

12th International Workshop on RF Superconductivity

New Magnetron configurations for sputtered Nb onto Cu

A.Frigo, <u>G.Lanza</u>, H.Padamsee, V.Palmieri, D.Tonini

CERN geometry

C. Benvenuti, S. Calatroni, I.E. Campisi, P. Darriulat, M.A. Peck, R. Russo, A.-M. Valente, "*Study of the surface resistance of superconducting niobium films at 1.5 GHz*", Physica C 316 (1999) 153-188.

Cylindrical Magnetron

Q-slope problem

The INFN-LNL hypothesis

Sputtering at different target-substrate angle

At different target-substrate angle

AFM Roughness images

XRD spectras

Superconducting properties

Electrical properties

Comparing Sputtering and Cathodic Arc

Sputtered films grow along the normal to 110 crystal planes according to the atom arrival direction

45

75

n

By cathodic arc, the substrate is biased; so ions always reach the substrate perpendicularly: <u>NO TEXTURE vs target-substrate angle</u>

G. Keppel, V. Palmieri, N. Patron, D. Tonini, LNL-INFN

Understanding:

• Film morphology strictly correlated to the deposition angle

Electrical and superconducting film properties degrade vs deposition angle

 Comprehension of sputtering principles is compulsory for conceiving new magnetron configurations

Deposition technique: magnetron sputtering

Uniform magnetic field lines

 $\omega_c \propto B$

Deposition technique: magnetron sputtering

Non-uniform Magnetic field lines

Electron reflection is due to magnetostatic and electrostatic mirror

Deposition technique: magnetron sputtering Cylindrical Post Magnetron cathode

Β

 $\omega_D \propto \frac{E \times \overline{B}}{R^2}$

Deposition technique: magnetron sputtering

Ideas to improve the film quality:

1. Increasing the sputtering rate R

$$f_i = \frac{N_i \alpha_i}{N_i \alpha_i + R}$$

f_i = Fraction of impurities
trapped into the film

α_i = Impurities sticking coefficient

N_i = Number of atoms impurities arriving on the film surface

2 inches planar target

2 inches squared target

2 inches rounded target

Niobium ring positioned in the cell center

Ideas to improve the film quality:

- 1. Increasing the sputtering rate R
- 2. Reducing the deposition angle
- 3. Promoting atoms rearrangement and impurities re-sputtering during film growing

$$f_i = \frac{\left(N_i \alpha_i - \beta\right)}{\left(N_i \alpha_i - \beta\right) + R}$$

- f_i = fraction of impurities trapped into the film
- α_i = impurities sticking coefficient
- N_i = atoms impurities arriving on the film
- β = function of the bias current due to impurities ions
- **R** = sputtering rate

Biased Diode Sputtering

Bias LNL Up to now

The bias technique is highly reliable: over 40 QWRs are installed and working at LNL

Biased grid

Ideas to improve the film quality:

- 1. Increasing the sputtering rate R
- 2. Reducing the deposition angle
- 3. Promoting atoms rearrangement and impurities re-sputtering during film growing

4. Increase the cathode/substrate area ratio

Biased Diode Sputtering

Cavity shaped cathode

High ratio cathode/substrate area

Cavity shaped cathode

in progress...

Three new magnetron sputtering configurations are ready!

...soon 20 cavities to measure.

Cylindrical Post-Magnetron

Magnetic field lines follow the cavity shape

Niobium cathode