

A15 Superconductors: Alternative to Nb for RF Cavities

<u>S.M. Deambrosis</u>*^, G. Keppel*, V. Palmieri*^, V. Rampazzo*^, C. Roncolato*, R.G. Sharma°, F. Stivanello*

* INFN - Legnaro National Labs
 ^ Padua University, Science faculty, Material Science Dept

° Nuclear Science Centre, New Delhi

Padova University, Material Science Dept

Surface Impedance and Surface Resistance

For a normal metal in the normal regime:

As derived by Nam, for T < T_c / 2, R_s can be approximated by:

$$\frac{R_s}{R_n} = \frac{1}{\sqrt{2}} \frac{\frac{\sigma_1}{\sigma_n}}{\left(\frac{\sigma_2}{\sigma_n}\right)^{\frac{3}{2}}}$$

Mattis and Bardeen Integrals

In the framework of the BCS theory, for $\omega < 2\Delta$, the complex conductivity of a superconductor is:

$$\frac{\sigma_{1}}{\sigma_{n}} = \frac{2}{\hbar\omega} \int_{\Delta}^{\infty} \left[f\left(E\right) + f\left(E + \hbar\omega\right) \right] g^{+}\left(E\right) dE$$
$$\frac{\sigma_{2}}{\sigma_{n}} = \frac{1}{\hbar\omega} \int_{\Delta - \hbar\omega, -\Delta}^{\Delta} \left[1 - 2f\left(E + \hbar\omega\right) \right] g^{-}\left(E\right) dE$$

The two integrals σ_1/σ_n and σ_2/σ_n are easily numerically calculated.

$$\left|\frac{\sigma_1}{\sigma_n} = \left[\frac{\frac{2\Delta}{K_B T}}{\left(1 + e^{-\Delta/K_B T}\right)^2}\right] e^{-\Delta/K_B T} \ln \frac{\Delta}{\hbar \omega} \left|\frac{\sigma_2}{\sigma_n} = \frac{\pi \Delta}{\omega} \tanh \frac{\Delta}{2K_B T}\right|$$

In the normal skin effect regime, for $\hbar\omega$ << 2 Δ

$$R_{BCS}$$
Then, if $T < T_c / 2$

$$R_{BCS} \approx \frac{R_n}{\sqrt{2}} \left(\frac{\hbar\omega}{\pi\Delta}\right)^{\frac{3}{2}} \frac{\sigma_1}{\sigma_n} = A \sqrt{\rho_n} e^{\frac{\Delta}{K_B T}} + O(\Delta, \omega, T))$$

Empirically, R_{res} is found to be dependent on ρ_n too.

Essence of the previous slides

For low rf losses, a high T_c value is not sufficient

A metallic behaviour in the normal state is mandatory

Literature: Mo-Re system

A - Sputtering v ~ 500 Å/min, deposition T = 1000 °C, B - Sputtering v ~ 1000 Å/min deposition T = 1200 °C, C - Mo-Re bulk samples

Gavaler et al.

Mo-Re system: deposition tecnique

Magnetron Sputtering at high T

Mo75Re25: XRD Spectra

Mo₇₅Re₂₅: A Superconductive Transition Curve

Deposition $T = 633^{\circ}C$ Annealing t = 15 min 0,016 0,014 -0,012 -0,010 **0,008** $T_c = 11.398$ K R (Ω) 0,006 - $\Delta T_c = 0.009 \text{K}$ RRR = 1.570,004 0,002 -0,000 --0,002 -11,4 12,0 11,0 11,2 11,8 11,6 12,2 T (K)

Mo75Re25: Tc vs Annealing Time

A Mo75Re25 Film Deposited on Cu

A Mo75Re25 Film Deposited on Nb

Mo₆₀Re₄₀: A Superconductive Transition Curve

Deposition $T = 750^{\circ}C$

$Mo_{60}Re_{40}$: ΔTc vs Annealing Time

Nomogram

 $\overline{\mathbf{a}}$

Lines of equal R_{BCS} . At T = 4.2 K, f = 500 MHz, s = 4

Essence of the previous slides

- We deposited more than 100 films
- Annealing treatments give surprising results: T_c , ΔT_c
- T_c is higher than 12K (Mo₆₀Re₄₀)

• R_{BCS} is around 16 nΩ (Mo₇₅Re₂₅, Mo₆₀Re₄₀)
 of the most meaningful parameters. A sharp
 superconducting transition corresponds to a high ξ₀.

V₃Si: RRR vs Silicon content

Thermal diffusion of V₃Si films

Y. Zhang, V. Palmieri, W. Venturini, F. Stivanello, R. Preciso, Legnaro National Laboratory, ITALY

Reactive sputtered V₃Si films Y. Zhang, V. Palmieri, W. Venturini, R. Preciso, Legnaro National Laboratory - INFN, Italy 18.0 800°C After 15.0 annealing € 12.0 ۲ Before 9.0 annealing 500°C 6.0 10.0 15.0 20.0 Silicon content (% at.) 25.0 30.0

Surface of two annealed samples under SEM: Grain size, (a) 0.2µm, (b) 0.5µm

Essence of the previous slides

No matter how good the initial superconducing properties of the film are

 T_c s of 17 K and RRR values of 18 have been recovered by annealing in SiH₄ atmosphere

We are **ready** to **apply** the **thermal diffusion** method to **6 GHz** cavities

Wuppertal: Nb₃Sn cavity (1.5 GHz) obtained trough Sn vapour phase diffusion ('90s)

comparison to pure Nb at 4.2 K and 2 K frem CEBAF.

Nb₃Sn: A Superconductive Transition Curve

Nb₃Sn: A 6 GHz Cavity

Nb₃Sn Process Parameters:

T = 970°C Dipping time = 1h Annealing time = 1h

Nb₃Sn Surface Treatment:

Pure HCl (55-66°C) for 15 minutes

Essence of the previous slides

• Uniformity of Nb_3Sn film ensured and stoichiometry mantained

We can avoid Nb-Sn low T_c phases:
 manteining T > 930°C during the experiment
 reducing T very fast at the end of the process

A possible Sn outer layer has to be removed: we are able
 to get rid of it by prolonged post annealing

6 GHz Cavities

1. Spinning Technique

2. Surface Treatments

- Mechanical polishing
- Chemical polishing
- A15 obtainment

3. Q Factor Measurement

6 GHz Cavities: Q Factor Measurement

From scrap material and by a seamless technique

we are planning

A 6 GHZ CAVITIES MASS PRODUCTION TO

INVESTIGATE A15 INTERMETALLIC COMPOUNDS

A atoms form linear chains: they are parallel to the 3 crystallographic directions [100], [010], [001]

K. Agyeman, I. M. Puffer, J. A. Yasaitis and R. M. Rose, "Superconducting Mo_{0.75}Re_{0.25} cavities at X-band"

6 GHz Cavities: Mechanical Polishing

