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Abstract

In the ongoing quest for higher luminosity, focusing the electron/positron beams becomes
an increasingly greater priority. In order to properly focus the two beams, however, we must
have a tool with which we monitor the beams. Such a tool, we predict, is beamstrahlung
radiation. To give credibility to our prediction, we must strengthen our hypothesis with
data. At this time, the data comes from a computer simulation program designed to interact
electron/positron beams. Thus far, the results of said program point in the desired direction.

Introduction

In the current world of high energy physics, luminosity is cherished like no other quantity.
In equational terms, the luminosity for two Gaussian beams of equal sizes colliding head-on
is

L =
fN1N2

4πσxσy
(1)

where f is the bunch collision frequency, N1(2) is the number of particles per bunch in
beam 1(2), and σx(y) is the horizontal(vertical) beam size [1]. But very roughly, we can say
luminosity is the number of electron/positron collisions per unit collision area per unit time.
The conditions for which Eq.(1) holds are termed “perfect collision”. Since these collisions
are essential to event (factory) production, high luminosity is obviously needed to produce
a substantial number of events.

Maintaning high luminosity is a challenge since the machine has some degree of asymme-
try between the positive and negative beams. The asymmetry stems from various misalign-
ments of the machine components as well as changing beam energies; beam energy is lost
continuously but replenished at only certain locations in CESR. The resulting asymmetric
orbits cause the beams to lose focus. Losing focus, in turn, causes the collision area to in-
crease, or the beams to miss one another, thus decreasing luminosity. Therefore the beams
must be continuously refocused in order to maintain high luminosity. In order to properly
focus the two beams, we must have a tool with which we monitor the beam pathologies. Our
proposal for such a tool is a beamstrahlung radiation monitor.

Before we build such a monitor, however, we must be certain that the project is worth
undertaking. We must validate our hypothesis with meaningful data and figures. Therefore
we must travel to the world of Beamstrahlung Calculations.

We begin our exploration of the world of beamstrahlung calculations with a brief journey
into the physics of beamstrahlung. We will then continue to the land of computer simulation,
where I currently hold a summer residence. Our tour will conclude in the stunning sea of
glorious results.
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Beamstrahlung

Beamstrahlung is a form of synchrotron radiation emitted when particles of the first, or
radiating, beam are deflected by particles of the second, or target, beam. If we consider low
energy conditions as well as the conditions stated for Eq.(1), we get that the beamstrahlung
energy radiated by beam 1 in one crossing is [2]

U1 = g(r)r3
emec

2γ2 N1N
2
2

σxσyσz
(2)

where U1 is the energy radiated per collision. Here re is the classical radius of the beam
particles, me is the mass of each particle, γ is the relativistic factor, N2 is the number of
particles in beam 2, and σx,σy,σz are the dimensions of the beam in x,y,and z respectively.
g(r) is a dimensionless factor obtained through integration over space-time. It is maximal
for round beams (r = 1), at 2.735..., and for flat beams (r small, as in CESR) it can be
approximated as follows

g(r) ∼ 11.4r.

In the flat beam limit, σy cancels in Eq.(2) and the dependence of U1 on beam parameters
becomes

U1 ∝
γ2N1N

2
2

σzσ2
x

. (3)

The energy of the emitted light is not the only information given to us by beamstrahlung,
however. The emitted light propagates with its electric field parallel to the charged particle’s
acceleration vector. If the collision is perfect, there will be no polarization since the charged
particles accelerate equally in the x (horizontal) direction as in y (vertical direction)[2]. We
will see this is not the case for other pathologies when we arrive in the results section.

Computer Simulation

Since the CLEO Collaboration does not approve people drilling holes in the beampipe
to test unfounded theories, we must lend credibility to our hypothesis. We have done and
continue to do so via data from computer simulation.

The program we use interacts one bunch of electrons and one bunch of positrons while
keeping track of the emitted energy and polarization. We originally began using an already
existing beam-beam Fortran program from the early 1980’s which used the popular “cloud-in-
cells” approximation. As time passed, however, it became brutally apparent that this would
not serve our purposes as cloud-in-cells is best-suited for simulating round beams. This
resulted in the creation of a new technique[3]. This new system for simulating beam-beam
interactions allowed us to simulate flat beams by treating each cell as a line, or “matchstick”.
After conquering that territory, we once again traveled into uncharted waters as we dared to
write code which would simulate the various beam pathologies. The program was written so
that beams could be allowed to evolve, in response to the attraction from the other beam,
or maintain their shape (stiff beams).
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Results

There are several ways in which beams can be out of focus. This is apparent in Fig. 1.
We can see that the beams can be offset along the y-axis as well as the x-axis, rotated with
respect to one another, different sizes, or any wild combination of these. By studying the
energy and polarization of the emitted light, we can distinguish what type of beam pathology
we have. Thus we present our data in a diagram where the energy emitted by each beam in
both x and y are plotted. Thus each beams becomes an arrow in the first quadrant of (x, y).

For perfect collisions, and perfectly rigid beams, we expect arrows of equal length at 45
degrees. The results are presented starting with simulations of rigid beams. In Fig. 1 we see
defining characteristics for each pathology.

We observe that for beams with a y offset, the ratio Uy/Ux is the same for both beams.
But also, the energy emitted in y is greater than that emitted in x. Analyzing the other
pathologies similarly, we notice that for the rotated beam, Uy is still greater than Ux for
both beams, but the ratio Uy/Ux differs considerably from beam to beam. For the fattened
beam pathology, we see Uy > Ux for the bloated beam and Uy < Ux for the correct (non-
pathological) beam. Also with the bloated beam we see that the vector corresponding to the
pathological beam is longer. Interestingly enough, in each case, the pathological beam has
the greater energy emitted in y. This is extremely useful in deciding which beam to adjust.

In the third column of Fig.1, we see plots which pit various asymetry variables against
the ratio L/L0. Essentially, these plots show us the sensitivity of the asymmetry variables
to shifts in luminosity. We notice immediately that the vertical offset and the beam fatten-
ing asymmetry variables are the most sensitive with the rotation variable being the least.
Regardless, by monitoring these quantities and keeping shifts to less than a few percent, we
can keep luminosity shifts to less than a few percent [4].

In Fig.1, we considered only stiff, or non-disrupted beams. Ofcourse, in reality, CESR
suffers from beam disruption. In Fig.2 we take these conditions under consideration. Happily,
we observe that the new dynamic nature of the beams had little effect on our pathology
characteristics. Infact, even with the addition of beam dynamics, our normalization constants
Uy0 and Ux0 changed by only a few parts in one thousand [5]. Therefore, with even greater
dynamic beta effects, we still expect all conclusions to hold.

A perfectly valid question to ask is what happens when more than one problem occurs.
Fig.3 diplays for us the situation in which the beams become offset in the x (horizontal)
direction by a distance of 17.5 microns. Properly, the x-offset has only passive effects on the
results. This is expected since such an offset would vary the luminosity ratio L/L0 by only
.06 percent. Fig.4 gives us something a little more informative. As stated before, the rotation
has the least effect on the beamstrahlung characteristics as both the y-offset and the bloated
beam dominate vectors shared with the rotation. Furthermore, the y-offset dominates the
bloated pathology.

The Virtual Operator

So far we have experienced many different pathologies and we have learned the various
characteristics of each. Now is the time to put what we learned to the test. We must
become...The Virtual Operator.
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FIGURE 1. Energy vectors and asymmetry variable plots for stiff beams (tips of vectors in
y-offset case are displace for display purposes). The normalization constants Ux0 and Uy0

are equal and represtent the energies emitted in x and y respectively during perfect head-on
collision.

We begin with our beams badly out of focus. Looking at Fig.5 we see that our vectors
show us two separated vectors of different length above the 45 degree reference line. At this
point, it is completely up to the operator’s discretion what to fix first. In this case, I will
begin with adjusting the aspect ratio of beam 2 in order to get the vectors to equal lengths.
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FIGURE 2. Energy vectors for dynamic beams. (tips of vectors in y-offset case are displace
for display purposes)

Now that I have done this, I have two vectors of equal lengths still separated by an angle
and still residing above the 45 degree reference line. Once again, what to do now is up to
the operator. Since I am presently operating, I elect to fix the rotation. We now have a
single vector (actually two identical vectors) resting above the reference line. Adjusting for
the obvious offset in vertical, we get a focused beam. Success!

5



FIGURE 3. Energy vectors and asymmetry variable plots for stiff beams with a horizon-
tal separation of 0.05σ (17.5µm).(tips of vectors in y-offset case are displaced for display
purposes)
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FIGURE 4. Energy vectors for dynamic beams with dual pathologies.
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FIGURE 5. The Virtual Operator
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Conclusions

This leg of the journey was a success. We created a program that worked and it worked to
our expectations. Furthermore, we showed how the varying beam pathologies have obvious
individual characteristics. The question now is what lies on the road ahead. The physics
is valid, but is it practical? Will we be able to extract the beamstrahlung signal? Will a
beamstrahlung monitor be accepted as the primary beam-beam monitoring tool. Ofcourse
we believe the answers to these questions are “yes” and we shall continue on until we prove
such.
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