Review on superconducting RF Guns

Dietmar Janssen, Andre Arnold, Hartmut Buettig, Ulf Lehnert, Peter Michel, Petr Murcek, Christof Schneider, Rico Schurig, Friedrich Staufenbiel, Jochen Teichert, Rong Xiang, (FZR Dresden), Juergen Stephan (IKS Dresden), Vladimir Volkov (BINP SB RAS, Novosibirsk)

Radiation Source ELBE Dietmar Janssen 13.07.2005 1

Superconducting RF Photogun

Main advantages

- Low RF power losses, CW operation
- High peak field near the cathode

Main concerns

- Photocathode inside a superconducting cavity (RF leakage, heat transfer, pollution of the cavity)
- Emittance compensation Magnetic DC field, Magnetic RF field, RF - focusing

Radiation Source ELBE Dietmar Janssen

All-Niobium SRF Gun

No contamination from cathode particles

1/2 cell, 1.3 GHz Maximum Field: 45 MV/m

Q.E. of Niobium @ 248 nm with laser cleaning before: 2×10^{-7} after: 5×10^{-5}

H.Bluem et al. EPAC 2000, June 2000, p.1639

Radiation Source ELBE Dietmar Janssen 13.07.2005 3

All-Niobium SRF Gun

T ~ 2K

 $λ = 248 \text{ nm}, \quad QE \sim 2x10^{-5}$ $λ = 266 \text{ nm}, \quad QE \sim 2x10^{-6}$ T.Rao et al. PAC2005, Knoxville, May 2005.

Forschungszentrum Rossendorf

Radiation Source ELBE Dietmar Janssen 13.07.2005 4

SRF Gun with superconducting Cathode

Quantum efficiency of Pb at room temperature $\lambda = 248 \text{ nm}$ QE = 1x10⁻⁴ $\lambda = 213 \text{ nm}$ QE = 1.7x10⁻³ 3 W laser power @213 nm 1nC @1MHz \longrightarrow 1mA

> J.Smedley et al., PAC2005 Knoxville May 2005

Radiation Source ELBE Dietmar Janssen

Cavity:	Niobium, gun cell + TESLA cells, E_{acc} =25MV/m			
Frequency:	1.3 GHz			
Cathode:	Cs_2Te , $QE \sim 5x10^{-2}$			
	thermally isolated, LN ₂ cooled			
RF:	choke filter			
Laser:	$\lambda = 262 \text{ nm}, \text{ cw}, \text{ f} = 13 \text{ MHz}, \text{ P} = 1-2 \text{ W}$			

First operation of a SRF Gun

Radiation Source ELBE Dietmar Janssen 13.07.2005 7

Design Parameter of the 31/2 cell SRF Gun

Radiation Source ELBE Dietmar Janssen 30.06.2005 7

Shape verification and warm tuning of the cavity

Radiation Source ELBE Dietmar Janssen 13.07.2005 9

Cryomodule design of the SRF gun

Radiation Source ELBE Dietmar Janssen 13.07.2005 10

Liquid N₂ Cathode Cooling

Radiation Source ELBE Dietmar Janssen 13.07.2005 11

Dual tuning system

Radiation Source ELBE Dietmar Janssen 13.07.2005 12

Cavity with cathode tuning system

Radiation Source ELBE Dietmar Janssen 13.07.2005 13

Present Status and next steps

Cavity:	Fabrication of 2 (RRR 40 & 300) cavities at ACCEL finished warm tuning in Rossendorf is running next step: BCP, HPR, tests at 2K at DESY				
Cavity tuners:	Fabrication finished				
	test bench: design finished, in the workshop				
Cathode cooling system:					
	Fabrication and tests finished				
	Cathode transfer system: Design finished, in the workshop				
Cathode preparation chamber:					
	Design and fabrication finished, assembling and tests running				
Cryomodule:	Design and fabrication finished				
	next step: assembling				
He-Transfer Line:	ordered				
First beam:	2006				

Radiation Source ELBE Dietmar Janssen 13.07.2005 14

DC-SC Gun of the IHIP, Peking University

Radiation Source ELBE Dietmar Janssen 13.07.2005 15

High Current SRF Gun

SRF Gun Performance Goals

703.75 MHz

- 1.42 nC @ 703.75 MHz => 1 A
- For 1 A => ~ 2 MeV delivered
- 2 MW into ¹/₂ cell
- 2 opposed 1 MW couplers

Mitglied der Leibniz-Gemeinschaft

- $\frac{1}{2}$ cell => ~ 0.1 m
- 2 MeV / 0.1 m \Rightarrow ~ 20 MV/m
 - $\varepsilon_{\text{trans}} = 5 \text{ mm mrad}$

Radiation Source ELBE Dietmar Janssen

13.07.2005 16

BROOKHAVEN

Courtesy of Alan Todd

High Current SRF Gun

Radiation Source ELBE Dietmar Janssen 13.07.2005 17

High Current SRF Gun

Mitglied der Leibniz-Gemeinschaft

Radiation Source ELBE Dietmar Janssen 13.07.2005 18

Emittance compensation by a static B field

Mitglied der Leibniz-Gemeinschaft

Radiation Source ELBE Dietmar Janssen 13.07.2005 19

Emittance compensation by a static B field

Emittance compensation by a magnetic RF field

Radiation Source ELBE Dietmar Janssen 13.07.2005 21

Magnetic RF fields in the 1 ½ cell cavity

Radiation Source ELBE Dietmar Janssen 13.07.2005 22

Emittance dependence on TE field phase

Radiation Source ELBE Dietmar Janssen 13.07.2005 23

Results for a 1 ¹/₂ cell cavity

Optimized settings & performances	Without any RF focusing	Electric RF focusing only	Magnetic RF focusing only	Electric and magnetic RF focusing
ϵ_n, π mm mrad	3.66	1.49	1.28	0.62
$(\varepsilon_n^2,\varepsilon_{th}^2)^{1/2}$	3.76	1.72	1.44	0.89
R (laser), mm	2	2	1.5	1.5
φ _{TM} , deg	49.4°	46.3°	49.4°	55°
Cathode depth, mm	0	2	0	2
B _{TE} (axis, peak), T	0	0	0.3	0.3
B (surf., peak), T	0.128	0.128	0.132	0.132

Results for the 3 ¹/₂ cell cavity

Radiation Source ELBE Dietmar Janssen 13.07.2005 25

Diamond amplifier

Radiation Source ELBE Dietmar Janssen 13.07.2005 26

Conclusion

•Superconducting RF guns are the ideal injectors for high current- low emittance application.

•For average currents I > 1mA on has to put a normal conducting cathode into a supercondicting cavity. The proposed design works for T = 4.2K and Q = $2.5*10^8$. For T = 2K and Q ~ 10^{10} one has to check it.

•For SRF guns with I < 1mA a superconducting cathode is an interesting alternative, which one has to prove.

•New ideas and developments as the diamond amplifier and the magnetic RF modes can enlarge the performance of superconducting RF guns.

•I dare the prediction, that within the next three years the first SRF photoelectron gun will work as injector for a linac in routine run.

