

Structures for RIA and FNAL Proton Driver

Speaker: Mike Kelly

12th International Workshop on RF Superconductivity July 11-15, 2005

Argonne National Laboratory

A U.S. Department of Energy Office of Science US. Department of Energy Operated by The University of Chicago

Introduction: RIA and the Proton Driver

Why discuss these two machines together?

	Particle	# of	Duty
	type	Cavities	Factor
RIA	lon (H thru U)	~400-500	CW
Proton	lon	~450	Pulsed
Driver	(H-)		~1%

See Talks Friday July 15: "Rare Isotope Accelerator", R. York

"Proton Driver", W. Foster

Outline

Cavity arrays: RIA and Proton Driver Cavity processing, assembly

Test Results

Mechanical Issues (microphonics & Lorentz detuning)

Review MSU Structures for RIA: 805/10 MHz Bunch

MSU RIA Cavity Baseline (805/10 MHz Bunch)

Beta geom	Cavity type	Freq (MHz)	Length (cm)	E _{ACC} (MV/m)	Number Cavities
0.04	QWR	80.5	18	4.1	18
0.06	QWR	80.5	21	5.6	56
0.16	QWR	161.0	19	5.2	90
0.28	HWR	322.0	19	6.8	208
0.47	6-Cell	805.0	55	10	14
0.47	6-Cell	805.0	55	10	44
0.61	6-Cell	805.0	68	12	64
0.81	6-Cell	805.0	91	12.6	32

Total # Cavities ~ 500

Review ANL Structures for RIA: 805/14 MHz Bunch

Open Technical Option: Triple-Spoke Resonators

See Talks/Discussions "Spoke vs Elliptical cavities for beta = 0.5", Wed, July 13th

"Low-beta cavity design", A. Facco, SRF 2005

"Low and intermediate beta cavity design", J. Delayen, SRF 2003

ANL RIA Cavity Baseline (805/14 MHz Bunch)

Beta geom	Cavity type	Freq (MHz)	Length (cm)	E _{ACC} (MV/m)	Number Cavities
0.02	Fork	57.5	20	4.0	2
0.03	Fork	57.5	25	4.0	5
0.06	QWR	57.5	20	6.8	28
0.15	QWR	115.0	25	6.3	48
0.26	HWR	172.5	30	6.9	80
0.39	2-Spoke	345.0	38	6.0	56
0.50	3-spoke	345.0	65	9.9	69
0.63	3-spoke	345.0	82	9.4	96
0.47	6-Cell	805.0	55	8.1	54
0.61	6-Cell	805.0	68	10.2	88
0.81	6-Cell	805.0	91	12.6	32

Total # Cavities ~ 400

Open technical choice: 3-Spoke or e-cell

FNAL Proton Driver Linac

Proton Driver Cavity Array

Design & Fabrication

Technology

Cavity Surface Preparation, Assembly

Low- and mid-beta groups have universally adopted clean techniques developed at DESY, KEK, JLAB

100-200 microns removed using BCP and/or EP

1-hour or more HPR in a clean room area

Assembly of coupler and vacuum system in class-100 area

SRF 2005

July 11-15, 2005

Michael Kelly, ANL Physics Division

Results: Beta~0.15-16 Quarter-wave Resonators

SRF 2005

July 11-15, 2005

Michael Kelly, ANL Physics Division

Results: Beta~0.25 Co-axial Half-wave Resonators

Results: Beta=0.49 Elliptical-cell Cavities

(See Grimm et al. THP70, LINAC 2004)

SRF 2005

Michael Kelly, ANL Physics Division

Results: Beta=0.40, 0.50 and 0.63 Multi-Spoke Cavities

SRF 2005

July 11-15, 2005

Michael Kelly, ANL Physics Division

Results: Beta=0.61 and 0.81 SNS Elliptical-cell

SEE: Ozelis et al. TPPT079 PAC 2005 and I. Campisi, MoA02 SRF 2005

SRF 2005

July 11-15, 2005

Michael Kelly, ANL Physics Division

Fast Tuning: Microphonics, Lorentz Detuning

Overcoupling One rf supply/cavity (RIA Baseline)

Klystron/Fast ferrite tuner (Proton Driver Baseline)

Piezoelectric or magnetostrictive mechanical tuner

Used for compensation of microphonics or Lorentz

detuning

Voltage Controlled Reactance (VCX)

Currently an option only for low frequency (QWR)

structures

All require further development for mid- and high-beta RIA cavities

See Talk: Tuesday July 12, "Pulsed-operation of SC spoke cavities"

Z. Conway (Argonne)

Microphonics, Fast Tuning

(See Grimm et al. THP66, LINAC 2004)

Microphonics, Fast Tuning

Conclusion

Development of superconducting cavities for RIA is well-advanced

Cavity gradients required for RIA have been demonstrated; Proton Driver gradients at the limit of what has been achieved

> The most pressing development task:

- Fast-tuner system for both cw and pulsed operation

