
RICH Sbus Monitoring

Nick Br�onn

School of Physics, Georgia Institute of Technology, Atlanta, GA 30332

Abstract

In the CLEO III experiment at the Wilson Synchrotron Laboratory at Cornell University,

the detector used to measure the velocity of charged particles is the Ring Imaging Cherenkov

(RICH) detector. The RICH detector measures the conic section of the Cherenkov light cone

emitted by a charged particle in a LiF radiator. This is especially useful for distinguishing

between charged kaons and charged pions. The Sbus monitors critical parameters of the

RICH detector. In the past this information was not useful because it was not recorded

or displayed continuously by any software. Two existing software programs were then

expanded to allow for this kind of monitoring. Now the data read from the Sbus is recorded

and displayed allowing behavior of these critical parameters to be examined.

Introduction

Momentum is the simplest property of a particle to measure in high-energy physics.

However in order to unambiguously determine the identity of the particle observed one must

combine this measurement of momentum with the velocity or energy of the particle. Thus the

mass of the particle is identi�ed. This data can be used to eliminate wrong track hypotheses

(Fig. 1). RICH is the detector in CLEO used to record a particle's velocity. It does this by

measuring the opening angle of the Cherenkov light cone emitted by a relativistic particle

during its passage through a LiF crystal radiator. The opening angle determines the velocity

by

cos�Ch =
c

vn

(1)

where n is the index of refraction.

When a Cherenkov photon enters the wire chamber in the RICH detector, a small signal

consisting of only a few electrons is created. This signal is then ampli�ed in an avalanche

process around the wires. The induced electronic signal is then ampli�ed in preampli�ers

mounted on the detector. From there the signal is read in with a receiver and digitized

on databoards in the VME standard. Stability of the electronic operating parameters is

required for the correct performance of the RICH detector. RICH Sbus monitoring ensures

the crucial operating parameters of the detector are stable.

Overview of RICH Sbus

The software that establishes a connection with the Sbus databoards is a C++ program

called the RICH Sbus Component. The Component reads data from all the channels in the

Sbus and sends alarms to the Alarm Manager if these values are out of speci�ed limits. The

Component also sets up an interface with a Graphical User Interface (GUI) written in Java

called the RICH Sbus GUI. The GUI displays the most current values of the data when a

certain crate and board are selected.

1



FIGURE 1. Event to mass before and after RICH cuts[1].

This monitoring software was not completely developed and did not provide much use

in monitoring. The Component only sent one type of alarm (fatal) whenever a channel's

data was out of range. The data was not kept past displaying it on the GUI. The GUI was

not updated when it received new data from the Component. It also did not notify which

2



channels were out of range, and how much out of range they were. And �nally the GUI was

not written in the Object Oriented paradigm that Java was built for.

The goal of this project is to provide easy monitoring of critical RICH parameters. This

is accomplished by many software modi�cations to the two existing programs. Now RICH

Sbus monitoring is incorporated into the CLEO online data acquisition and control system,

and shifters can easily check for out of range channels and respond to them. Monitoring

these critical parameters ensures the quality of the data obtained by the RICH detector.

Software Modi�cations

The �rst area that was improved upon was the recording of the Sbus data. The GUI was

programmed to write a �le of data to disk after each scan was completed by the component.

This data was formatted such that it could be read by the data analysis program mn �t.

Later it was decided that reliability would be increased if instead the Component wrote the

data to disk. This change was implemented.

The Component also needed the capability to send di�erent kinds of alarms to the Alarm

Manager, depending on how much out of range a channel's value is. This involved going

deeper into the source code of the component. Finally, it was found that di�erent kinds of

alarms could be sent by each channel if the Alarm ID List was an array. The appropriate

changes where made so that each di�erent kind of alarm was initialized for each channel.

These alarms are, in order of increasing severity: Info, Warning, Error, Severe, and Fatal.

Each alarm corresponds to a speci�ed range in the parameters.

FIGURE 2. The original RICH Sbus GUI.

Then began the modi�cation of the RICH Sbus GUI. A drawback of the original GUI

(Fig. 2) that warranted a complete overhaul was the fact that the original did not utilize the

Object Oriented paradigm. In the original the same class was used to establish a connection

with the Component and display the GUI. This kind of design would not bene�t the addition

of extra features. Hence the class RICHSbusGUI was rewritten to only establish the CORBA

connection with the Component, and then call an instance of a class that would display the

appropriate information.

Class Monitor was written to set up the layout of the GUI (Fig. 3), as well as display

alarms. The basic layout behind this is each crate is represented as a grid (or double array)

of buttons. Each button corresponds to a speci�c board and cell in that crate, and each is

3



FIGURE 3. The layout of the modi�ed GUI. Each button represents a cell, which contains

either 6 or 10 channels. The colors correspond to di�erent levels of alarm.

colored to the color of highest severity of alarm in that cell. Whenever Class RICHSbusGUI

receives new data from the component, methods are called that update all the colors and

store the current data in Class Monitor. Hence the modi�ed software provides continuous

error monitoring.

FIGURE 4. Window created by Class ADCWindow. Each button is a channel with its

current data value below. Channel data is colored according to level of alarm.

When one of the buttons representing a cell is pressed, an instance of Class ADCWindow

is created. This causes a window to pop up displaying the current data for each channel

(Fig. 4). It also colors each value according to how much out of range it is, with black

meaning the data is within range. Each one of the channel names can also be pressed to

display the history of that channel. Because this software is written in an object oriented

fashion, no code is necessary to keep track of these windows once they are open. Hence as

many of them can be open as needed.

Class History extends from Canvas (API) to plot approximately the past 24 hours of

history for a speci�c channel (Fig. 5). This class also performs the I/O necessary to extract

data from the �les written by the Component. This is done with some rudimentary parsing

techniques in Java 1.1. This also makes use of Class DataPoint, which is essentially a data

4



FIGURE 5. A Canvas with history plotted is added to the expanded ADC Window when

a channel is clicked.

structure that has a channel's data value and the time it was recorded. From there Class

History calculates where on the plot the data point should appear. It also calculates the

overall variance in the past 24 hours, and the percent o� the nominal value the last data

value is.

In order to prevent hard coding all of the nominal data value and ranges into the GUI,

Interface Alarm was created to store that speci�c data. Interface Alarm is implemented by

Classes Monitor, ADCWindow, and History. The interface also keeps the kind of errors and

their corresponding colors. Interface Alarm can be compiled by itself, simplifying the process

of updating error data.

Results

These two modi�ed pieces of software can now be used to provide online monitoring of

readout electronics for the RICH detector. Strange behavior in some of these electronics,

known as \hot chains," (Fig. 6) have been observed and must be remedied. These are

chains of chips that experience a simultaneous uctuation of their pedestal. This rules out

the possibility of statistical uctuation and are caused by a problem in temperature, setup,

hardware, or software. The aim of monitoring is to discover where the hot chains originate

from and then eliminate the problem.

Pedestals are the signal levels for each electronic channel if no input signal is applied,

thus they give a \zero-line" for each channel. They are calibrated in calibration runs where

the readout is analyzed with no input on the electronics. It must be made sure that the

electronics are working within a good range in parameter space.

The �rst issue that was addressed with this new software was determined to be caused

by the constants-loading process into the crates. This was due to an error in setup and has

since been remedied. Although the GUI was not used in this resolution, the GUI will provide

the same kind of information used to solve this problem, and it will provide it online without

5



FIGURE 6. Hot chains can be seen as the vertical rows of larger rectangles for each of the

eight crates. The last �gure shows deviation from the \zero-line"[2].

the need for other data analysis tools.

Conclusion

It was the goal of this project to develop useful software that will aide in the monitoring

of the RICH detector's critical parameters. This goal has been achieved. The source for the

Component has already been uploaded to the data acquisition and monitoring system and

6



the source for the GUI soon will be as well. The Component and GUI will provide invaluable

monitoring instrument to ensure the correct and accurate operation of the RICH detector.

There is one unresolved issue left with RICH Sbus Monitoring. This is the problem of

a memory error encountered sporadically during the operation of the GUI. The Component

cannot pass such a huge amount of data to the GUI very easily, so instead it passes a reference

to the location of the data in memory. However sometimes when the GUI starts, the initial

reference to the data is invalid, causing the GUI to read garbage and thus experiencing a

memory error. This error kills the monitoring thread in the GUI that receives data from the

Component. Hence the speci�c communication between the Component and the GUI must

be explored and corrected.

Acknowledgments

I would like to thank Georg Viehhauser and Ray Mountain of Syracuse University for their

guidance and direction of this project, Andreas Wolf of Syracuse University for his computer

expertise, and David Cassel of Cornell University for making this experience possible. This

work was supported by the National Science Foundation REU grant PHY-9731882 and

research grant PHY-9809799.

References

1. Figure courtesy of Tomasz Skwarnicki.

2. Figure courtesy of Ray Mountain.

7


