

Flux Gate Magnetometry Applied to RF Cavities

<u>Carmela Bonavolontà</u>

Department of Materials and Production Engineering, University of Naples "Federico II", Italy Istituto Nazionale Fisica Nucleare, Legnaro National Laboratories, Legnaro (PD), Italy Coherentia CNR -INFM, Naples, Italy

M.Valentino

Coherentia CNR-INFM, Naples, Italy

V. Palmieri, V. Rampazzo

Istituto Nazionale Fisica Nucleare, Legnaro National Laboratories, Legnaro (PD), Italy

RF cavity

In both case of

- bulk Niobium Cavities
- •Nb Sputter coated Cu cavities

The surface must be treated to remove sources of rf losses Mainly two treatments are used to reach a smooth surface: *chemical polishing electropolishing*

The best surface integrity \square Quality control

Typical Magnetic sensors characteristics in unshielded environment

Sensor	Range	Sensitivity	
Hall probe	± 10 mT	0.8 μT /√Hz @ 1Hz	
Flux Gate	± 70μT	10 pT/√Hz @ 1Hz	
GMR	± 50 μT	0.1 μT /√Hz @ 1Hz	
SQUID	± 1μT	0.3 pT/√Hz @ 1Hz	

CU Electropolishing

Rectangular electrolytic cells of different dimensions with copper electrodes .

The solution used:

- 55% Phosphoric acid
- 45% n-buthanol

Flux Gate 1st order electronic gradiometer

It detects the "in plane magnetic field" component and is less sensitive to the environmental noise than a magnetometer.

Fixing the probe on the electrode and driving in voltage it is possible to measure:

Considering the motion of particles, the numbers of carriers is:

$$n = \frac{\mu_0}{4\pi} \frac{JSl}{Br^2}$$

Number of carriers

In the case of cells 50 mm long and different width:

Cell width (mm)	w [g] at 4V by balance	w [g] at 4V by H	w [g] at 7V by balance	w [g] at 7V by H
()		<i>~</i> J · · ·		<i>S</i> y
8	0,012	0,011	0,025	0,048
16	0,023	0,020	0,035	0,020
24	0,05	0,032	0,13	0,035

Starting from the magnetic field distribution the current density across the electrodes can be obtained

The rectangular cell has been approximated to a finite short wire which generates a magnetic field expressed by Biot-Savart law:

COHERENTIA

$$B(r) = \frac{\mu_0}{4\pi} \int \frac{J(r') \times (r-r')}{|r-r'|^3} d^3r'$$

With \mathcal{J} current density and r the distance where the magnetic field is measured. Considering the in plane component of the field

$$B_{y}(x,y) = \frac{\mu_{0}}{4\pi} l \cdot z \cdot \iint \frac{J_{x}(x,y)}{\left(x^{2} + z^{2}\right)^{3/2}} dxdy$$
(1)

This formula represents the convolution between the current density J and Green function G

$$G(x, y) = \frac{\mu_0}{4\pi} l \cdot z \cdot \frac{1}{\left(x^2 + z^2\right)^{3/2}}$$

By using the convolution theorem it is possible to rewrite the (1) in the Fourier space as:

$$b_y = g \cdot j_x$$
 $j_x = \frac{b_y}{g}$ Current density in the Fourier space

The inverse Fourier trasformation of j_x gives the current density **J**.

Conclusions

Electromagnetic technique using magnetic sensors as magnetometers or gradiometers allows:

> monitoring the ongoing corrosion during the electropolishing of metals surface

>evaluation of Nb room temperature resistivity with a sensitivity of about 1%

>Detection of surface sub-millimetric defects and scratches with depth less than 0.1 mm

