (RIA)
- 7. Tie for 7th position
- **Characterization & Imaging of Molecular Machines**
- 8. CEBAF 12 GeV Upgrade 20
- **Energy Sciences Network (ESnet) Upgrade 20**
- **10. National Energy Research Scientific Computing Center Upgrade**
- **11. Transmission Electron Achromatic Microscope**
- 12. BTeV

RIA Scale

- **RIA project cost (in FY2005 dollars)**
- TEC = ~\$780 M (\$690 M w/o contingency)
- TPC (TEC + Pre-ops, etc) = ~ 995 M\$ over $\sim 7-8$ years
- **Operations ~90 M\$/year similar to JLab**

RIA Benefits

- Important benefits for basic & applied science
- Study properties of a large number of *isotopes* that heretofore only existed in cosmos
- **Quantitative information for theories of stellar** evolution & formation of elements in cosmos
- Support space-based astronomical observations by theoretical predictions of stellar evolution providing quantitative comparisons with
- predicting *properties of nuclei with unusual* **Experimental data to refine theories for** neutron-to-proton ratios

RIA Benefits - cont'd

- Support stockpile stewardship
- Only way to obtain *important reaction cross* sections on unstable isotopes & to improve theoretical models
- Improved diagnostic tools via isotopic analysis of materials from underground nuclear tests
 - **Produce almost any isotope for radio-medical** research
- **Materials Science & other applications**
- Implantation for wear & corrosion studies
- Space radiation effect studies
- Material modifications doping & annealing techniques •

RIA Intensities

Proton Number

r-process Simulation

MICHICAN STATE MICHICAN STATE MICHICAN STATE MICHICAN STATE N V P S T Y N V P S T Y U V V P S T Y U V V P S T Y U V P S S T Y

 ∞

Production of Rare Isotopes at Rest

Target Fragmentation

1. Random removal of protons and neutrons from heavy target nuclei by energetic light projectiles (preequilibrium and equilibrium emissions).

6

Classical ISOL Facility Concept

- **Excellent beam quality and low beam energies are possible**
 - Limited to longer lifetimes $(\tau > 1s)$
- chemical properties of element: difficult, e<mark>lement-s</mark>pecific **Isotope extraction and ionization efficiency depend on** development paths
- The most neutron-rich isotopes will have too low intensities and too short lifetimes to be suitable for re-acceleration

10

Production of Rare Isotopes in Flight

Projectile Fragmentation

Schematic of a Projectile Fragmentation Facility

- High-energy beams (E/A > 50 MeV) of modest beam quality
 - **Physical method of separation, no chemistry**
- Suitable for short-lived isotopes ($\tau > 10^{-6}$ s)
- Low-energy beams are difficult
- Solution stop in gas cell & reaccelerate

RIA Technical Risks

- No "Show Stoppers" but significant challenges
- Substantial efforts [~5 years] on the Driver Linac
- Optimization strategies & detailed considerations
- **Relatively less activity on the target and** experimental areas
- In the last years, these arenas have seen dramatic increase in focus
- Significant challenges and issues recognized

RIA Driver Linac Specifications

- Accelerate any stable isotope protons through uranium to $\ge 400 \text{ MeV/u}$
- Beam power -
- 100 kW minimum
- 400 kW if ion source capable
- 100% duty factor (cw)

PHYSICAL REVIEW LETTERS, V. 86, No. 13, 2001

Multiple-Charge-State Ion Beam Acceleration Demonstrated at ATLAS (ANL)

Accelerated Beam Through the Booster 94% Transmission of Multi-q

Multi-q beam energy and energy spread

Driver Linac Common Concepts

- **Multiple charge state acceleration (>Xe)**
- Two stripping stations (>Xe)
- **Room temperature technology through RFQ**
- Excepting superconducting ECR
- Superconducting technology beyond RFQ
- Superconducting solenoid focusing in first two linac segments

S	NS(

Superconducting Driver Linac

- Design driven by 400 MeV/nucleon uranium
- 28+ & 29+ U injected into SC linac at 292 keV/u
- Segment I
- Accelerated to ~12 MeV/u & stripped
- Segment II
- 5 charge states (73±2) accelerated to ~90 MeV/u
- Segment III
- Stripped and 3 charge states (88 ±1) accelerated to 400 MeV/u

Driver Linac Sample Beam List

Multiple charge state acceleration for >Xe

Final Energy (MeV/u)	1028	LLL	622	260	999	510	470	400
N	1	2	1	8	18	36	54	92
V	1	\mathfrak{S}	2	18	40	86	136	238
Ion	Η	³ He	D	0	Ar	Kr	Xe	N

ANL Proposed RIA Layout

RARE ISOTOPE ACCELERATOR

All ANL prototypes have operated at > 9 MV/m at 4.2K 115 MHz β=0.15

Steering-Corrected QWR

172.5 MHz β=0.26 HWR

345 MHz Triple-

MSU Proposed RIA Layout

MSU RIA Driver Linac Cavity Array

RIA Linac & BSY

Driver Linac Front End

VENUS Source (LBNL)

Two-q RFQ assembly design

one-segment RFQ resonator Exploded View of

ANL 57.5 MHz RFO

Aluminum Cold Model

MSU 80.5 MHz RFO

MAFIA RF Modeling

Magnetic flux density in y-z cross section (thru vertical vanes)

End Flange

Name (unit)	Value
Resonator length (m)	4
Tank inner diameter (m)	0.54
Resonant cell number	6
Window width (m)	0.56
Window height (m)	0.17
Average aperture radius (cm)	0.55
Vane tip radius (cm)	0.45
Operating mode frequency (MHz)	80.5
Nearest quadrupole mode (MHz)	88.6
Nearest dipole mode (MHz)	93.8
Specific shunt impedance (kQ·m)	389
Quality factor	13000
Inter-vane voltage (kV)	70
Peak electric field (MV/m)	14
Peak magnetic field (mT)	II
Total power dissipation (kW)	51

Outer Tank Total Length=4m

Vanes

End Flange Removed

Section Cut 90⁰

End-to-End Simulations

• Included

- Experimentally based input beams
- Misalignment and rf errors
- Charge-stripping foil model
- Adequate transverse and longitudinal performance for multi-charge state beam acceleration
 - Transverse and longitudinal emittance growths acceptable
- No beam loss observed

RIA Front End Simulation Results

- **Entrance of LEBT** 50 Two charge-state U²³⁸ beam acceleration
- Beam intensity: 8 pµA
- 100kV high voltage platform
- Phase spaces based on LBNL emittance measurement
- Small transverse emittance growth
 - Beam emittance at SCL entrance

5.0

180

<u>1</u>0

00

50

С

Xb (mraq)

-50

50

С

YP (mrad)

-50

2.5

-2.5 0.0 Y (mm)

-100 L--5.0

5.0

2.5

-2.5 0.0 X (mm)

20

Driver Linac Stripping Chicanes

- High symmetry good higher-order corrections
- Positioned to support longitudinal matching at

-1.0

Charge-Stripping Foil Model

- **Based on simulation results from code TRIM**
- Elastic and inelastic scattering
- Energy loss and straggling
- Carbon foils with $\pm 5\%$ thickness variation used in simulation
- Small transverse beam spot (~3mm) and Short bunch length (~8° rf) at both stripping locations

Stripping	Emittance Growth
Foil	Transverse/Longitudinal
1 st	~21%/~64%
2nd	~45% / ~103%

Misalignment and RF Errors

	Misalign	nment	Maximum	RF Errors for
RIA Driver	$\sigma_{x,y}$ [n	nm]	SRF	Cavity
Linac	Focusing	SRF	Phase	Amplitude
	Element	Cavity	[deg]	[%]
Segment I	0.5			
Segment II	0.5	1.0	±0.5	±0.5
Segment III	1.0			

- Misalignment Gaussian distribution cut-off at 20
- RF errors uniform distribution

Alignment Correction Scheme

- Segments I, II Horizontal/vertical dipole windings for each focusing solenoid magnet
- Segment III Warm dipole correctors beside focusing quadrupole doublet
- All BPMs in the warm region between cryomodules
- **Central orbit distortions limited within ± 5mm after corrections** in all three segments of driver linac

Driver Linac Transverse End-to-End

Segments I & II Cryostats

Isolated vacuum & superconducting solenoid focusing

Low-B Cryomodule Prototype

Segment III Cryostats

Bopt=0.49 Prototype Systems Test

Microphonics Control

RIA Layout - BSY

Driver Linac Switch Yard

RIA Layout - Target Area

ISOL Target Station

Pre-Separator

Summary

- **RIA facility designs have been developed**
- Driver linac and beam transport
- Well developed detailed designs
- No technical "show stoppers"
- Production & experimental area concepts developed
- No "show stoppers" but significant challenges
- R&D path to solutions identified
- Ready to go!

THE END