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Abstract

The drift chamber cathodes for CLEO III are located at the outer cylindrical surface of the drift
chamber, and are used to determine the position of a track along the beam axis.  We describe the
software that has been created to convert the raw output from the detector to a form that can be
used by track reconstruction algorithms.  This calibration software is written for use in Suez, the
C++ job control and user interface for CLEO III. We implement the Strategy design pattern to
allow flexibility in choosing calibration algorithms and facilitate future additions to the code.

Introduction

The drift chamber (DR) cathodes [1] for CLEO III are located at the outer cylindrical surface of
the drift chamber, and are segmented into octants in φ (Figure 1).  Each octant is further divided
into 192 cathode pads along the beam axis.  When a charged particle passes through the last layer
of the DR, the positive charge liberated by the ionization of the drift chamber gas is collected by
the cathodes, and can be spread over one or more pads in an octant.  Each pad is read out
separately by the data acquisition system, and those with nonzero ADC values are considered to
be “raw hits”.  A clustering algorithm is applied to find the raw hits associated with a single

FIGURE 1.  CLEO II DR cathodes.  There is only an outer cathode layer in CLEO III.
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track, and this group of raw hits is called a “calibrated hit” (Figure 2).  Once the raw hits that
compose a calibrated hit are identified, the centroid, or Z position, of this cluster is calculated
according to various algorithms.

FIGURE 2.  Raw cathode hits.  A clustering algorithm will be applied to identify calibrated hits.

For a group of raw hits to be considered a cluster, the following conditions must be met:
•  All charges must be greater than a given cluster threshold.
•  The peak charge in the cluster must be greater than a given peak threshold.
•  If there are charges on two or more pads, the pads must be adjacent.
These conditions are the same as the existing algorithm for CLEO II.  It has not yet been
determined how to handle dead channels adjacent to found clusters.

When a cluster is found, the following parameters can be used to describe it and to construct a
calibrated cathode hit:
•  Number of pads in cluster
•  Peak charge
•  Total charge
•  Z position1

•  Width2

                                                            
1 The z position (or centroid) of a cluster is determined for our purposes in one of two ways.  Suppose we have a
cluster of N pads, each pad has charge Qi (i = 1,N), the width of a pad is ∆z, and the z coordinate of the center of the
ith pad is zi = (i-1/2)∆z.  A center of gravity centroid—a weighted average using the charges on the pads as
weights—can be written as

where the origin is the edge of the first strip.  A second algorithm where all weights are equal replaces Qi/Qtot with
1/N.
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The Conceptual Model and Suez

Suez [2] is the CLEO III job control and user interface for data analysis in C++.  It
provides a Tcl command-line interface to interact with processors and producers written by the
user.  These processors and producers are given access to data via the “Frame”, which is a
representation of all the information about CLEO at any given time.  A Frame can be constructed
by collecting together the data that is current at a particular time.  The data is grouped by
“lifetime”—groups sharing a lifetime are called “Records”.  A time-ordered set of Records that
describe the same part of the state, but at different times, is called a “Stream”.

Usually the user is interested only in new Records in certain Streams.  For example, if a
user wants to stop at each event, the events are “Stops”, while the event stream is the “Active”
Stream since it provides the Stops.

Job Control:  Processors, Producers and Proxies

Actions to be taken by the user (like executing some code) are bound to a Stream.  If the
Stream is active, the Action will be executed.  Using this model, a processor is the container of
these Actions.  A processor is triggered by a Stop to perform some algorithm, and will then insert
the results into the Frame.  This means that processors stop on every event in the stream.
Producers, on the other hand, only execute when asked, and put algorithms into the Frame.  This
is accomplished by registering proxies [3] with the Frame.  A proxy is a placeholder for objects
that haven’t yet been created.  The algorithms contained in the proxies will run or return results
only when asked, which saves time.

Calibrated Cathode Hit Software

To create calibrated cathode hits from the clustering of the corresponding raw hits,
software needed to be written in C++ that could be used in Suez.  This required several different
things:  first, a class that defines what a calibrated cathode hit is; a processor to aid in the
debugging process; a producer and proxy to call the proper algorithms for calculations; and
finally two families of classes, Centroid and Cluster, that contain the algorithms.

CalibratedCathodeHit

The CalibratedCathodeHit  class (Figure 3) contains all the information vital to later
use of the data for track reconstruction.  Each data member has a corresponding access function
with the same name so that private data members can be viewed, and there are additional
functions for changing the value of the corresponding data member.

                                                                                                                                                                                              
2 The r.m.s. width of a cluster describes the resolution of the centroid, and is used in track reconstruction.  Width
calculations are dependent on the z position of a cluster (given by one of the previous expressions):
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FIGURE 3. CalibratedCathodeHit  class.  Note the inheritance from CalibratedHit .

CalibratedCathodeHit

- m_peakStrip : UInt16
- m_numberOfPads : UInt16
- m_totalCharge : PicoCoul
- m_peakCharge : PicoCoul
- m_zPosition : Meters
- m_weight : double
- m_width : double
- m_qualHit : QualHit

+ peakStrip () : UInt16
+ numberOfPads () : UInt16
+ totalCharge () : PicoCoul
+ peakCharge () : PicoCoul
+ zPosition () : Meters
+ weight () : double
+ width() : double
+ qualHit () : QualHit
+ deviceType () : DeviceType
+ setZPosition (zPosition) : void
+ setWeight (weight) : void
+ setWidth (width) : void
+ setQualHit (qualHit) : void
+ print () : void
# printCCathodeH () : void

CalibratedHit

- m_id : Identifier
+$ DeviceType : enum
+ deviceType () : DeviceType = 0
+ identifier () : Identifier
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In addition, the CalibratedCathodeHit  class inherits from the abstract base class
CalibratedHit  (as do all calibrated hit classes), which provides the additional data member
m_id  and corresponding identifier()  access function, as well as the deviceType()
function, which returns the name of the device being used (in this case, the device name is
“Cathode ”).

CalibratedCathodeHitProcessor

In the CalibratedCathodeHit  class, the processor performs several important tasks:
•  Creates histograms and Ntuples
•  Prints significant raw data to the screen
•  Prints CalibratedCathodeHit  partnered with raw data for that hit

The processor is primarily used to detect and pinpoint errors during debugging, since all the
relevant data is displayed before and after calibration.

CalibratedCathodeHitProducer/CalibratedCathodeHitProxy

Before the processor can manipulate the calibrated cathode hits, they must be generated
from the existing raw cathode data.  This is accomplished using the
CalibratedCathodeHitProducer .  When the processor asks for
CalibratedCathodeHits , the producer invokes the CalibratedCathodeHitProxy ,
which houses the algorithm that creates the CalibratedCathodeHits . Once the producer
creates the newly calibrated cathode hits, it inserts them into the Frame.  The producer also
creates link objects that connect each CalibratedCathodeHit  to the associated raw hits.
The user can then retrieve the associated raw hits with the use of a navigator object [4].

The Strategy Pattern

Several methods exist for clustering raw hits and calculating the centroid.  To make the DR
cathode software as flexible as possible, the Strategy design pattern [3] is used.  To encapsulate
each algorithm in a family makes them interchangeable, so that they are independent of the
clients who use them.  This gives the user the ability to mix and match algorithms in any
combination at run-time.

The Strategy pattern relies on inheritance for its flexibility.  A private data member of the
base class type is assigned to an instance of a subclass at run-time, and a common interface
allows objects to be interchangeable.  This facilitates the addition of new algorithms:  all that is
needed is a new subclass.  The comparison of algorithms is made easier, because the choice of
algorithm is decided at run-time.

Implementing the Strategy Pattern

The Centroid and Cluster families (Figure 4) are implementations of the Strategy design
pattern.  The Centroid and Cluster classes are both abstract base classes containing one pure
virtual function.  This means that an instance of either class cannot be instantiated.  Instead,
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derived classes are created that inherit the public data and member functions from their base
class, and override the pure virtual functions with their own unique algorithms.

FIGURE 4.  Cluster and Centroid class diagrams.  Derived classes point to their base class with arrows.
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To implement the Strategy Pattern in Suez, we make use of run-time parameters to alter the
behavior of processors or producers.  The user gives the parameters to the producer through the
Suez command-line interface.  The parameters are bound to the producer, which uses them to
select subclasses of Cluster and Centroid to instantiate.  The parameters can be changed,
however, at any point in the session.  To assist users, help menus were constructed for each
parameter, and can be accessed in Suez at run-time.

Results and Conclusions

Figure 5 shows the result of using the new cathode calibration software in conjunction with
existing RawData software in Suez.  The histogram was produced from an Ntuple made by the
CalibratedCathodeHitProcessor , and depicts the raw cathode hits and their charge.
The overlaid curves show Gaussians with means and widths equal to those of the corresponding
cluster.  The plot distinctly shows the difference in results from the two centroid algorithms.
Having easy access to a number of algorithms gives the software a great deal of added flexibility.

FIGURE 5.  Raw cathode hits and found clusters.

This new software offers several important benefits.  The
CalibratedCathodeHitProcessor  gives the user the ability to view the RawCathodes
and CalibratedCathodeHits  as the conversion is performed, and simultaneously creates a
historgram and Ntuple of the RawCathode  data.  The parameters used in the
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CalibratedCathodeHitProducer  allow the user to defer selection of the particular
algorithms until run-time.  This flexibility is ideal for testing new algorithms and comparing
results between existing ones.  The use of Tcl parameters also allows the user to mix and match
combinations of cluster and centroid algorithms.

In addition to refining both the clustering and centroid calculation algorithms, future
directions include extending the applicability of the Centroid and Cluster families.  The abstract
base classes can be modified to be independent of the cathode software, so that other devices that
need clustering algorithms, like the silicon vertex detector, could also make use of the same
abstract classes.  It is possible that this may be accomplished using templated classes.
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