

3.9 GHZ DEFLECTING MODE CAVITY

Timothy W. Koeth July 12, 2005

History of 3.9 GHz DMC Cavity Simulations The "Other Modes" concern and modeling R/Q Wake Field Simulations Design: OM couplers Testing: Vertical Dewar Test Results Status: ready to build !

Rutgers The State University of New Jersey

DEFLECTING MODE CAVITY HISTORY

The Deflecting Mode Cavity (DMC) was initially planned for use in the CKM fixed target experiment's beam line, but now it finds it's primary use as a diagnostic tool. The operating frequency, 3.9 GHz, was chosen to be a multiple of the A0 facility's 1.3 GHz system. This will permit the use of the cavity as a beam-slicing device that can measure the longitudinal profile of a short bunch.

BEAM LINE SIMULATIONS

Full 3-D E-M field made for 13 cell polarized model was generated in HFSS

BEAM LINE SIMULATIONS

The 3-D field map was used with the ASTRA code to understand the cavity's time resolution

Vertical Projection

The simulation consisted of a bunch composed of two Gaussian peaks of different intensity and generation time. This enabled us to compare the time to spacial correlation preservance.

LOWER, SAME, AND HIGHER ORDER MODES

Requirement: to be maintain the DMC in "standby" in the beam line at 4.5 K. Does the cavity have any "problematic" modes sitting near the light cone ? Using MAFIA, dispersion curves for modes up to cut-off were checked

 $m = 0 \mod s$

m = 1 modes

m = 2 modes not shown, but modeled.

DETERMINATION OF R/Q

$$R^{(m)} / Q = \frac{1}{r^{2m}} \frac{2k^{(m)}(r)}{\omega} = \frac{2}{r^{2m}\omega} \frac{\left|\int dz \ \tilde{E}_{z}^{(m)}(r,z)e^{-i\omega z/c}\right|^{2}}{4U^{(m)}}$$

We show the R(m)/Q values for all the modes found in the 13 cell MAFIA simulation, in units of Ω for m = 0, Ω/m^2 for m = 1, and Ω/m^4 for m = 2.

Possible Modes of Concern:

TM₀₁₀:

-9 <i>π</i> /13	R/Q:187
-10 <i>π</i> /13	R/Q:354
-11 <i>π</i> /13	R/Q:129
TM ₁₁₀ :	

- π (2nd Polr.) R/Q:2.3x10⁶

LOM, SOM, HOM COUPLERS

LOM, SOM, HOM COUPLERS

HOM coupler a modification of DESY design

SOM coupler will be mechanically adjusted to find the node of the $\rm TM_{110}$ mode

LOM at opposite end of input coupler

WAKE FIELD SIMULATIONS

Typical Input Parameters:

Bunch Spacing	1µSec
Bunch Charge	12nC
Bunch Length	3pSec
E _{beam}	40 MeV
Operating V $_{\perp}$	3 MV/cavity
Q _{ext}	1x10 ⁶
R _{surf} at 3.9 GHz	100nΩ

i.e. The 17th bunch, entering 0.5 mm away from the center looses ~200keV and is kicked 32 μrad

A WORK IN PROGRESS !

VERTICAL DEWAR TEST RESULTS

Cavity design parameters

13 cells BMAX = 80 mT EMAX = 18.6 MV/m L EFF = 0.5 m P_{\perp} = 5 M V/m

VERTICAL DEWAR TEST RESULTS

Brief Testing History:

Cavity: "Short"

Cavity: "	Soft"
-----------	-------

Date	R _{res} (nΩ)	Peak Field (MV/m)
Early 2003	250	5.1
Feb, 2003	120	3.6
Feb, 2004	1300	5.4
Dec, 2004	1000	5.4
April, 2005	200	3.3
June, 2005	10,000	N/A

Date	R _{res} (nΩ)	Peak Field (MV/m)
June, 2005	190	N/A
March, 2005	220	3.3

Cavity: "Thick"

Date	R _{res} (nΩ)	Peak Field (MV/m)
August, 2004	60	7.5 !

Possible cause for poor surface resistance:

- -Contaminated water system(s)
- -Hydrogen poisoning from long acid etch
- -Cavity orientation wrt to environmental flux lines ?
- -Hydrogen in welded region at about 1ppm ?

HORIZONTAL CRYOVESSEL

FNAL already has a prototype horiztonal cryovessel that will host two 3.9 GHz cavities. With minor modification, we will retrofit for use in the PhotoInjector Beam line.

Cryogenics Feed

Thermometry, LOM, SOM, HOM ports

Capable of hosting two 3.9 GHz cavities.

RF input Coupler(s)

DMC HLRF & LLRF

3kW CW 3.9 GHz Klystron

Using DESY's SimCon Series for LLRF control.

Developement and testing with Superconducting cavities underway at DESY and Fermilab.

DEFLECTING MODE CAVITY STATUS:

Summer 2005: Fine tuning L/S/HOM design

December 2005: Cavity assemblies in construction

Summer 2006: Finish cavity production

Fall 2006 :Assembled cavity in cryovessel

Winter/Spring 2007: Commission with beam

<u>Acknowledgements</u>

Helen Edwards, Leo Bellantoni, Timergali Khabiboulline, Don Mitchell, Mike Foley, Allan Rowe, Bill Soyars, Peggy Crayton