Planning for the New Linear Collider Test Facility at FNAL & progress on 3.9 GHz SRF (or Do we have a plan?)

> H Edwards SRF 2005 July 13, 2005

Political statements

- "The U.S. Department of Energy has expressed its interest in the possibility of hosting a linear collider, at Fermilab, subject to the machine being affordable and scientifically validated by physics discoveries at the LHC." From DOE for inclusion in Holmes EPP2010 talk.
- "The ILC Americas regional plan is for FNAL to assume the role of lead laboratory for ILC SRF technologies, working in close partnership with other US SRF centers, including TJNAF, Argonne and Cornell." JLab-Fermilab MOU
- US ILC Linac responsibilities-FNAL and SLAC
 - FNAL- Main Linac superconducting part & RF control
 - SLAC- main Linac RF power

Outline of this talk

- Development of Infrastructure
 - Buildings
 - Cryo
- Planned Development Stages & Collaborators
 - Schedule highlights
 - Involvement of collaborators
- Technical Infrastructure & Components
 - Chemistry at ANL
 - Horizontal Test Dewar (HTD)
 - Cryo Module Assembly Facility (CAF)
 - Capture Cavity #2
 - PhotoInjector
 - 3.9GHz SRF Development Results
 - Materials Development Effort

Long term R&D goals for ILC work

- Develop and test Main Linac components and subsystems
- Strengthen US & US Industry SRF capability
- Develop Fermilab expertise and capabilities
- Collaborate with other US Labs to make best use of existing capabilities
- Collaborate with International Partners
- Specific goal-
 - Module string with Beam- 4 modules & Photoinjector
 - Capability for iterative process & test of cavities & modules
- Infrastructure development planning
 - Long lead time items require looking for suitable locations for the module assembly & test

CTF cryo test Facility (60W@2K – Meson Hall PD dev plus

MP9- CAF cavity string & module assembly

Cryo is a big deal for us We do not have reasonable sized 2K system available at a big building

- Initially we chose Meson building because of the existence of Meson Cryo Test Facility (CTF) within few 100 ft of Meson Hall, and transfer line
 - It should be able to supply ~60Watts @2K using Vacuum pump from JLab
 - Proton Driver will be using 4K
- In going to New Muon, we will need to come up with a 2nd temporary 2K system
 - This may be either a dewar feed- gas recovery system, or a Satellite Refrig system
 - Again ~40W @2K

Cryo at NewMuon continued

- We really need ~ 300 W or greater @2K for ILC 4 modules and injector @ 5Hz
- Cryo Plant Study Group
 - Tom Peterson, Fermilab, chair
 - Rau Ganni, Jlab
 - John Weisend, SLAC
 - Joel Fuerst, ANL
 - George Mulholland, consultant
 - Should we get a new Cryo Plant a la Rossendorf?
 - Or should we make use of the SSC plant (3500 W at 4 K) that ANL has and adapt it for 2K ?
 - Report due this month
 - No matter what this will take 3 years or greater

Cryo capacity expected with temporary systems:

or

Cryo Test Facility (Meson)

NewMuon

Cryo Needs:

Vertical & Horiz dewar test Module string & injector 60W@2K useful 1600w@4K 40W@2K useful

Cryo needs for SMTF-ILC Inj & modules without contingency or dist loss

· · · · · · · · · · · · · · · · · · ·										Tynic	مال براد	∽o ~1	3*1 5-2		
	Single Cavity Module				Multi Cavity CryoModule					lule	rypically use ~1.5 1.5-2				
	Accelerating Gradient, [MV/m]														
	Rep	12.5	30	15	5	35	35	35	35	35	15	Capa	city Req	uired*	
	rate	Cap Cav		3.9 GHz		8 Cavity Module				4 Cav	2K	5K	80K		
	[Hz]	#1	#2	Acc	Tran	#1	#3	#4	#5	#6	3.9 GHz	[watts]	[watts]	[watts]	
Temporary	1	X	х	х								9	17	69	
Cryogenic	1	X	х	х		х						17	33	207	
System	_1_	L×_	_X_	_X_		_X_	_×_					26	48	_344_	
New	5		X	_x_	x_	_X_	-x-					73	79	1035	
Cryogenic	5	X	х	х	х	х	х	Х	Х			129	124	1854	
System	5				х	Х	х	Х	Х	Х	х	153	155	2330	

* - Capacity required is based on the estimated heat load for Q = 5x109

** - No extra capacity or distribution system heat leak is included

Meson Hall

Horizontal Test Dewar & Future Module Test Area

Initial plan was to have both ILC & PD here. Really not long enough or enough space for both.

Cryo feed

Meson Hall Before and After Cleanup

NewMuon Building

First Modules- Present thoughts (agreements in process)

- "DESY/FNAL module" Type III plus
 - Parts provided by DESY
 - Cavities tested through Chechia (Horiz Test Dewar) at DESY
 - String & module assembled at FNAL
- "1st US (& international) module"
 - Cavities from Accel, AES, KEK, JLab
 - Cavities processed at JLab (EP), KEK (EP), CU (BCP), FNAL (BCP)
 - Vertical tests JLab, KEK, CU
 - Horizontal Tests FNAL
 - String & module assembly FNAL
- "4th Generation module"
 - Design evolution from TTF Type III
 - Cavity slot length, quad/BPM location, vibration issues, tuner type,...

Collaboration efforts underway or almost underway (MOUs)

- DESY- CapCav#2, TESLA module, string assembled at FNAL
- JLab EP Processing, Cavity VDT & dress for HDT, TESLA & 3.9GHz cavity fab, Refrigerator Study
- ANL BCP Chemistry facility, Refrigator option
- Cornell BCP Tesla cavities, VDT
- KEK 4 cavities for a (2nd) module
- INFN participate in DESY/FNAL module, 4th generation module development
- LANL?- Develop EP facility plan

- There has been a convergence of interest in the past decade between the low- and high-beta communities
- > (1) Techniques needed to achieve state-of-the-art are similar
- (2) We are filling in the region between low- and high-beta with new cavity types

Layout: ANL/FNAL Cavity Processing Facility

Installation of Cavity Etching Hood 3/25/05

60 feet

Horizontal Test Cryostat,

1.3 & 3.9 GHz cavity test capability

Capture Cavity2 from DESY

Shipping test with nothing special Student with project Koeth TuA09 done - input coupler developed leak Sylvyyy -77777777

Capture cavity module used at TTFI sent to FNAL.

Low gradient cavity is being replaced with >25MV/m cavity

New dressed cavity with beamtubes, gatevalves, etc on its way from DESY^I(McGee) Ready for installation in vac vessel without opening to air.

Schedule- mount in vessel Aug, move to Meson Lab Sept and start cryo commissioning Systems Test at Meson of: Cryo @4K, RF, LLRF, Controls, - in early 06 cryo @ 2K

Photoinjector Upgrade for SMTF

Existing FNPL

Upgrade of existing PI includes:

- 2nd TESLA CapCavity and
- 3.9GHz acc mode "3rdHar" for bunch compression
- 3.9GHz transverse mode for bunch slice diagnostics
- Improved gun & gun modulator

Schedule Highlights (tentative)

Begin CapCav#2 tests at Meson 4K **Oct 05** Commission BCP at ANL Jan06 CapCav#2 operating at 2K Feb 06 April 06 Commission Horiz Test Dewar at Meson Cryo Module Assembly Fac ready for string assembly May 06 Summer 06 Move Photoinjector Temp Cryo System at NewMuon Oct 06 **Begin tests Photoinjector** Oct 06 Complete assembly of 1st Module Dec 06 Commission Module w Photoinj early 07

3.9GHz activities

- Koeth TuA09 SC Cavities at 3.9 GHz
- Solyak TuP14 Recent results of testing 3 cell 3.9
 GHz accelerating cavity
- Khabiboulline ThP50 Power coupler design for 3rd Harmonic and spoke cavities
- Mitchell ThP29 Mechanical Design and engineering of the 3.9GHz 3rd Harmonic SRF system

Two 3.9 GHz cavity developments

- 3rd Harmonic acc mode cavity for bunch compression- linearizes the 1.3 accelerating gradient over the bunch length. To be used at TTF-II (4 cavity module) and Photoinj Upgrade (single cavity)
- 3.9 GHz deflecting mode cavity for bunch slice diagnostics, momentum or emittance as function of position in the bunch at PhotoInj Upgrade (originally for a pure Kaon beam experiment at FNAL)

3.9 GHz acc mode 4 cavity module for TTF (all the design and fab steps by FNAL with help)

3.9 GHz Cavities & Cryostat(s): Work in Progress

- Design coldmass supports, both sliding and fixed
- Design coldmass and cryostat
- Main coupler design
- Helium vessel design complete but may need minor revision
- Helium supply pipe redesign (spacing & material)
- Heat Loads and cool-down analysis

Mitchell

3.9 GHz processing history and test results- getting our learning curve

- We now have a data base of about 9 test results from each type cavity
 - Help from Kneisel (JLab) and Kelly (ANL) on processing BCP, 600C bake, HPR
 - BCP- JLab, ANL(existing facility), FNAL
 - Oven bake- JLab, FNAL
 - HPR- JLab, FNAL
 - Vert Test FNAL
- Goal: BCP-ANLnew, Oven bake-FNAL, HPR-FNAL, Test-FNAL, reasonable time turn around
- We now have existence proof using existing ANL BCP

3.9 GHz Results (Rs has been the main problem)

- Acc mode- Ea~19MV/m (~105mT) Rres~6-10nOhm
 - This 19MV/m would be equivalent to 21MV/m in a 9cell
 - Design requirement 14-15MV/m
 - What is Ea limit, thermal or not? It is not temp dependent
- Def mode- Etrans~7.5MV/m (~120mT) Rres~60nOhm (best to date)
 - Design requirement 5MV/m transverse
 - We still do not understand high Residual resistance

3.9GHz Acc mode TM010 Def mode TM110

R_{SURF} vs T_c/T

Materials research & with Universities

- Bauer TuP01 A comparison of Q slope models and Data in bulk Nb SRF Cavities
- Bauer TuP47 Recent RRR measurements on Nb at Fermilab
- Boffo TuP48 Eddy Current Scanning at Fermilab
- Boffo ThP01 EP on Small Samples at Fermilab

University collaborators

- Sebastian TuP06 Atom Probe Tomography
- Lee Tu54 Grain Boundry Flux Penetration & Resistivity in Large Grain Nb Sheet
- Polyanskii TuP55 Magneto Optical Study of Flux Penetration

DESY calibration disc scanned by A. Brinkmann/DESY

Eddy Current Scanning

Resolution achieved:

100 μm Ta defects can be detected!

EC-Scanner – on loan from SNS

DESY calibration disc scanned at Fnal, after filtering by C. Boffo

TuP48

3D Atomic Probe Tomography at Northwestern

J. Sebastian / Northwestern university

3D-AP view of Nb tip with F surface contamination

"Plans are nothing; planning is everything." D Eisenhower

Results are Best

END

Thanks to all people at FNAL & other Labs for helping us get started

FNPL as Electron Beam source for ILC Test Area

		SMTF proposed (up to)	Present Inj typ	
RF pulse length	msec	1.5	0.03-0.6	
Pulse rate	Hz	5	1	
Beam pulse length	msec	1.0	10-20 micro sec	
Beam current	mA	15	10	
Electrons per bunch	e10	2	0.6-6.0	
Bunch spacing	ns	337	1000	
Beam pulse*current	ms*mA	10	0.2	

History of the 3.9GHz 3-cell accelerating cavity Eacc of 15MV/m = 75mT 9 cell, 13.6Mv/m=75mT 3 cell

Where	BCP	нт	HPWR	Test Date	Test results	
FNAL	No	No	No	01/21/04	Rres = 2000nΩ Ea=5.6 MV/m; Hpk(π/0)~30/60 mT	
JLAB 02/25/04	Extrn~20μm Int ~140μm	2hrs@500 C 10hrs@600C	JLAB 15'@2 loc	03/17/04 04/19/04	Rres=60nΩ → 200nΩ (after FE) Ea=11.5 MV/m; Hpk =60mT; Heavy X- ray	
JLAB 06/10/04	Intern: ~30 μm	No	JLAB 30'@3 loc	07/02/04 07/19/04	Rres =70nΩ→130nΩ (after HG) E=12.5 MV/m, Hpk(pi/0)=70/110mT; <mark>X-</mark> ray	
FNAL 10/10/04	No	No	~1 hrs, movable	10/14/04	R_res=60 nΩ, E=12.8 MV/m, No X-ray	
JLAB 10/26/04	Intern: 20µm	No	JLAB 90'@7 loc	11/10/04 12/16/04	E= 5MV/m – vacuum leak E=15MV/m coupler problem	
FNAL 01/30 /05	Internal: ∼5µ m	No	~2hrs movable	02/08/05 02/21/05	R_res=6 nΩ, E=19MV/m, Hpk=105mT, No X-ray	
FNAL 05/25/05	No	48hrs@120C	No	03/31/05	R_res = 16 nΩ, E=19MV/m, Hpk=105mT,	
ANL 06/01/05	1:1:2 → 12min(15C)	(HPWR 3hrs after BCP No) → FNAL ~2.5hrs	06/09/05	R_res= 58 nΩ, E=12MV/m, Hpk(pi/0)=62/104mT; <mark>X-ray</mark>	
FNAL 06/25/05	No	No	~6.5 hrs movable	07/05/05	R_res=10nΩ, E~19MV/m, No X-ray	