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Possible mechanisms behind
the low-field, medium-field and
high-field parts of Q(H) curve?

INTRODUCTION
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= Low - H slope:

Linear BCS + residual resistance R..
Hypersound generation and acoustic
resonances

= Medium - H slope

Nonlinear BCS resistance. Heating
and nonequilibrium effects

= High - H slope

Vortex penetration, grain boundaries
and flux focusing. Hotspots and
thermal breakdown




BCS and residual surface resistance
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R, = exp | — +
T kgT

Constant R;at T — 0 for small H,

Is inconsistent with the BCS theory

Mechanisms of R; are likely unrelated to
superconductivity

Field, temperature and frequency
dependences of R, are poorly understood

Effect of surface oxides (hydrides) or more
fundamental mechanisms?
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Sound generation by rf field

Rf oscillating force generates a hypersound wave
with the wavelength A = s/f = 1.75 um
for f=2 GHz, c,= 3.5 km/s

A Is much greater than the London penetration
depth A =40 nm, but much smaller than the wall
thickness d = 2-3 mm

Nearly ideal reflection (R ~ 1) due to large acoustic
mismatch between Nb and He

Standing sound wave unlike traveling wave

does not cause rf dissipation ... ?
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Generation of transverse sound by rf electric field

Halbritter, JAP 42, 82 (1971); Passow, PRL 28, 427 (1972); Kartheuser and Rodriguez,
JAP, 47,700 (1967); Scharnberg, JAP 48, 3462 (1977)
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Taking pe/Ms ~ 2x10-3 for Nb, we get R/R, ~ 1 at 2K in the clean limit, the ratio

R/R, . decreasing as the rf surface layer gets dirtier.
Pros: Cons:
1. Right order of magnitude 1. Ignores that only 1-R = 0.4% of
2. Right temperature dependence sound energy contributes to R,

Experiment: Kneisel et al (1971) + later works



Generation of longitudinal sound by rf
magnetic pressure

§2U" (= 2 g2k oo 20t, U'(0)=0
20

Propagating wave:

IBHAS (Zia) j

U= EXPl —X
16p(s° + 0’ 1w P S

Rf dissipation: Q = RH?/2 = 4w?sp|ul?/2

R — B"s’ 1. Independent of @ and T for A>>\
' B64p(S® + @ N?)? 2. Quadratic in rf field

For B =100 mT, s = 3.5 km/s, p = 8.5 g/lcm?, we get R. = 0.08nQ



Effect of sound attenuation and reflection

. e e
S°U"+ &'U +iyall = &5 (g, 0™y 2w
yo,

Acoustic Q factor /y ~ 107 at 2K provides
very weak attenuation yd << s

R R.,sinh(»d /s)
" cosh(sd /s) — cos(2ed /'s)

Sound reflection makes R; negligible unless
the resonance condition

®d =7SN, n=1,2, 3 .. is satisfied:
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Acoustic hotspots

Distribution function of acoustic
resonance frequencies due to:

1. Smooth thickness wall variation by
Ad>> A ~ 1 pmon the scale ~ d = 2-3 mm Hotsport in the regions where the
2. Spectrum of rf frequencies in coupled local thickness d(x,y) satisfies the
cavities resonance condition nA = d

Averaging with the thickness
distribution function F(x): F

_ % sinh(x/s)F(x)dx
0-([ cosh(yx/s) —cos(2ax /s) °

Averaged R; is of the order of R, and depends neither on the small y nor the shape of
F(x). Effect of sound scattering and generation of Rayleigh surface waves



BCS rf dissipation

Thermal activation of normal electrons
n. = ny(mT/2A)Y2exp(- AIT)

Accelerating electric field
E(z,t) = pyoAH_ e*Msinwot

Scattering mechanisms and normal state
conductivity: o, =e’nl/p;, pp=h(3m2ny)L?

Surface: from specular to diffusive

Normal skin effect (1 << A): multiple impurity
scattering in the A - belt:

R, ~ (1 2@?A3c, AIT)exp(-A/T)

Anomalous skin effect (1 >> A): scattering by
the gradient of the ac field E(z):

Effective o4 ~ enAlp. 1> A

R, is independent of bulk impurities
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Figure 3. The BCS resistance at T=4 2K.




Low-frequency R, for a clean (1 >> A) type li
superconductor

Linear BCS surface resistance for small-amplitude rf field H << H_T/T,

2 214
R, oc tp@ A AN, In(AjJrCO exp _ A
Ko TP, hao kT

Logarithmic term Inw comes from the BCS coherence factors

Density of thermally-activated electrons:

The main R, nonlinearity in strong rf fields comes from the dependence of n(J) on J



Effect of current on thermal activation

Rocking “tilted” electron spectrum in the
current-carrying state J = J,coswt

E(p) = /A +(p?/2m - E.)? PV, (1)

Superfluid velocity v (t)

v =12

« Reduction of the gap from A to A - p¢|V.| increases density of thermally-activated
normal electrons N.(J), thus increasing R,

« General theory requires solving kinetic equation for the electron distribution function
taking into the account impurity and electron-phonon scattering



Simple model: density of normal electrons

If J(X) varies weakly over the coherence length &, then:

w VEHF 5 pev.cosd .
keT kT o sinhj(t)
J)=N(0 5 d ° d=n_ (0
n(J) ()!e 77!6 SIRIO=N0 =

Current driving parameter:

pFVs(t) T A H(t)
p = = 5312
k,T 227 kT H.

 Thermodynamic critical field H_ = ¢/23?AE,.

n ([r/in (0)

—_
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* The nonlinearity becomes more pronounced at lower T for H > H_T/T << H_



Simple model: nonlinear rf surface resistance

20
Time-averaged dissipated power:
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At small fields Ry(H) gets a quadratic correction in H, but for 3, >1, the surface
resistance increases exponentially with the rf field amplitude.

For T=2Kand T, = 9.2K, the parameter 3, varies fromOatH=0to 9.7atH =H,



Theory of nonlinear R, for a clean type-ll
superconductor, A>>¢, o1, <1

Solving a kinetic equation for the electron distribution function with the account
of the BCS coherence factors. Superimposed dc and ac field: H(t) = H . + H,cosmt:
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The simple model gives very similar temperature, field and frequency
dependencies of R (T,H,w)

Dependence of the nonlinear R (T,H,») on dc field unrelated to vortices



Example: low rf amplitude

Theory (to the accuracy of small logarithmic terms in o):

7l A i
R(H)= |1+ 4H; +HZ )R
s( ) [ 384 (kBT] ( dc O)] bcs

The simple model captures the correct field and temperature dependence of
the nonlinear R

For Nb at T = 2K, the nonlinear contribution is essential even for H, < H,

R, (H,,2K) = £1+ 2[::"0} JRbCS(ZK)

C

The BCS nonlinearity becomes more pronounced at lower temperatures



Effect of impurities on A(J)

2/3

o Clean limit (1>> &)

A(J)/A(0)

T<<T,

0.54 1 J/3,(0)

. Dirty limit (I << &)

2/3

A(3)IA(0)

0.54 1 J3/3,0)

In the clean limit A(J) is independent of J at low T (J. Bardeen, Rev. Mod. Phys. 34, 667 (1962)).

Dirty 40 nm layer near the Nb surface can decrease the nonlinearity of R




Kinetics of normal electrons

Bulk of Nb cavities is usually clean enough to ensure | >> A ~ 40 nm, but the
dirtiness of the rf surface layer is unclear

For I >> A, the normal state resistivity is irrelevant to the rf surface resistance.

Quasi-static rf resistance o << A (good approximation for SC cavities)
Quasi-equilibrium Fermi-Dirac distribution function for normal electrons: 27t f <<'1
Recombination time due to electron-phonon collisions (Kaplan et al, PRB 14, 8454 (1976))

1/2 5/2
L afATY (2A A
o=, | — | |=—| expl-=
T, T, T

TESLA single cell cavity (f=1.3 GHz, T = 2K, 1,1 = 6.7 GHz), 1"~ 0.03 GHz

Nonequilibrium effects can be important for strong rf fields H, ~ H_



Analytical thermal breakdown model

coolant
H(t)

Kapitza thermal flux: q = a(T,T,)(T = T,)

For a general case of thermal quench, see
Gurevich and Mints,

Reviews of Modern Physics 59, 941 (1987),
& Argonne workshop, 2004.

0
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1

—K(T)a—TJr— Hf)RS(Tm)é(x) =0
oX 2

!

Instead of numerically solving this

ODE, one can solve much simpler
equations for T and T,

!

EHOZRS(Tm) — K(TO)(Tm _Ts)/d1

[x(T)dT = da(T,, T,)(T,~T,)




Maximum temperature

BCS + residual surface resistance R

0.25

, 0.2

Aw A
R, = exp| —— [+ R; 0.15
T T T
T
Since T, — T, << T, even H,, we may 0.05
take k and hat T = T,, and obtain the
equation for H(T,,): 12 2 22 24 28 28 3
T . Kelvin
mi

* T AP exp(—AIT )+ T R]’ 1+da/x



Breakdown rf field

Thermal runaway occurs at a rather weak overheating:

2 2
NTo _ T,

T -T, =
A 1.86T,

= 0.23K,

5 2h T’ A
H, = exp| —
(x +dh )R, T Ae T,

E
ID
For ¥ >> da, the breakdown field is limited by
the Kapitza resistance, a(T)=kT,*. Thus, .
1 2 . | 3 4
1/2 elvin
0"
R,T.eA 2T,

IS minimum at T, = A/6
For low T, the BCS nonlinearity becomes important



Q-factor (linear resistance)
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Q versus H, for T, = 2.2K and different R/Rg<(T,) = 0, 0.2 and 0.5 (top to bottom).



Thermal breakdown for nonlinear BCS

resistance

Bi-quadratic equation for Hy(T,,):

1+C(

Breakdown field

2 2
ch HO H02 _ Zasz (Tm _TO) exp A
T H, Ao (da + k) T

m

212 2112
2 ZTHEL ) 4CKHS,
2CA T?H,



Q-factor (nonlinear resistance)

(a) | | (b)

"D 50 100 150 200 25

Q(H,) for linear and nonlinear models for k = 20 W/imK at T, = 2K and R, = 0. (b) Same as
In (a), except that the Kapitza coefficient o is doubled, from 0.5 W/cm?K to 1 W/cm?K.

The BCS nonlinearity increases the medium and high field Q slope




P.Bauer et al. - Comparison of Cavity data with TFBM using lin or lin+non-lin BCS
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Is thermal breakdown uniform?

@) e | (b)

Defects can trigger thermal breakdown, Padamsee, Knobloch, Hays (1998),
K. Saito, opening talk.

Different types of defects: 1. Local inhomogeneities in BCS resistance (oxide patches)
2. Normal inclusions, 3. Defects which facilitate vortex penetration (GBs, flux focusing)
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Temperature map

F0'05
—0.045
—0.04
—0.035
—0.03

0025 AT (K)

—0.02

1E+09

1E+11 ¢

CEBAF Single cell cavity after 120C 48h air baking

mﬂﬂm

0 10 20 30 40 50 60 70 80 90 100 110 120 130
B, (mT)




Temperature map
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Temperature map

From Gigi Giovati, JLab (2005).

CEBAF Single cell cavity after 120C 48h air baking
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Hotspots expand as H approaches H,



Effect of hotspots

H(t)

Regions of radius r, where A(x,y) or H(X,y) IS
locally enhanced (impurities, GBs, thicker oxide
patches, field focusing near surface defects, local

m vortex penetration, etc.)

VT —a(T)T -T,)+q(T,H,r)=0

T(x,y) = T¢+ 8T(X,y), where T satisfies the uniform heat balance o(T,)(T, - Ty) = 0y(Ts, H),
and 6T(x,y) is a disturbance due to defects:

V2T —(&—6—‘4)& + & =0
oT

Excess heat generation 6¢ = H>6R/2 + R6H?/2 in the region of radius r,



Temperature distribution

ol (r) = % K{{) r<r, = _"5q(x, y)dxdy

A hotspot produces a temperature disturbance &T(r), which spreads along
the cavity wall over the distance L >> r, greater than the defect size

L L dx
J1-f(H/H,) a

Where f(H/H,) = (69/0T)la— 1 at H > H,

L increases with H and diverges at the

uniform breakdown field, H = H,



Weak hotspots

* Dimensionless SC OA OH?
defect strength (both R, n= L A l H?
and field focusing) " r

« Ohmic defects, I',(H) = H*R /2, or a vortex thermal switch:

H Hy

« Weak hotspots: n << 1. For k = 20 W/mK, T, = 2K and o = 0.5 W/cm2K, L, = 3mm.
Hotspots with r, < Imm are weak, even for strong inhomogeneity, A ~ A or 6H? ~ H?

« Maximum hotspot temperature T,

T T(H)+77(T _T )t

0

Forn =0.3, L/r, =10, T, = 2K, we obtain T, — T, = 0.08K



Penetration of vortices along GBs through
oscillating surface barrier

TS E()

GB as a hotspot site: reduced flux penetration field

Deformation of the vortex core during
flux penetration along GBs.

Transformation of the Abrikosov to the
Josephson and mixed Abrikosov-Josephson
(AJ) vortices

Dissipation due to vortex oscillations in RF field

AJ vortex



Averaged BCS surface resistance

Extra dissipation in a hotspot:

_ 7 L ~__ b
[T (x.y)axdy =5 UHIRR.(T)+ T, (H) 7 R ECICR;

Global surface resistance with the account of non-overlapping hotspots:

+ Rn(HO) ﬂLﬁ
1_(H0/Hb0)2

S _ 9
R(T,H)=R/(T, H){1+1_(H0/Hb0)2}

R,(H) is the uniform surface resistance, £, is the mean spacing between hotspots, H,,
is the uniform breakdown field, R, = 2<I", >/H?¢ 2

Nonlinear contribution to the global R, due to expansion of hotspots with H.



Example: linear BCS+hotspots (R, = 0)

Thermal balance equation for the mean temperature T(H)

R.(T,H)

S H?=a(T-T,)

Explicit dependence H(T):

He _1 L 2_
H—bz()_2(1+g+U(6’)) \/4(1+9+U(9)) f(0)

f=0exp(L-6), u=(g,+eb)exp(-0),
0= (T —TyAkgTy2 g, =R, /R(T,)

Maximum in H,(T) at the breakdown field H, above which stable thermal

balance is impossible




Q(H) for the linear BCS+hotspots (I', = 0)

.”:IIIJ

10*

0 bl

Hotspots reduce the breakdown field: H,

12

(e

Hotspots increase the high-field Q slope: 80 - (11 Vo )e > e
b + g



Conclusions

o Ultimate cavity performance (in the absence of vortex penetration) is limited
by nonlinear BCS pairbreaking and heating effects.

» Acoustic resonances and mechanisms of the residual resistance

 Hotspots limit the high-field cavity performance:

- New mechanism of nonlinearity, which can offset the BCS nonlinearity,
- Reduce the breakdown field

- Increase the high-field Q slope

« Mechanisms of hotspot formation
- Acoustic hotspots

- Vortex penetration along GBs

- Nonuniform surface oxide layers

Challenges

 Understanding nonequilibrium superconductivity and impurity surface
scattering on nonlinear BCS resistance and rf breakdown
« Dynamics of vortex penetration and dissipation in rf field
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