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Introduction
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An example of real SRF Cryomodule (TRISTAN)

Input Coupler

SRF Cavity
(Belomestnysh and Shemelin)

Cryostat
(Pagani)

Higher mode coupler(HOM) Liquid Helium

Vacuum SRF Cavity

Moeller’s lecture
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Principle of RF particle acceleration

RF input couplerSRF cavity
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Charged Particle Acceleration
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Accelerator devise
Control

SRF technology 
for particle accelerators

Superconductivity

Vacuum science

Material science Cryogenics

Metal surface science

Surface treatment/cleaning
 technology

Electron accelerator

Ion accelerator

Halbritter

Reschke

Pagani

Belomestnysh and Shemelin

Facco

Moeller

Delayen

Microwave electronics

Cavity test methodPower

Saito
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Q1: Why RF loss in SRF Cavities
 
Q2: What is the theoretical SRF field limitation

Q3: What kind of SC material is best for SRF application
 
Q4: Thermal Conductivity in Superconducting State and 
        Residual Resistance Ratio (RRR)

Q5: Real SRF field limitation and 
        Technologies to push gradient
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Surface Impedance

here, k is orthogonal to Et .

Surface impedance :

For good conductor  σ >> 1,

  

€ 

r 
E t =

r 
E oexp(i

r 
k ⋅ r x - iωt),     

r 
H t =

1
µω

r 
k ×

r 
E t

€ 

Z ≡ Rs + iXs ≡
Et
Ht

=
µω
k

€ 

Rs =
µω
2σ

=
1
σ

µσω
2

=
1
σδ

€ 

k = (1 + i ) µσω
2

€ 

Z = µω
2

µσω
⋅
1
1+ i

= µω
2

µσω
⋅
1 − i
2

= (1 − i ) µω
2σ

For plane wave:

σ : electric conductivity
δ : skin depth
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Why RF loss in SRF cavities
Normal conducting

δ

δ：skin depth of microwave

Surface currents

for good conductor：
Surface resistance：

€ 

σ
ωε

>> 1

€ 

Rs =
µω
2σ

=
1
σδ

Metal

RF loss P

€ 

P =
1
2
Rs is

2
∫ ds

   =
1
2
Rs Hs

2ds∫

λ

Surface currents

Superconductor

Superconducting

λ：London penetration depth

  normal

super

Qusai particle

€ 

e
−

Δ
kBT

BCS theory

€ 

Rs ∝
ω 2

T
e
−

Δ
kBT

2Δ

T

Ht

is
is

Ht

QO= ωU/Ploss = G/Rs
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€ 

General equation: m ∂
r v 
∂t

= q(
r 
E + r v x

r 
B ) −m r v ν

Two-fluid modelr 
J =

r 
J s +

r 
J n  , 

r 
J s =nsqs

r v s  , 
v 
J n =nnqn

r v n
 

Maxwell equation: niglecting the Lorentz term,   r v x
r 
B <<1

ms
∂

r v s
∂ t = qs

r 
E , ms = 2me,  qs = 2⋅ (−e)

me ∂
r v n
∂t

= qn
r 
E −meν

r v n  ,  qn = −e
r 
E =

r 
E o eiωt   ⇒   

r 
J s = nsqs

2

iωms

r 
E  ,     

r 
J n = nne

2

i(ω − iν)

r 
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2

iωms
+

nne
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i (ω − iν)me
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E =σ
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σ =σn − iσ s

RF surface resistance in superconductor-Two Fluid model-
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€ 

Z = (1− i ) µω
2σ

= (1− i ) µω
2(σn − iσ s )

   = (1 − i ) µω
2

⋅
1

−iσs(1 −σn / iσ s )
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⋅
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σ n
i2σ s
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σ s
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         Q -i = e

−
π
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µωλ3

δ2
+ iµωλ =

µ 2ω 2λ3σn
2

+ iωµλ

Here,

€ 

λ =
ms
nsqs

2µ
= c

2m
4nsµe

2 = c
m

2nsµe
2

London
penetration depth
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Surface resistance in superconductor

€ 

σ n =
nn ⋅e

2 ⋅ l
m ⋅vF

=
e 2 ⋅ l
m ⋅ vF

⋅ns(T = 0)⋅ e
−

Δ
kB⋅T

€ 

RS =
1
2
⋅(2π)2 ⋅µ 2 ⋅ f 2 ⋅ λ L3 ⋅l ⋅

ns (0)
mvF

⋅ e
−

Δ

kBT

      = A ⋅ f 2 ⋅ e
−

Δ
kBT

Superconducting state

2Δ

At a finite temperature T

excitation

  

€ 

BCS theory

RBCS(T, f ) = A(λ ,ξ, l ,Tc )⋅ f
2

T
⋅ e
−

Δ

kBT

quasi particle (normal)

Δ/kB =1.76TC      by  BCS theory
Higher Tc material produces lower RBCS
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RBCS at 2 and 4.25K

RBCS ~ 8nΩ @ 2K, 1300MHz

Used Harbritter’s code
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    Minimum of RBCS
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BCS; Specular ref. 4.25K
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Mean free path : l [Å]

€ 

λ L(l ) = λ L (l =∞) ⋅ 1 +
ξo
l

,  RS (TF model ) ∝ (1+
ξo
l

)
3
2 ⋅l , l <<1,RS →

ξo

3
2

l
,  l >>1,  Rs→ l

1300MHz

Niobium

Strange behavior of
RBCS  for mean free
pass   

€ 

l

  

€ 

l ≈  200 ~  300Å
RBCS minimum at

  

€ 

l [A] = 20 ⋅RRR
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Measurement of the Surface resistance

Real surface resistance : RS= RBCS(T)+Rres

€ 

Δ
kB

= 18.008⇒ 2Δ
kBTc

              =
2 ⋅18.008
9.25 = 3.89

2Δ
kBTc

= 3.52  (BCS theory)

Due to surface
contamination、
residual magnetic field
in the cryostat.

10 -10
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Rs: (1.259E-4/T) exp(-18.008/T) + 5.5682E-9 
RBCS = (1.259E-4/T) exp(-18.008/T)

Rs [Ω]

1/T [K -1 ]

Rres

1300MHz, niobium

RBCS ~ 8nΩ,
Quit fit to BCS theory.
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Q2: Theoretical SRF field limitation
Q3: What kind of SC material is best for SRF application ?
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Two types of superconductor

Type-I Type-II

€ 

λ
ξ

 ≤  1
2

€ 

λ
ξ

 >  1
2

€ 

λ
ξ
≡ κ : Gintzburg - Landau Parameter
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Vortex state

ξ : Coherence length
  size of Cooper pair

Observed vortex
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Hc measurement

0

200

400

600

800

1000

1200

0 500 1000 1500 2000 2500 3000 3500

5K
6K
7K
8K
9K

-M
 [O

e]

H [Oe]

RRR 418 
Tokyo Denkai

€ 

Fn − Fs = − MdH =
1
2

µH c20
H c2∫

Industrial Nb material is how different 
With magnetic property from lab material.Industrial material

Lab material RRR~2000
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Measurement results with HC1, HC, HC2
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Hc1(T)=1948.6[1-(T/Tc) 2], Tc=8.8274K
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Hc2(T)=4921.0[1-(T/Tc) 2]/[1+(T/Tc) 2]
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, H
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]
Temperature : T[K] 

Tokyo Denkia, RRR=246, CP100µm

€ 

H c(T) = H c (0)⋅ [ 1 − T
Tc

 

  
 

  

2

] ,   Fn − Fs = − MdH =
1
2

µH c
2

0
H c2∫

Hc2(T) = Hc2(0) ⋅ [1 − (T /Tc )2 ]
[1+ (T / Tc)2]
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Hc1(T)=1789.8[1-(T/Tc) 2],    Tc=9.031 K
Hc(T)=1934.2[1-(T/Tc) 2]
Hc2(T)=4111.5[1-(T/Tc) 2]/[1+(T/Tc) 2]

H
 [G

au
ss

]

T [K]

RRR > 2000
Lab Nb material by A.French

Lab Nb material Industrial produced Nb material

Later you will derive this from
 Abrikosov theory.
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Abrikosov Theory: Theory for Type-II SC

  

€ 

Hc =
κ

λ2
hc
2e *

=
κ

λ2
(hc / 2e )
2π 2

=
φ0

2π 2λξ

€ 

Hc2 = 2
λ
ξ

φ0
2π 2λξ

=
φ0
2πξ2

€ 

Hc1 =
φ o
4πλ2

ln(λ
ξ

+ 0.08)

€ 

φ0 = hc / 2e = 2.0678 × 10−7Gauss ⋅ cm2

                    = 2.0678 × 10-15  T ⋅m 2
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T-dependence of λ, ξ, κ

€ 

Abrikosov theory

ξ =
φo

2π ⋅H c2
 ,   λ =

φ o ⋅H c2
4π ⋅H c

2

From both theory and experiment λ(T),Hc(T) are:

€ 

λ(T) = λ(0)

1- T
Tc

 

  
 

  

4
 ,  H c (T) = H c (0)⋅ 1− T

Tc

 

  
 

  

2 

 

 
 

 

 

 
 

€ 

€ 

H c2(T) = 4πλ(T)2

φ o
⋅H c (T)2 =

4πλ(0)2 ⋅H c (0)2

φ o
⋅
1− (T / Tc )2[ ]2
1 − (T / Tc )4

            = H c2(0)⋅ 1− (T / Tc )2

1 + (T / Tc )2

ξ(T) =
φo

2π ⋅H c2 (0) ⋅
1+ (T / Tc )2

1− (T / Tc )2
= ξ (0)⋅ 1+ (T / Tc )2

1− (T / Tc )2

λ(T)
ξ(T) ≡ κ(T) = 1

2
⋅
H c2 (T)
H c (T) =

H c2(0)
2 ⋅H c (0)

⋅
1

1 + (T / Tc )2
=

κ(0)
1 + (T / Tc )2
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T-dependence of κ  with Lab material
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ξ(T)=1.508/[1+(T/Tc)2], Tc=9.214K

κ
(T

) 

Temperature : T [K]

Type - II 
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SupercondactingSuperconducting state

Nb
Lab material
RRR>2000

κ(T)=1.508[1+(T/TC)2], TC=9.214K
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Critical field limitation in SRF application
Vortex plane nucleation

λ

ξ

€ 

1
2

µH2 ⋅(λS)

(magnetic field
 energy)

€ 

−
1
2

µHc2 ⋅(ξS)
super-condensation
 energy

€ 

1
2

µH2 ⋅λ −
1
2

µHc2 ⋅ξ = 0

HcPlane =
ξ
λ
Hc =

Hc
κ

Vortex line nucleation

2λ
2ξ

L

€ 

1
2

µH2(πλ )2 ⋅L

magnetic field 
energy

super-condensation
 energy

€ 

−
1
2

µHc2(πξ2 )⋅L

€ 

1
2

µH2λ2 − 1
2

µHc2ξ2 = 0

HcLine =
ξ
λ
Hc =

Hc
κ

Vortex line

H:effective value

Type-I Type-II
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€ 

Hcr(T) =
ξ(T )
λ (T ) ⋅ 2Hc (T) =

2Hc (T)
κ(T ) = 2

Hc (0)
κ(0) ⋅ 1−

T
Tc
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Eacc ~ 50 MV/m is still reachable if  one changes cavity shape 
with a smaller Hp/Eacc ( = 35 Oe / [MV/m]) ratio.
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Which material is best ?
Material point of view:
・Smaller heat loading for refrigerator     Higher TC

・High gradient
  HRF > HCRF, then normal conducting

  

€ 

H c
RF = 2 ⋅

H c
κ

, κ :G - L parameter

  The material with higher Hc and smaller κ-value
If Hc is high enough, Type-I material is better because of
the smaller κ-value.
・Good formability

Materials Tc [K] Hc,   Hc1
  [Gauss]

κ Type Fabrication

Pb 7.2 803,   - 0.65 I Electroplating
Nb 9.25 1900, 1700 1.5 II Deep drawing, film
Nb3Sn 18.2 5350, 300 7 II Film
MgB2 39 4290, 300 II Film

Niobium has higher Tc, Hc and enough formability.
 Now, niobium is widely used for RF sc cavity production.



27

Q4: Thermal Conductivity in Superconducting State and 
Residual Resistance Ratio (RRR)
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Thermal conductivity measurement
Normal conductor :

Wiedemann-Franz low:

€ 

κ e =
π2nkB

2τ
3m

⋅T ,    κ e
σ

=
π 2

3
kB
e

 
 
 

 
 
 
2
⋅T = LOT

€ 

€ 

κ en =
1
Wen

=
ρ
LOT

+ aT 2
 

 
 

 

 
 

−1

ρ =
ρ 300K
RRR

e-lattices scatt.

e-impurities scatt.
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Thermal conductivity of Nb material
at low temperature

10

100

1000

0 0.2 0.4 0.6 0.8 1

RRR=54, normal
RRR=54, superconducting
RRR=213, normal
RRR=213, superconducting
RRR=246, nornal
RRR=246, superconducting
RRR=398, normal
RRR=398, superconducting

  κ
 [W

/m
K

]

1/T [K-1]

Cooper pair: k=0

normal

super

2Δ

€ 

exp(− Δ
kB ⋅T

)

Boltzmann statistics：energy Δ, Temp.
Excitation probability @T and energy Δ

Cooper pair condensation

Qusai particle
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Calculation of thermal conductivity
based on Quantum mechanics

€ 

κ s(T ) = R(y) ⋅ ρ295K
L ⋅ RRR ⋅T

+ a ⋅T 2 

 
 

 

 
 

−1
+

1
D ⋅ exp(y )⋅T 2

+
1

BlT 3
 

 
 
 

 

 
 
 

−1

 

  e - impurities scatt.   e - phonons scatt.     lattice - phonnons scatt.   lattice - grain boundaries scatt.      
L = 2.05E − 8,  RRR = 200,  ρ 295K = 14.5E − 8 Ωm , a = 7.52E − 7

−y = α ⋅
Tc
T

,  α = 1.53,  Tc = 9.25K , T ≤ 0.6 ⋅Tc
D = 4.27E − 3,  B = 4.34E3,  l = 50µm

€ 

R(y) =
κ es
κ en

=
2F1 (−y) + 2y ln(1 + e − y ) +

y 2

(1 + e y )
2F1 (0) ,

Fn (−y) =
zn

1 + e z+ y0
∞
∫ dz                                               

10-5

0.0001

0.001

0.01

0.1

1

-2 0 2 4 6 8 10 12

F
1
(-y)

y = 0.87222 * exp(-0.95932*x)
F 1( −

y)

-y
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Calculated κsc(T)
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T : Temperature [K]

Thermal conductivity at 2K with Nb is ~1/15 of that of stainless at room.
Temp.(15W/m*K)）or  1/6800 of that of copper at 4.2K (6800W/m*K).
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RRR measurement
Very simple measurement !!

  

€ 

1
RRR

=
C(i )
ρ(i )elements in Nb

∑ =
CH
1500

+
CC
4100

+
CN
3900

+
CO
5000

+ L +
CTa
550000

€ 

Example:
CH = 1ppm ,CC = 5ppm ,CN = 5ppm ,CO = 7ppm ,CTa = 400ppm  (99.9582%)
RRR = 188.8
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Linear relationship between κSC (2Κ, 4.25Κ) and RRR

0

50

100

150

200

0 100 200 300 400 500 600

κ(4.25K)=0.571+0.274*RRR
κ(2K)=0.0484+0.00818*RRR

κ
 [W

/m
*K

]

RRR
RRR is a good parameter to evaluate thermal conductivity of superconductor.
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Q5: Real SRF field limitation and 
       Technologies to push gradient
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Real SRF Cavity Performance

Quench

Ideal performance

Hydrogen Q-disease

Eacc

Multipacting

Field emission

Q-slope

Thermal instability

Q
O  = ω U

/ Ploss = Γ /Rs
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Various Surface Defects

Surface defects, holes can also 
cause TB

No foreign materials found

Cu

Cracks

Sputter balls

Holes
Inclusion

Foreign materials

Nb on niobium surface
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Surface Defect

Picture of the defect area T-mapping on the defect
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Mechanism of Thermal Instability
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RRR Dependence of Quench Field

Quench Field : Hq=

€ 

4κ(Tc - Tb)
rD ⋅Rs(Tb)

 ∝  RRR
3
4 ⋅

(Tc - Tb)
rD ⋅Rs(300K )

Defect radius

RRR

Needs control the defects with 1mm size,  Use high pure niobium material with RRR>200

RRR=135 at rD=3µm
Hq~1500Oe
Eacc,max ~34MV/m

Wuppertal Uni.



40

Multipacting
Multipacting　：Resonant electron loading due to secondary electrons
                ( synchronized electron motion with RF )

One point multipacting

Characteristic: Q-drop at some discrete field levels, X-ray at the levels,
Diagnostics: Temperature mapping & X-ray mapping

Limited the performance by 
1PM or 2PM.

1 point MP
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Onset Field of One-point MP
Scale law on RF frequency with the maltipacting levels

Cyclotron frequency : 

€ 

ω =
e ⋅H
c ⋅m

  

€ 

2π ⋅ f (1P − nth) =
e ⋅H (1P − nth)

c ⋅m
,

€ 

T(1P − nth) =
1

f (1P − nth)
=

2π ⋅c ⋅m
e ⋅H (1P − nth)

= n ⋅TRF =
n
fRF

                  

                                                 

   Example ;
  1300MHz,  Hp/Eacc = 43.8 [Oe/(MV/m)]
  1P-1st order・・・HRF(1P-1st) =0.3 x 1300 = 390 Oe
                 Eacc(1P-1st) = 390/43.8=8.9 MV/m
  1P-2nd order・・・Eacc(1P-2nd) = 4.5 MV/m

 

€ 

H(1P − nth)
fRF

=
constant

n
,  n=1, 2, 3 ・・・ [Oe/Hz]

Experiment : Onset field   

€ 

H(1P − nth,[Oe])
fRF [MHz]

=
0.3
n

   [Oe/MHz]
Spherical shape suppresses the one
point multipcting.

n=1 n=2 n=3
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Two-point MP
Two-point multipacting

            

€ 

T(2P − nth) = (2n −1)TRF                                                    
   

Examples ;
508MHz , Hp/Eacc=40.6 [Oe/(MV/m)]
2P-1st order  Hp(2p-1st) = 0.6 x 508 = 304.8 Oe
Eacc(2P-1st) = 304.8/40.6 = 7.5 MV/m

1300MHz, Hp/Eacc=43.8 [Oe/(MV/m)]
        2P-1st order  Hp(2p-1st) = 0.6 x 1300 = 780 Oe
        Eacc(2P-1st) = 780/43.8 = 17.8 MV/m

    2P-2nd order  Eacc(2P-2nd ) = 17.8/3 = 5.9 MV/m

€ 

H(2P − nth)
fRF

=
constant
2n −1

, n=1, 2, 3 ・・・ [Oe/Hz]

Experiment :Onset field   

€ 

H(2P − nth,[Oe])
fRF[MHz]

=
0.6
2n −1

   

n=1 n=2 n=3
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T-mapping of Tow-point MP
KEK

DESY

17.5MV/m

T-mapping at 17.5MV/m

MP      Frozen flux trapping       Warm-up T>Tc

                 Disappear of the heating spots 
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Cures against MP
1)  Cavity shape        Spherical or Elliptical shape
                     (effective for one point multipacting)
2)  δ< 1 : Clean surface     Surface preparation
                        High pressure water rinsing
                        Argon gas or Helium gas discharge cleaning
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Field Emission

Heating on meridian
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Q-slope: Partially Disappeared Heating
Spots by Baking on CP Cavity

Heating spots partially disapper after baking.
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Q-slope: Disappeared Heating Spots
by Baking on EP Cavity

Before Baking

33MV/m

After Baking

39MV/m
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Oxygen Diffusion

Oxygen on top diffuse into bulk by baking (120OC for 48 hr).
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Loss Mechanism

in one RF cycle

Interface Tunnel Exchange(ITE Model)
By J.Halbritter
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BakingExponential Q-degradation
without / with x-ray

Q-slope

AnnealingLow Q  from low field,
Depends on cooling speed

Hydrogen Q-disease

Make clean and smooth surface
Use ultrapure water Use clean
room assembly
High pressure water rinsing

Exponential Q-drop with gradient
(Electron non resonant loading)
Heating on meridian
X-ray

Field emission

Make clean surface
Use spherical shape

Q-drop at discrete field levels
(Electron resonant loading),
Heating around equator section
X-ray

Multipacting

Mechanical grinding,
Use high pure niobium material
Sever material control

Quench at bad spotThermal instability

CuresPhenomenaDisease


