Review of Frontier Workshop and Q-slope results

Gianluigi Ciovati Jefferson Lab

12th SRF Workshop, July 10th-15th 2005, Cornell

Workshop on Pushing the Limits of RF Superconductivity

- September 22-24, 2004
- Hold at Argonne National Laboratory
- 64 participants invited to discuss how to push the limits of RF superconductivity for particle accelerators
- 30 talks divided in three sessions:
 - Ultimate field limits, new materials, new geometries
 - High Q, field emission, Q-slopes
 - Future research paths to ultimate performance

Workshop's website: http://www.aps.anl.gov/conferences/RFSC-Limits/

Workshop's presentations available on-line

(http://www.aps.anl.gov/conferences/RFSC-Limits/Presentations.html)

Workshop's proceedings published as Argonne Report ANL-05/10, March 2005

Outline

- Overview of knowledge on high field Qslope (or "Q-drop")
- Improved oxygen diffusion model and possible explanation of Q-drop
- Summary

Q-drop: obstacle before the ultimate limit

BCP treated cavities (1)

Fine grain (~ 50μm), rough surface (5-10μm)

Q-drop STILL PRESENT after baking

BCP treated cavities (2)

 Larger grains (1-5mm) by post-purification, rough surface (5-10μm)

BCP treated cavities (3)

"Air" baking

- Reduced Q-drop improvement
- Higher residual resistance

EP treated cavities (1)

• Fine grain (~ 50μ m), smooth surface (2- 5μ m)

EP treated cavities (2)

 Larger grains (~ 1mm) by post-purification, smooth surface (2-5μm)

Single grain BCP cavities

• One grain, very smooth surface (<1 μ m) with BCP

P. Kneisel et al.-PAC 05-TPPT076

Statistic on Q-drop onset field

Conclusions (1)

- Q-drop is common to BCP, EP and Single crystal cavities
- The onset field is ↑ the ↓ the density of grain boundaries is
- The baking effect is different on polycrystalline "fine grain" Nb treated by BCP and EP, but is similar for ↓ density of grain boundaries
- "Air" baking less effective than "UHV" bake

Origin of Q-drop: E- or B-field?

 Interface Tunnel Exchange Model¹: resonant absorption of energy due to tunneling of normal e⁻ between metal and oxide in the presence of strong Efield

$$R_{S}^{E} = b \left[exp(-c/E_{rf}) - exp(-c/E_{0}) \right]$$

Excellent fit to experimental data

All other models^{2,3,4,5}: Q-drop is a magnetic field effect

¹J. Halbritter, IEEE Trans. on Appl. Superc., 11 No. 1 (2001) 1864

- ²K. Saito, Proc. 11th SRF Workshop, Travemuende, Germany (2003), ThP17
- ³A. Gurevich, Argonne Report ANL-05/10, (2005) p. 17
- ⁴H. Safa, *Proc. 10th SRF Workshop*, Tsukuba, Japan (2001) p. 279
- ⁵J. Knobloch et al., *Proc. 9th SRF Workshop*, Los Alamos, NM (1999) p. 77

Measurements on TE₀₁₁ mode

G. Ciovati and P. Kneisel – Frontier Workshop – p. 74

After post-purification, Q-drop appears in TE_{011} mode (zero E-field on surface) with the same field dependence as for TM_{010} mode and recovers after baking

HF treatment

• HF used to remove oxide layer after baking. The surface is being re-oxidized after rinsing and air exposure

B. Visentin – Frontier Workshop – p. 94

Q-drop is NOT restored after a new oxide layer is formed

Temperature maps before baking

"Patchy" losses develop at the cavity equator (high magnetic field region)

Conclusions (2)

- The Q-drop is due to high magnetic field
- The benefit of baking is maintained after
 - exposure to air for 3 years
 - high pressure water rinsing
 - build-up of new oxide layer

- Decrease of R_{BCS} due to strong \downarrow of l and slight \uparrow of energy gap
- The physics of the niobium surface changes from CLEAN (l > 200 nm) to DIRTY LIMIT ($l \approx 25$ nm $\cong \xi_0$) ¹⁹

Surface studies on samples

- Natural oxide (Nb_2O_5) decomposes into sub-oxides (NbO, NbO_2) , thinner oxide layer
- Segregation of interstitial oxygen near metal-oxide interface, measured conc. up to 10 at.%
- Hydrogen? Very difficult to measure accurately, no clear data yet

C. Antoine – Frontier Workshop – p. 65

How deep is the baking benefit?

Red squares – additional 30 V/60 V anodizing Blue circles – BCP + 100 C baking

H. Padamsee et al. - Frontier Workshop - p. 293

Cavity test result: original Q-drop is obtained after ≈ 20 nm thick Nb was converted to oxide Sample analysis: oxygen concentration in 20 nm depth reduced by baking

Susceptibility meas. on samples

- r_{GL} (Ginzburg-Landau) =1.695
- In these measurements: r₃₂ >1.8

Two possible explanations:

- $B_{c2}^{surf} > B_{c2}^{bulk}$ $B_{c3} = r_{GL} B_{c2}^{surf}$ ("naïve" model)
- impurities in a layer $d \le \xi$ $r_{32}=1.67[1+(1-\chi_G)\sqrt{1.7} d/_x]$ $\uparrow T_{bake}$, time: $\uparrow d, \downarrow l$

 $r_{32}=B_{c3}/B_{c2}$: depends on bake temperature and duration

Magneto-optical meas. on samples

• Study flux penetration in Nb samples

Optical image, large grain sample (by post-purif.) BCP treated

MO image at 57 mT, 7 K

Evidence of flux penetration along grain boundaries!

P. J. Lee et al. - Frontier Workshop - p. 84

Conclusions (3)

- Impurity diffusion occurs during baking
 - Decrease of mean free path (cavity meas.)
 - Susceptibility measurements (samples)
 - XPS analysis (samples)
- High O concentration near the surface (≈20nm deep) reduced by baking
- Flux penetration may occur at grain boundaries

Oxygen diffusion models

Solve diffusion equation

S. Calatroni et al. - SRF 01 - PR025

H. Safa – SRF 01 – MA008

Improved model

Contribution from dissociation of oxide layer

 $Nb_2O_5 \xrightarrow{k} NbO \qquad k(T) = Ae^{-E_a/RT} \quad A \cong 3 \times 10^9 \text{ 1/s} \quad E_a \cong 135 \text{ kJ/mol}$

Solution:

$$u(x,t) = \frac{u_0}{\sqrt{\pi D(T)}} \int_0^t \frac{k(T)e^{-k(T)s}}{\sqrt{t-s}} e^{-\frac{x^2}{4D(T)(t-s)}}$$

Concentration of oxygen produced by the oxide reduction

 \cong 1000 at.% nm, obtained from comparison with data

B. R. King *et al.*, Thin Solid Films 192, p. 351 (1990)

 Diffusion of interstitial oxygen existing before baking

$$\frac{\partial v(x,t)}{\partial t} = D(T)\frac{\partial^2 v(x,t)}{\partial x^2} \qquad v(0,0) = v_0$$

Solution:

$$v(x,t) = \frac{v_0}{\sqrt{4\pi D(T)t}} e^{-\frac{x^2}{4D(T)t}}$$

 $\approx 10 \text{ at.\% nm}$ I. Arfaoui *et al.*, J. Appl. Phys. 91,
p. 9319 (2002)

General solution:

$$c(x,t) = u(x,t) + v(x,t)$$

Comparison with data

Data are from: P. Kneisel – SRF 99 - p. 328

Oxygen concentration at the surface as function of baking temperature

Optimum baking temperature: lowers O conc. near the surface

Schematic of the Nb surface

Before baking

After baking

How is O related to the Q-drop?

[#] C.C. Koch *et al.*, Phys. Rev. B 9 (1974) p. 888

Flux penetration at reduced B_{c1}

 There exist a surface barrier which prevents vortices from penetrating even above B_{c1}¹

BUT

the surface barrier can be reduced to zero in non-uniform (rough) surfaces²

Surface morphology

Changes in surface barrier

Onset of Q-drop (↑ smoother surfaces)

¹C. Bean and J. D. Livingston, *Phys. Rev. Lett.* 12 p. 14 (1964)

²R. D. Blois and W. de Sorbo, *Phys. Rev. Lett.* 12 p. 499 (1964)

Losses due to flux penetration

 Rabinowitz¹ calculated the power loss due to a normal conducting fluxoid in rf field

$$R_s(B_p) \propto exp(D/B_p)$$

$$D \Box \frac{\Delta}{k_{B}F} \sqrt{\frac{k_{1}}{NRa\ln\left[\left(f-d\right)/a\right]}}$$

 $D \cong 2.2 \text{ T}$ (with $\rho = \rho_n$) $D \cong 5 \div 8 \text{ mT}$ from experiments

Q-drop onset freq. dependence

¹B. Visentin – Frontier Workshop – p. 94
²M. Kelly *et al.* – Frontier Workshop – p. 278
³M. Rabinowitz, *J. Appl. Phys.* 42 p. 88 (1971)

Summary

- The onset field of the Q-drop and the effect of baking seem to depend on the density of grain boundaries
- The Q-drop appears to be driven by magnetic-field
- There is a high oxygen concentration at the oxide/metal interface which seems to be diluted by baking
- An improved oxygen diffusion model can be linked to a change of the onset field for flux penetration to explain the Q-drop and the baking effect

Open issues

- Is there enough experimental evidence to exclude H from playing a role in the Qdrop?
- How can we test the hypothesis of flux penetration during Q-drop?
- Interpretation of experimental data against O hypothesis:
 - Saclay data: Q-drop is not restored after HF rinsing of baked cavity (O conc. near surface restored as before baking)

Acknowledgements

P. Kneisel, G. Myneni, J. Halbritter, J. Delayen, A. Gurevich, H. Padamsee, C. Antoine

