High T_c : New Developments & Progress on Understanding the Mechanisms and Hope for the Future

Tsuyoshi Tajima Los Alamos Neutron Science Center Los Alamos National Laboratory

LA-UR-05-5049

Why do we need high-T_c materials study for RF cavities?

•High-purity Nb and cavities are still expensive.

•Refrigeration to get to 4 K or lower is expensive

•Nb cavities have reached close to its theoretical limit and the recipe to get good results such as $E_{acc} > 35$ MV/m repeatedly will be established within ~5 years.

Outline

- 1. What are high-T_c materials
- 2. Mechanisms of Superconductivity in High-T_c materials (Cu oxide and MgB₂)
- 3. Properties of High- T_c materials that are related to the application to SRF cavities
- 4. Developments in the past 2 years

What are high-T_c materials

- In 1986, Georg Bednorz and Alex Müller discovered a superconductivity at ~38 K in La_{2-x}Sr_xCuO₄ ceramics.
- In 1987, research groups in Alabama and Houston, coordinated by K. Wu and Paul Chu discovered Y₁Ba₂Cu₃O₇ ceramics with T_c= 92 K. For the first time above LN2 temperature.
- The highest T_c so far is **138 K** with $(Hg_{0.8}TI_{0.2})Ba_2Ca_2Cu_3O_{8.33}$
- Is room temperature superconductor possible??
- MgB₂ was discovered to be superconductive at ~40 K in early 2001. It was a surprise since it is a simple binary intermetallic compound.

2. Mechanisms of Superconductivity in High-T_c materials - Cuprates $(..Cu_xO_y)$

- In general, superconductivity results from the interaction between electrons (holes) and phonons, the quantized lattice vibration
- The superconductivity occurs when additional oxygen is doped into YBa₂Cu₃O₆ which forms CuO "chains."
- These oxygen ions attract electrons from CuO₂ plane, which produces holes that become Cooper pairs.

M. Cyrot and D. Pavuna, "Introduction to Superconductivity and High-T_c Materials," World Scientific Publishing Co, Ltd. (1992)

LA-UR-05-5049

(La,Sr)₂CuO₄ and YBa₂Cu₃O₇

a) $(La,Sr)_2CuO_4$ $T_c=38$ K

b) $YBa_2Cu_3O_7$ $T_c=92 K$

M. Cyrot and D. Pavuna, "Introduction to Superconductivity and High-T_c Materials," World Scientific Publishing Co, Ltd. (1992)LA-UR-05-5049SRF2005, Cornell Univ., July 10-15, 20056

$TI_2Ba_2Cu_1O_6$ (85K), $TI_2Ca_1Ba_2Cu_2O_8$ (105K) and $TI_2Ca_2Ba_2Cu_3O_{10}$ (125K)

M. Cyrot and D. Pavuna, "Introduction to Superconductivity and High-T_c Materials," World Scientific Publishing Co, Ltd. (1992) LA-UR-05-5049 SRF2005, Cornell Univ., July 10-15, 2005 7

Magnesium Diboride (MgB₂)

Graphite-type boron layers separated by hexagonal closepacked layers of magnesium

Superconductivity comes from the phononmediated Cooper pair production similar to the low-temperature superconductors except for the two-gap nature.

Compared to cuprates:

- Cheaper
- Lower anisotropy
- Larger coherence length
- Transparency of grain boundaries to current flows

These makes MgB₂ attractive for applications.

C. Buzea and T. Yamashita, Superconductor Sci. Technol. 14 (2001) R115.

2. Properties of High-T_c materials that are related to the application to SRF cavities

- The RF surface resistance (R_s), which is proportional of 1/Q₀, is the most important property for RF cavities.
- The other critical property is RF critical magnetic field (H_{c, RF})
- Here, we focus on the $\rm R_{s}$ and its power dependence and will not discuss $\rm H_{c,\,RF}$ since there is no data yet, to my knowledge.

J.R. Delayen and C.L. Bohn, Phys. Rev. B40 (1989) 5151. SRF2005, Cornell Univ., July 10-15, 2005

LA-UR-05-5049

3. Developments in the past 2 years

- To my knowledge, no efforts to use YBCO or other cuprates for SRF cavities have been made.
- MgB₂ has shown in 2003 lower R_s than Nb at 4 K and about 10x lower predicted BCS R_s.
- A MgB₂ sample was tested up to H_{RF}~120 Oe, i.e. equivalent of E_{acc}~3 MV/m, with little increase in the R_s. (late 2004)
- Here, we focus on the development of MgB₂.

Simple binary compound, but needs high Mg pressure to form MgB₂ phase

MgB₂ Film Growth, an example at the Superconductor Technologies, Inc. (STI)

B.H. Moeckly, ONR Superconducting Electronics Program Review Red Bank, NJ, February 8, 2005 LA-UR-05-5049 SRF2005, Cornell Univ., July 10-15, 2005

MgB₂ on 4" substrates

R-plane sapphire

Si₃N₄ / Si

B.H. Moeckly, ONR Superconducting Electronics Program Review Red Bank, NJ, February 8, 2005 LA-UR-05-5049 SRF2005, Cornell Univ., July 10-15, 2005

Surface morphology – MgB₂ on *r*-plane sapphire

- Typical surface on *r*-plane sapphire
- Growth *T* = 550 °C
- *t* = 5500 Å
- Small, conical grains
- ~1000 2000 Å diameter
- RMS roughness = 44 Å

B.H. Moeckly, ONR Superconducting Electronics Program Review Red Bank, NJ, February 8, 2005

Surface morphology – smoother films

B.H. Moeckly, ONR Superconducting Electronics Program Review Red Bank, NJ, February 8, 2005 • MgB₂ on MgO

•Growth 7 = 550 °C

- *t* = 3000 Å
- RMS roughness = 22 Å

LA-UR-05-5049

- MgB2 on sapphire
- •Low T growth: 450 °C
- *t* = 1500 Å
- RMS roughness = 12 Å

Microstructure – MgB₂ on *c*-plane sapphire

- Columnar growth
- Clear layer at interface
- Layer looks grown, not reacted

- Grain size ~100 nm
- Numerous threading defects in lower half
- Defects decrease with thickness

B.H. Moeckly, ONR Superconducting Electronics Program Review Red Bank, NJ, February 8, 2005

Dave Smith

LA-UR-05-5049

Stability – DI water soak

SRF2005, Cornell Univ., July 10-15, 2005

LA-UR-05-5049

Latest films have shown R_s lower then Nb at 4 K.

Residual resistance still dominates at lower temperatures.

1 cm² sample on r-cut sapphire

A.T. Findikoglu et al., NSF/DOE Workshop on RF Superconductivity, Bethesda, MD, Aug. 29, 2003. B.H. Moeckly et al., IEEE Trans. Appl. Supercond. 15 (2005) 3308.

T. Tajima et al., Proc. PAC05.

LA-UR-05-5049 SRF2005, Cornell Univ., July 10-15, 2005

Predicted BCS R_s is ~1/10 of Nb

Dotted lines are predicted BCS resistance.

A.T. Findikoglu et al., NSF/DOE Workshop on RF Superconductivity, Bethesda, MD, Aug. 29, 2003. B.H. Moeckly et al., IEEE Trans. Appl. Supercond. 15 (2005) 3308.

LA-UR-05-5049

$R_{\rm s}$ does not change much with $H_{\rm RF}.$

Measurement at Cornell with TE_{011} Nb cavity at 4.2 K.

21

confirmed with others.

Summary

- It is important for the SRF community to continue looking for high-T_c materials that can be applied to SRF cavities.
- YBCO and other cuprates show rapid increase of R_s with H_{RF} , preventing the use of cuprates for SRF cavities.
- MgB₂ is more complicated than Nb but less complicated and cheaper than YBCO and other higher-T_c materials and could potentially lead to significant cost reduction.
- Critical parameters such as R_s power dependence and critical H_{RF} need to be determined.
- Making a MgB₂-coated cavity might be easier than you think. Let's try to coat/make a cavity with MgB₂ and measure the performance.

Thanks for the data and/or discussions and collaborations!

- A. Findikoglu, A. Jason, F. Krawczyk, F. Mueller, A. Shapiro (LANL)
- H. Padamsee, A. Romanenko, R. Geng (Cornell)
- J. Delayen, G. Wu, L. Phillips, A-M, Valente (JLab)
- B. Moeckly (STI)
- J. Price (NSWCCD)
- H. Abe (NIMS, Japan)
- Y. Zhao (Univ. Wollongong, Australia)
- J. Liu (SINAP, China, formerly at LANL)
- D. Oates (MIT, Lincoln Lab.)

Backup Slides

LA-UR-05-5049

Tests at Cornell with 6-GHz Nb TE₀₁₁ Cavity

25

LA-UR-05-5049

MgB₂ has two energy gaps

A. Floris et al., cond-mat/0408688v1 31 Aug 2004