1. RF operation 2. Beam operation and results

3. SRFQ for high I linacs

Radio-Frequency Quadrupoles

 Focusing ⇐ main quadrupolar E_T
Acceleration ⇐ small effective E_L modulation of 4 vanes
 (synchronous with beam bunches)
 one modulation period = βλ

$$U(r,\theta,z) = \frac{V}{2} [\underline{A_{01}}r^2 \cos 2\theta + A_{10}I_0(kr) \cos kz]$$

Ideal for β**=v/c < 0.05** Typically **NC**, **50-400 MHz**

NORMAL CONDUCTING $\Delta U \sim 100 \text{ kV}, Q \sim 10^4, \text{ d.c.} < 20\%$ with a few remarkable exceptions (LEDA: 2.2.MW rf, 100 mA-beam)

SUPERCONDUCTING

 Δ U~ 300 kV, Q~10⁹, d.c. = 100% Motivated by lower rf power (and μ A beam) + expertise in cryogenics

SRF05 - Cornell - July 11, 2005

The main issues of S-RFQs

- 1. To reach spec $E_a \otimes P_{cav} \le 10 \text{ W}$: **Q vs Ea** curve
- 2. To keep **frequency locking** to M.O. vs slow volume changes (drifts of the liquid He P) and fast vibrations

Mechanical tuner coping with the Δf/Δt, induced by ΔP_{He}/Δt
Cryo-plant operation minimizes ΔP_{He}/Δt

MICROPHONICS EXCITATIONS

Rigid mechanical design
Use of VCX fast tuners (ANL)
Gentle cryo-plant operation

- 3. Setup for beam acceleration ("classical" RFQ is <u>split into 2</u>, with ext. bunching)
- 4. RFQ alignment on beam axis (better than ± 0.2 mm for good beam transmission) SRF05 – Cornell – July 11, 2005

2. Phase locking difficult before optimizing the cryo-plant parameters

2. P changes smaller in range and speed after optimizing the cryo-plant parameters

Time of the day

- Careful setup of the P.I.D. parameters controlling cryostat valves opening (continuous filling mode)
- Control of additional heating or increased production rate of liquid He vs cavity rf power.

2. φ & A errors on SRFQ2 after optimization of the cryo-plant parameters

2. φ & A errors on SRFQ1 after optimization of the cryo-plant parameters

SRFQs: beam-related aspects

3. Setup for beam acceleration ("classical" RFQ is here <u>split in 2, with ext. bunching</u>)

4. RFQ alignment on beam axis (better than ± 0.2 mm for good beam transmission)

3. Energy plots at varying φ_{SRFQ2} - φ_{SRFQ1}

 $T \sim 30 \rightarrow 68\%$ (expected : 70%) after switching on the 3H-buncher

SRF05 – Cornell – July 11, 2005

INFN

4. Control of alignment tolerances

