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INTRODUCTION

Q

H

HighMediumLow
b

Possible mechanisms behind 
the low-field, medium-field and 
high-field parts of Q(H) curve? 

Low - H slope:

Linear BCS + residual resistance Ri. 
Hypersound generation and acoustic 
resonances

Medium – H slope

Nonlinear BCS resistance. Heating 
and nonequilibrium effects

High - H slope

Vortex penetration, grain boundaries 
and flux focusing. Hotspots and 
thermal breakdown



BCS and residual surface resistanceBCS and residual surface resistance
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Constant Ri at T → 0 for small H0
Is inconsistent with the BCS theory 

Mechanisms of Ri are likely unrelated to 
superconductivity

Field, temperature and frequency 
dependences of Ri are poorly understood

Effect of surface oxides (hydrides) or more 
fundamental mechanisms?

Ri ∼ 1-20 nΩ

Padamsee, SUST 14, R28 (2001)
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Sound generation by Sound generation by rfrf fieldfield

Rf oscillating force generates a hypersound wave 
with the wavelength Λ = s/f = 1.75 µm 
for f = 2 GHz, cs = 3.5 km/s

Λ is much greater than the  London penetration 
depth λ = 40 nm, but much smaller than the wall 
thickness d = 2-3 mm

Nearly ideal reflection (ℜ ≈ 1) due to large acoustic 
mismatch between Nb and He
Standing sound wave unlike traveling wave 
does not cause rf dissipation … ?
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Generation of transverse sound by Generation of transverse sound by rfrf electric fieldelectric field
Halbritter, JAP 42, 82 (1971); Passow, PRL 28, 427 (1972); Kartheuser and Rodriguez, 
JAP, 47, 700 (1967); Scharnberg, JAP 48, 3462 (1977)
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Taking pF/Ms ∼ 2×10-3 for Nb, we get Ri/Rbcs ∼ 1 at 2K in the clean limit, the ratio 
Ri/Rbcs decreasing as the rf surface layer gets dirtier. 

Pros:

1. Right order of magnitude
2. Right temperature dependence

Cons:

1. Ignores that only 1-ℜ = 0.4% of 
sound energy contributes to Ri

Experiment: Kneisel et al (1971) + later works



Generation of longitudinal sound by Generation of longitudinal sound by rfrf
magnetic pressuremagnetic pressure
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Rf dissipation: Q = RiH2/2 = 4ω2sρ|u|2/2
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1. Independent of ω and T for Λ>>λ
2. Quadratic in rf field

For B = 100 mT, s = 3.5 km/s, ρ = 8.5 g/cm3, we get Ri = 0.08nΩ



Effect of sound attenuation and reflectionEffect of sound attenuation and reflection
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Sound reflection makes Ri negligible unless 
the resonance condition 
ωd = πsn, n = 1, 2, 3 … is satisfied:

dn =Λ



Acoustic hotspotsAcoustic hotspots

Distribution function of acoustic 
resonance frequencies due to:

1. Smooth thickness wall variation by 
∆d >> Λ ∼ 1 µm on the scale ∼ d = 2-3 mm
2. Spectrum of rf frequencies in coupled
cavities 

Hotsport in the regions where the 
local thickness d(x,y) satisfies the 
resonance condition nΛ = d

Averaging with the thickness
distribution function F(x): F

xd
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Averaged Ri is of the order of Ri0 and depends neither on the small  γ nor the shape of 
F(x). Effect of sound scattering and generation of Rayleigh surface waves



BCS BCS rfrf dissipationdissipation
H(t)

E(z,t)

λ• Thermal activation of normal electrons  
nr = n0(πT/2∆)1/2exp(- ∆/T)

• Accelerating electric field 
E(z,t) = µ0ωλHωe-λ|z|sinωt

• Scattering mechanisms and normal state 
conductivity: σn = e2n0l/pF,    pF = ħ(3π2n0)1/3

- Surface: from specular to diffusive

- Normal skin effect ( l << λ): multiple impurity 
scattering in the λ - belt:
Rs ∼ (µ0

2ω2λ3σn∆/T)exp(-∆/T)

- Anomalous skin effect ( l >> λ): scattering by 
the gradient of the ac field E(z):
Effective σeff ∼ e2n0λ /pF;          l → λ

Rs is independent of bulk impurities

dirtyclean
?



LowLow--frequency frequency RRss for a clean (l >> for a clean (l >> λλ) type II ) type II 
superconductorsuperconductor

Linear BCS surface resistance for small-amplitude rf field H << HcT/Tc

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ∆
−⎥

⎦

⎤
⎢
⎣

⎡
+⎟

⎠
⎞

⎜
⎝
⎛ ∆∆

∝
Tk

C
Tpk

nR
BFB

s expln 0
0

422
0

ω
λωµ

h

Logarithmic term lnω comes from the BCS coherence factors 

Density of thermally-activated electrons:

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ∆
−⎟

⎠
⎞

⎜
⎝
⎛

∆
=

Tk
Tknn

B

B
r exp

2

2/1

0
π

The main Rs nonlinearity in strong rf fields comes from the dependence of nr(J) on J



Effect of current on thermal activationEffect of current on thermal activation

∆ - vpF ∆ + vpF

Rocking “tilted” electron spectrum in the  
current-carrying state J = J0cosωt
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• Reduction of the gap from ∆ to ∆ - pF|vs| increases density of thermally-activated 
normal electrons nr(J), thus increasing Rs

• General theory requires solving kinetic equation for the electron distribution function
taking into the account impurity and electron-phonon scattering



Simple model: density of normal electronsSimple model: density of normal electrons

If J(x) varies weakly over the coherence length ξ, then:
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• Thermodynamic critical field Hc = φ0/23/2πλξ.

• The nonlinearity becomes more pronounced at lower T for H > HcT/Tc << Hc



Simple model: nonlinear Simple model: nonlinear rfrf surface resistancesurface resistance

Time-averaged dissipated power:  
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At small fields Rs(H) gets a quadratic correction in H, but for  β0 >1, the surface 
resistance increases exponentially with the rf field amplitude.

For T = 2K and Tc = 9.2K, the parameter β0 varies from 0 at H = 0 to 9.7 at H = Hc



Theory of nonlinear Theory of nonlinear RRss for a clean typefor a clean type--II II 
superconductor, superconductor, λλ>>>>ξξ, , ωτωτrr < 1< 1

Solving a kinetic equation for the electron distribution function with the account 
of the BCS coherence factors. Superimposed dc and ac field: H(t) = Hdc + H0cosωt:
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The simple model gives very similar temperature, field and frequency 
dependencies of Rs(T,H,ω) 

Dependence of the nonlinear Rs(T,H,ω) on dc field unrelated to vortices



Example: low Example: low rfrf amplitudeamplitude

Theory (to the accuracy of small logarithmic terms in ω):
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The simple model captures the correct field and temperature dependence of 
the nonlinear Rs

For Nb at T = 2K, the nonlinear contribution is essential even for H0 < Hc
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The BCS nonlinearity becomes more pronounced at lower temperatures



Effect of impurities on Effect of impurities on ∆∆(J)(J)

• Dirty limit (l << ξ0)

∆(J)/∆(0)

J/Jd(0)1

T << Tc1

0.54

T ≈ Tc

2/3

• Clean limit (l >> ξ0)

∆(J)/∆(0)

J/Jd(0)1

T << Tc
1

0.54

T ≈ Tc

2/3

In the clean limit ∆(J) is independent of J at low T (J. Bardeen, Rev. Mod. Phys. 34, 667 (1962)).

Dirty 40 nm layer near the Nb surface can decrease the nonlinearity of Rs



Kinetics of normal electronsKinetics of normal electrons

• Bulk of Nb cavities is usually clean enough to ensure l >> λ ∼ 40 nm, but the 
dirtiness of the rf surface layer is unclear

• For l >> λ, the normal state resistivity is irrelevant to the rf surface resistance.

• Quasi-static rf resistance ω << ∆ (good approximation for SC cavities)

• Quasi-equilibrium Fermi-Dirac distribution function for normal electrons: 2πτrf << 1

• Recombination time due to electron-phonon collisions (Kaplan et al, PRB 14, 8454 (1976))
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TESLA single cell cavity ( f = 1.3 GHz, T = 2K, τ0
-1 = 6.7 GHz), τr

-1 ≈ 0.03 GHz

Nonequilibrium effects can be important for strong rf fields Ha ∼ Hc



Analytical thermal breakdown modelAnalytical thermal breakdown model

H(t)
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Instead of numerically solving this 
ODE, one can solve much simpler 
equations for Tm and Ts

Kapitza thermal flux: q = α(T,T0)(T – T0)
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For a general case of thermal quench, see 
Gurevich and Mints, 
Reviews of Modern Physics 59, 941 (1987),
& Argonne workshop, 2004.  



Maximum temperatureMaximum temperature

BCS + residual surface resistance Ri

is R
TT

AR +⎟
⎠
⎞

⎜
⎝
⎛ ∆
−= exp

2ω

Since Tm – T0 << T0 even Hb, we may 
take κ and h at T = T0, and obtain the 
equation for H(Tm):
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Breakdown Breakdown rfrf fieldfield

Thermal runaway occurs at a rather weak overheating:
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For κ >> dα, the breakdown field is limited by 
the Kapitza resistance, α(T)=kT0
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For low T, the BCS nonlinearity becomes important



QQ--factor (linear resistance)factor (linear resistance)

Q(Hb) ≈Q(0)/e
= 0.37Q(0)

Q versus H0 for T0 = 2.2K and different Ri/RBCS(T0) = 0, 0.2 and 0.5 (top to bottom). 



Thermal breakdown for nonlinear BCS Thermal breakdown for nonlinear BCS 
resistanceresistance

Bi-quadratic equation for H0(Tm): 
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QQ--factor (nonlinear resistance)factor (nonlinear resistance)

Q(H0) for linear and nonlinear models for κ = 20 W/mK at T0 = 2K and Ri = 0. (b) Same as 
in (a), except that the Kapitza coefficient α is doubled, from 0.5 W/cm2K to 1 W/cm2K. 

The BCS nonlinearity increases the medium and high field Q slope
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better fitted with the non-linear BCS.

Exceptions: very low temp, high f Fnal (3.9 GHz, BCP)



Is thermal breakdown uniform?Is thermal breakdown uniform?

Defects can trigger thermal breakdown, Padamsee, Knobloch, Hays (1998),
K. Saito, opening talk.

Different types of defects: 1. Local inhomogeneities in BCS resistance (oxide patches)
2. Normal inclusions, 3. Defects which facilitate vortex penetration (GBs, flux focusing)  
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From Gigi Giovati, JLab (2005).



1

4

7

10

13

16

19

22

25

28

31

34
S1

S3
S5

S7
S9 S1

1 S1
3 S1

5

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

∆T (K)

Azimuth
Bottom 
I i

Top Iris

Equator

Q0 = 5.6 109

Bp = 102 mT

CEBAF Single cell cavity after 120C 48h air baking

1E+09

1E+10

1E+11

0 10 20 30 40 50 60 70 80 90 100 110 120 130

Bp (mT)

Q
0

T=2K

From Gigi Giovati, JLab (2005).

Temperature map 



1

4

7

10

13

16

19

22

25

28

31

34
S1

S3
S5

S7
S9 S1

1 S1
3 S1

5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

∆T (K)

Azimuth
Bottom 
I i

Top Iris

Equator

Q0 = 2.8 109

Bp = 110 mT

CEBAF Single cell cavity after 120C 48h air baking

1E+09

1E+10

1E+11

0 10 20 30 40 50 60 70 80 90 100 110 120 130

Bp (mT)

Q
0

T=2K

From Gigi Giovati, JLab (2005).

Temperature map 

Hotspots expand as H approaches Hb



Effect of hotspotsEffect of hotspots

coolant

H(t)

Regions of radius r0 where A(x,y) or H(x,y) is 
locally enhanced (impurities, GBs, thicker oxide 
patches, field focusing near surface defects, local 
vortex penetration, etc.)  
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T(x,y) = Ts+ δT(x,y), where Ts satisfies the uniform heat balance α(Ta)(Ta – T0) = q0(Ts, H),
and δT(x,y) is a disturbance due to defects:
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Temperature distributionTemperature distribution
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Where f(H/Hb) = (∂q/∂T)/α→ 1 at H → Hb

L increases with H and diverges at the 
uniform breakdown field, H = Hb



Weak hotspotsWeak hotspots

• Dimensionless SC 
defect strength  (both Rs
and field focusing) 
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• Ohmic defects, Γn(H) = H2ℜn/2, or a vortex thermal switch: 

• Weak hotspots: η << 1. For κ = 20 W/mK, T0 = 2K and α = 0.5 W/cm2K, Lh ≈ 3mm. 
Hotspots with r0 < 1mm are weak, even for strong inhomogeneity, δA ∼ A or δH2 ∼ H2

• Maximum hotspot temperature Tm
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For η = 0.3, L/r0 = 10, T0 = 2K, we obtain Tm – Ts = 0.08K  



Penetration of vortices along Penetration of vortices along GBsGBs through through 
oscillating surface barrieroscillating surface barrier

E(t)

GB as a hotspot site: reduced flux penetration field

Deformation of the vortex core during 
flux penetration along GBs.

Transformation of the Abrikosov to the
Josephson and mixed Abrikosov-Josephson
(AJ) vortices

Dissipation due to vortex oscillations in RF field

AJ vortex



Averaged BCS surface resistanceAveraged BCS surface resistance

Extra dissipation in a hotspot:
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Rs(H) is the uniform surface resistance, ls is the mean spacing between hotspots, Hb0
is the uniform breakdown field, Rn = 2<Γn>/H2ln

2

Nonlinear contribution to the global Rs due to expansion of hotspots with H. 



Example: linear Example: linear BCS+hotspotsBCS+hotspots ((RRii = 0) = 0) 

Thermal balance equation for the mean temperature T(H)

gn = g = 0.1
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Explicit dependence H0(T):
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f = θexp(1 - θ),  u = (gn + eθ)exp(- θ), 
θ = (T – T0)∆/kBT0

2,  gn = Rn/Rs(T0)

Maximum in H0(T) at the breakdown field Hb above which stable thermal 
balance is impossible  



Q(H) for the linear Q(H) for the linear BCS+hotspotsBCS+hotspots ((ΓΓnn = 0)= 0)
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0Hotspots reduce the breakdown field:

Hotspots increase the high-field Q slope:  



ConclusionsConclusions
• Ultimate cavity performance (in the absence of vortex penetration) is limited 
by nonlinear BCS pairbreaking and heating effects.

• Acoustic resonances and mechanisms of the residual resistance

• Hotspots limit the high-field cavity performance:
- New mechanism of nonlinearity, which can offset the BCS nonlinearity,
- Reduce the breakdown field
- Increase the high-field Q slope

• Mechanisms of hotspot formation
- Acoustic hotspots
- Vortex penetration along GBs
- Nonuniform surface oxide layers

ChallengesChallenges
• Understanding nonequilibrium superconductivity and impurity surface 
scattering on nonlinear BCS resistance and rf breakdown  
• Dynamics of vortex penetration and dissipation in rf field 
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