Experience with the TESLA Test Facility

Lutz.Lilje@desy.de DESY -MPY-SRF 2005 11.7.2005

- Overview on the TESLA Test Facility (TTF)
- Operation of the superconducting linac
 - Properties of the accelerator modules
- R&D on superconducting cavities
 - EP on multi-cells
 - Single-cell program
- TTF Program 2005

Thank you...

- ... to B. Faatz, J. Iversen, H. Weise, B. Petersen, D. Reschke, A. Matheisen, Jacek Sekutowicz for some of the viewgraphs.
- ... the many people having worked on TTF.
 - These are results of work over many years!

TESLA Test Facility (TTF 1, 1995-2002)

experimental hall

Commissioning: 2004/5 User experiments: 2005

Lutz Lilje DESY -MPY-

12th International Workshop on RF Superconductivity Cornell University, Ithaca, New York, USA - July 10-15, 2005

TTF Mission

- TTF serves two purposes
 - R&D for a superconducting Linear Collider
 - E.g. Cavity preparation
 - Integration towards full accelerator modules
 - E.g. HOM couplers, power couplers, tuner
 - R&D for free-electron lasers
 - VUV-FEL user facility
 - Preparation for the European XFEL project
 - Industrial studies based on TTF experiences

TESLA Test Facility Linac FEL User Facility in the nm Wavelength Range (VUV)

Lutz Lilje DESY -MPY-

12th International Workshop on RF Superconductivity Cornell University, Ithaca, New York, USA - July 10-15, 2005

Beam and FEL Properties

- Show some of the more recent measurements with the TTF facility
 - Energy Spread
 - Emittance
 - FEL radiation power

Energy Spread

- Energy measured using the OTR screen in the dispersive section of the first bunch compressor
- Energy jitter w/o drift dE/E = 2.6·10⁻⁴ at 127 MeV
- Including the drift yields 7.10-4
- Uncorrelated energy spread < 25 keV (resolution limited)

Lutz Lilje DESY -MPY-

Emittance for 1nC (100 %): 2 mm mrad

Lutz Lilje DESY -MPY-

12th International Workshop on RF Superconductivity Cornell University, Ithaca, New York, USA - July 10-15, 2005

Emittance for 1nC (90 %): 1.4 mm mrad

Lutz Lilje DESY -MPY-

FEL Radiation: Results of January, 2005

Lutz Lilje DESY -MPY-

12th International Workshop on RF Superconductivity Cornell University, Ithaca, New York, USA - July 10-15, 2005

Franc. 6 = 27720 94.07.22 21. Nar. 2005

FEL Radiation: Results of May, 2005

• Intensity measurements from gas ionisation monitor

Screen copy from digital scope:

Lutz Lilje DESY -MPY-

12th International Workshop on RF Superconductivity Cornell University, Ithaca, New York, USA - July 10-15, 2005

Shift Summary of May 2005

shift summary week 20 16-May-2005 to 22-May-2005 level first half of the week: 3 μJ max, 0.5 μJ av level end of week: 15 to 20 μJ max, 5 μJ av.

 tuning SASE on orbit mainly, scanning steerers in front of undulator

 Up to Thursday: 3 to 4 μJ max, <0.5 μJ average. After extensive scanning of the orbit high SASE signal, which presumably saturated the MCP 8 to 9 μJ peak, 3 to 5 μJ ⁻ average, stable over several shifts

- Gas detector commissoned: first hint of a much higher SASE energy of 20 μJ

• Confirmation of SASE pulse energy by an independent method: MCP1 saturates, MCP3 and MCP4 have been calibrated against MCP1 with spontaneous radiation. After this, MCP1/MCP3/MCP4 show similar SASE around 8 μJ max, 2-3 μJ av.,

- Up to 20 μ J peak and 5 μ J average on MCP recorded

This SASE spectrum is about 10 times more intense than before and exhibits only a width of 0.05nm

Lutz Lilje DESY -MPY-

TTF in the last user week: 30.06.2005

- Further improvement of SASE pulse energy:
 - Up to : 42 μ J
- Now:
 - Module ACC5
 performance
 measurements
 - Then go back to user operation

Lutz Lilje DESY -MPY-

12th International Workshop on RF Superconductivity Cornell University, Ithaca, New York, USA - July 10-15, 2005

Dark Current (d.c.) Measurements

- The on-axis d.c. was measured for ACC4 / ACC5.
 - setup incompatible with accelerator operations
- Only one cavity in module ACC5 produced a mentionable dark current.
 - Captured dark current measured only at exit ACC5
 - No d.c. observable from this cavity at entrance ACC4
- The d.c. decreased as a function of time
 - after module commissioning in August 2003
 - 100 nA at 16 MV/m
 - increasing by a factor 10 for each 4.4 MV/m gradient step
 - i.e. approx. 10 µA at 25 MV/m
 - May 2004
 - 100 nA at 20 MV/m
 - increasing by a factor 10 for each 3.7 MV/m gradient step,
 - i.e. 1.2 µA at 25 MV/m
 - Detuning of cavity no. 6 left over an integrated dark current of the order of 20 to 25 nA at 25 MV/m average gradient
 - September 2004 (extended operation at 20-25 MV/m)
 - 250 nA at 25 MV/m
 - July 2005
 - No d.c. measurement, but cavity improved further
- Reminder:
 - The TESLA limit is defined by additional cryogenic losses:
 - The captured d.c. has to stay below 50 nA per cavity (see TESLA Report 2003-10).

Lutz Lilje DESY -MPY-

12th International Workshop on RF Superconductivity Cornell University, Ithaca, New York, USA - July 10-15, 2005

Performance of Accelerator Module 5

Lutz Lilje DESY -MPY-

12th International Workshop on RF Superconductivity Cornell University, Ithaca, New York, USA - July 10-15, 2005

Experience with Accelerator Modules

- 10 modules have been built
- Experience with several thermal cycles as well as long time operation were studied
- Latest cryostat design (Type III) has shown good performance for etched cavities
 - the assembly problems occurred are understood
 - i.e. no problems with power coupler alignment
 - Dark current measurements show acceptable performance
 - Dark current has been reduced with operational time
 - Not fully understood
 - Further detailed tests cavity / module performance (valuable for ILC and XFEL) in summer this year -> Now!
- Detailed assembly procedures available
 - Study on assembly together with industry ongoing
- Minor modifications will be introduced for the XFEL (120 modules)

Lutz Lilje DESY -MPY-

12th International Workshop on RF Superconductivity Cornell University, Ithaca, New York, USA - July 10-15, 2005

Cleanroom String Assembly

See Posters: ThP05, ThP08, ThP13, ThP14: *N. Steinhau-Kühl, A. Matheisen et al.*

The inter-cavity connection is done in class 10 cleanrooms

Lutz Lilje DESY -MPY-

12th International Workshop on RF Superconductivity Cornell University, Ithaca, New York, USA - July 10-15, 2005

Module Test Stand

- Allows cryogenic tests and RF measurements independent from the LINAC
 - No beam tests
 - Dark current measurements will be integrated
- EU support (EUROFEL)

Lutz Lilje DESY -MPY-

12th International Workshop on RF Superconductivity Cornell University, Ithaca, New York, USA - July 10-15, 2005

R&D on Cavity Preparation

- Electropolishing is the most promising surface preparation technique for superconducting cavities
 - Is baseline also for the XFEL
 - Try to avoid 1400°C furnace treatment for postpurification
 - DESY EP setup accumulated a lot of operational experience
 - Important for a new industrial study on cavity preparation
 - For TESLA cost etimates have been based on etching (+1400°C furnace) treatment
 - Recently problems with field emission
 - Investigations are ongoing to improve quality control
- Part of this work is supported by the EU (CARE Programme)

See Posters: ThP05, ThP08, ThP13, ThP14: *N. Steinhau-Kühl, A. Matheisen et al.*

Lutz Lilje DESY -MPY-

Electropolishing setup at DESY

- First 9-cell cavities were successfully treated.
- Facility runs continuously

Lutz Lilje DESY - MPY-

12th International Workshop on RF Superconductivity Cornell University, Ithaca, New York, USA - July 10-15, 2005

Electropolishing: Test Results

Problems: Reproducibility in the EP Process

Lutz Lilje DESY -MPY-

12th International Workshop on RF Superconductivity Cornell University, Ithaca, New York, USA - July 10-15, 2005

Cavity Test Inside a Module (ctd.)

- One of the electropolished cavities (AC72) was installed into an accelerating module for the VUV-FEL
- Very low cryogenic losses as in high power tests
- Standard X-ray radiation measurement indicates no radiation up to 35 MV/m

Lutz Lilje DESY -MPY-

12th International Workshop on RF Superconductivity Cornell University, Ithaca, New York, USA - July 10-15, 2005

Single Cell Cavity Program for the XFEL

- Main objectives
 - Qualifying of new Nb suppliers
 - Cabot (USA)
 - GIREDMET (Russia)
 - Plansee (Austria)
 - Ningxia Orient Tantalum Industry Co. (China)
 - Rework the specification for fabrication of 9- cell cavity
 - Check the eight hours rule etc.
 - Rework the Nb specification:
 - Nb with high thermal conductivity (RRR 700-900)
 - Check the Ta content
 - Cavity from ingot with very large grain
- First step: qualification of the DESY EB welding device

See Posters: ThP27: J. Iversen et al.

Lutz Lilje DESY -MPY-

First Single-cell welded at DESY

- Detailed preparation
 - Cavity made of niobium sheets (production 1999)
 - Deep drawing of cups at a company
 - Complete machining, electron beam welding at DESY
 - 150µm EP@Henkel,
 - 800 °C
 - 130µm EP@Henkel,
 - HPR + bake
 - add. HPR (after bake necessary due to field emission)

Electropolishing at Henkel

- Electropolishing at Henkel can produce very high gradient (up to 40 MV/m), high Q0 cavities
- Improved quality control measures at DESY and Henkel
 - Electrolyte-Management
 - Improved parameter-control
- Further cavities will be treated
- 1.3 GHz three-cell cavities can also be treated

See Posters: ThP06: C. Hartmann et al.

Lutz Lilje DESY -MPY-

12th International Workshop on RF Superconductivity Cornell University, Ithaca, New York, USA - July 10-15, 2005

TTF Program 2005

• TTF accelerator studies

- 12 weeks accelerator studies
 - E.g. Module measurements in Summer 2005
 - LLRF operation close to cavity limits
- 13 weeks FEL studies (most of that underway)
- 19 weeks user operation
- Maintenance (1day/week + additional weeks for large components e.g. modulators, klystrons)
- Build up module test stand (end 2005)
- Future
 - Installations in Summer 2006 towards 1GeV energy
 - M6 (aimed at 35 MV/m)
 - M5 repair
 - M3* exchange
 - Third harmonic 3.9 GHz RF system
- Cavity R&D

Summary

TTF offers

- an opportunity to learn about the superconducting RF technology from a single cavity to a full accelerator module
- an accelerator environment for extensive testing and development towards reliable operation of a superconducting electron linear accelerator
- This is of importance for the future linear accelerator projects like the XFEL and the ILC

Lutz Lilje DESY -MPY-

Performance of Accelerator Module 5

Lutz Lilje DESY -MPY-

12th International Workshop on RF Superconductivity Cornell University, Ithaca, New York, USA - July 10-15, 2005

High Gradient Performance (Etched Cavities)

Lutz Lilje DESY -MPY-

12th International Workshop on RF Superconductivity Cornell University, Ithaca, New York, USA - July 10-15, 2005

The TTF Linac Installation

Lutz Lilje DESY -MPY-

Dark Current Measurements

- The on-axis dark current (d.c.) was measured for modules ACC4 / ACC5.
- Only one cavity in module ACC5 produced a mentionable dark current.
 - Captured dark current measured only at exit ACC5
 - No d.c. observable from this cavity at entrance ACC4
- The d.c. decreased as a function of time
 - after module commissioning in August 2003
 - 100 nA at 16 MV/m ٠
 - increasing by a factor 10 for each 4.4 MV/m gradient step
 - i.e. approx. 10 µA at 25 MV/m
 - May 2004
 - 100 nA at 20 MV/m
 - increasing by a factor 10 for each 3.7 MV/m gradient step,
 - i.e. 1.2 µA at 25 MV/m
 - September 2004 (extended operation at 20-25 MV/m)
 - 250 nA at 25 MV/m
- Detuning of cavity no. 6 left over an integrated dark current of the order of 20 to 25 nA at 25 MV/m average gradient
- **Reminder:** ۰
 - The TESLA limit is defined by additional cryogenic losses:
 - The captured d.c. has to stay below 50 nA per cavity (see TESLA Report 2003-10).

(max 🕥 min) over pi/2

Lutz Lilje DESY -MPY-

ILC R&D - But also XFEL

a must:

- HPP of cavities to cure field emission
- long term operation of M5 at high gradients in steps from 20 MV/m to 25+MV/m:
 - what are the typical problems?
 - any change in dark current?
 - how close can we go to the gradient limit?
- processing behaviour after shut down

nice to have:

- Lorentz-force detuning of individual cavities at high gradient
- long beam pulse in ACC1/C5 at 35 MV/m
- optimized piezo compensation ACC1/C5
- RF-distribution optimized with respect to maximum gradient

in general

- many LLRF operational aspects as well as feedback issues

Lutz Lilje DESY -MPY-

12th International Workshop on RF Superconductivity Cornell University, Ithaca, New York, USA - July 10-15, 2005

17.5.2005

important:

- repeat test of all cavities

detuning of individual cavities compare rf calibration with beam

- cryo losses vs. operation time

-check cavity alignment with beam

ILC R&D - But also XFEL

in general

- develop robust algorithm for Lorentz force compensation / piezo tuners at M6 and M1/C5.
- failure recogination and exception handling, esp.close to performance limit
- measurement and optimization of amplitude and phase stability (within bunch train, from train to train, long time)
- automated operation (FSM) of LLRF
- test next generation of LLRF (developed for XFEL: increased ampl. and phase stability)
- beam based feedback algorithms (energy, phase, bunch length)

	More specific (with beam)	More specific (without beam)	
	o measure field stability with beam	o LO optimization for downconverter	
	o adaptive feedforward (RF only and for beam energy)	o check M.O. level and frequency distribution	
	o exception handling (quench, operation close to the limit)	o measure phase stability of frequency distribution system	
	o calibration of gradien and phase	o upgrade of downconverter	
	o single bunch transient detection	o remote control of attenuators (probe, forward / reflected, power cables)	
	o phase drift betwenn RF and beam		J
	o beam phase with respect to RF phases		
	o study EMI/EMC (down converter) / reduce noise		
	o crosstalk between RF systems		
	o test new FPGA based feedback at the RF Gun.		
	o test new FPGA based Feedback at ACC1		
	o develop new control algorithms	al Workshon on RF Superconductivity 17.5.2	
L	o test LLRF FSM with beam	aca. New York. USA - July 10-15. 2005	.005
	5112000		