Piezoelectric stack based system for Lorentz force compensation

<u>Sękalski Przemyslaw</u>^{1,2}, Simrock Stefan², Napieralski Andrzej¹ ¹⁾ Department of Microelectronics and Computer Science, Technical University of Lodz, Poland ²⁾ Deutsche Elektronen-Synchrotron DESY-Hamburg, Germany

Electromechanical tuners variety

- Active elements
- Current problems and achievements

Three main purposes of tuner system

•**Pre-tuning** is necessary stage to reach proper frequency. Cavity with couplers are assembled at room temperature, during cooling down and pumping the cavity shape is deformed. Required system might work slow but must be able to change the cavity length in range of several millimeters (corresponds to a few MHz of detuning compensation). The pretuning phase will be performed i.e. once a week or even month.

•Lorentz Force compensation. During pulsed operation the cavity is reloaded with frequency of 1.3GHz. The current, which flows through cavity walls, interacts with electromagnetic field inside cavity and as a result changes its shape and its resonant frequency. Detuning depends on accelerating field gradient ($\Delta f_{static} \sim E_{acc}^2$) and might be equal even 1000Hz. The Lorentz force is repetitive and periodic. The system needs to act quite fast (up to 2kHz). It will be operated each pulse (repetition rate up to 20Hz)

•**Microphonics** is a vibration of environment. It is fully stochastic. The detuning caused by microphonics is below 20Hz. A feedback loop is required. The system should work permanently.

Slow tuner

Fast tuner

Electromechanical tuners variety

Electromechanical systems for Lorentz force & microphonics compensation and for pre-tuning stage

CEA-Sacley current design

- Double lever system
- Stepping motor PHYTRON
 with Harmonic Drive gear box
- $\Delta Z=\pm5mm$, $\Delta f=\pm2.6MHz$
- Theoretical resolution 1.5nm
- Stiffness ~100kN/mm
- Ready for piezoelectric and magnetostrictive actuator

CEA-Sacley new design

- Double lever with a screw-nut system
- Stepping motor PHYTRON or SANYO with Harmonic Drive gear box
- $\Delta f=\pm 2MHz$ @RT, $\Delta f=\pm 460kHz$ @2K
- Ready for piezoelectric
 and magnetostrictive actuator
- preload force for active elements is almost decoupled with motor position

UMI Milan tuner Coaxial

- Three coaxial rings connected by blades
- Stepping motor for pre-tuning stage
- Piezos up to 72mm length
- Shorter dead zone between cavities 350→283mm (total accelerator length reduction by 5%)
- Expensive (factor of 2-3)
- Stiffer than others (easily upgradeable)

Control System setup

Control Panel for Piezo in ACC1 Cav5, VUV-FEL

Look at the poster ThP60 for details

Di

Μŧ

Types of actuators (2/2)

	Piezoelectric tuner	Magnetostrictive tuner
Max strain at 2K	Small, ~0.05%	Large, 0.14 -0.2% (need to be checked)
Lifetime	Large, if preload correct >10 ¹⁰ cycles (small damage)	Large >10 ⁸ cycles (no damage)
Preload	Small range, 0.7-1.5kN NOTE: few kN per 1mm (416kHz)	Large range, 0.2-10kN
Susceptibility to electric damage	High, electric break-through, safer when cooled down	Low, magnetic field driven
Stray magnetic field	Small, only from wires	Small with niobium shielding , <25mG at 30 mm from actuator
Cryogenic heat loss	low	Low <0.1W, can be improved, probably active cooling needed
Demonstration	yes, with and without cavity	yes, without cavity
Electronic driving system	Voltage driven,	Current driven (design effort higher)
Sensor	redundant actuator (normally sensor)	sensor needed
Price	0.8 k€ + 0.4 k€	1 k€ + 0.6 k€ 🖌

Problem with piezoelectric devices preload force

The lifetime of the piezo element depends on preload force

The preload force applied to piezostack implemented in cavity tuner, was roughly calculated and/or assumed but never measured

1,E+15

1,E+12

[cycles] Cycles]

,E+06

No proof at LHe temperature 500 1000 1500 2000 2500 preload force [N]

Four methods of the static force measurement at 1.8+4 Kelvin are proposed:

- Resonance position on the impedance curve 1.
- 2. Capacitance change
- 3. Strain gauge sensor (metal)
- Piezoresistive sensor (semiconductor crystal) 4.

Resonance position shift versus applied force

System identification

Let's assume that system is linear Detuning caused by the piezoelement might be calculated as a difference between detuning caused by RF field with piezo action and RF field only.

Detuning is measured using forward power and probe signal. Forward power last only 1,3 ms, therefore there is need to shift piezo pulse versus RF field by *T* and perform next measurement.

To eliminate microphonics and other noises there is need to average data from several measurements

SRF 2005 Workshop, July 10-15

Piezoelectric element control signal will be tested during next available access time (probably September 2005)

Recent results

Remaining detuning is less than 20Hz, for field gradient almost 20MV/m (VUV-FEL, module ACC1, cavity 5)

Conclusions

There are several options for cavity tuners (UMI – coaxial tuner, CEA tuners – old and new one). All tuner are simultaneously developing by CEA Sacley, France and University of Milan, Italy. A lot of problems are solved so far i.e. neutral point, **force measurement at 2K** (using i.e. resonance shift monitoring), but there are still plenty difficulties, which need to be worked out.

There are two types of actuators: magnetostrictive and piezoelectric one. The second one has been **tested with cavity with success**. The detailed study needs to be performed to compare both solutions and choose the best one. Both of types were tested successfully at LHe temperature.

First generation of CEA tuner with EPCOS piezostack is already mounted in ACC1 cavity 5 (TTF II). It is possible to reduce detuning caused by LF from 170 to 20Hz during flat-top (almost 90%).

The control signal is set manually nowadays. However, LF is very repetitive from pulse to pulse (according performed test the same settings are adequate for months). The **feed-forward** and **feedback** algorithm are under developing.

Acknowledgement

We acknowledge the support of the European Community-Research Infrastructure Activity under the FP6 "Structuring the European Research Area" program (CARE, contract number RII3-CT-2003-506395), and Polish National Science Council Grant "138/E-370/SPB/6.PR UE/DIE 354/2004-2007".

Thank you for your attention

