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A method for tuning multicell RF cavities was devised, accurate enough to achieve

99% field flatness with a final frequency within 50 kHz of the target RF frequency

in a single iteration. The method is based on a model of capacitively coupled LC

oscillating circuits and tuning the cavity is based on the mathematical predictions

of tuning the LC circuit model. The electric field amplitude in each cell in the RF

cavity is calculated from the frequency shift induced in each cell for all Nc modes by

a metal bead. This data along with the resonant frequencies of the modes are fed

into the LC model, and proper tuning shifts are calculated for each cell.

I. INTRODUCTION

Cornell University has proposed the construction of an Energy Recovery Linac (ERL)
prototype where the main Linac will be 5 7-cell 1.3 GHz niobium superconducting RF
cavities. It is important to the efficient operation of the prototype to have an even and
perfectly timed accelerating RF cavity. In order to achieve the energy recovery goals and
minimize loses, the RF accelerating cavities must be perfectly calibrated prior to installation
into the ERL. Tuning is divided into two steps: homogenizing the field across all cells, then
tuning the cavity as a whole to the proper final desired frequency. These two frequency
shifts will be implemented in a single tuning of the cavity.

II. MEASURING RF CAVITIES

In order to test for field flatness, a setup for field measuring must be created. The setup
must be able to determine through direct measurement or calculation the maximum electric
field in each cell for all TM010 modes. However, directly measuring absolute field strength
is too difficult so another technique must be devised. A tiny volume ∆V is chosen on the
axis such that

|
−→
B | ≈ 0 (1)

for the vanishing magnetic field and the electric field is approximately uniform, so that

|
−→
E | ≈ const. (2)

Thus, adapting an equation from [Sla 50] yields
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where U is the total energy stored in the system and ∆V is the volume of the bead.
There would be a second integral over the energy density of the magnetic field as well, but
is zero on the axis and left out. This equation implies that there is a correlation between a
measured shift in resonant frequency of the cavity and the difference in the displaced electric
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FIG. 1: The electric and magnetic fields inside of a single RF cell

and magnetic fields weighted to the respective ε and µ values. Fortunately, in the TM010

modes, the magnetic field vanishes and the electric field peaks as you approach the axis (see
figure 1).

Using the fact that the electric field is approximately constant over the volume, the
integral in equation (3) becomes

∫

∆V

εo

2
|
−→
E |2 ≈

εo

2
|
−→
E |2∆V (4)

Substituting equation (4) into equation (3), it follows that

f ′

f
≈ 1 −

εo

2U
|
−→
E |2∆V (5)

which can be re-arranged to

f ′ − f ≈ −f
εo

2U
|
−→
E |2∆V (6)

or

δf ∝ |
−→
E |2 (7)

This means that perturbing the cell at the axis will perturb only the electric field and
therefore show up as a change the resonant frequency of the cavity. Thus, by measuring the
relative frequency shifts δf of the resonant frequency of a cavity while perturbing each cell
uniformly, the relative electric fields can be calculated.

III. BEADPULL METHOD OF FIELD MEASURING

To find the maximum electric fields in each cell,
−→
E ≈

√

(|δf |) is traced as a function
of position z along the axis of the cavity. To uniformly perturb all cells of a cavity to
measure the relative frequency shifts, a metal bead was placed on a nylon string (ε = 3.5
at 1 MHz) and run along the axis of the cavity. The cavity was oriented horizontally with
the tension on the nylon string so that sag by the string was less than 1 mm and therefore
insignificant to desired measurements. An HP-8753c Network Analyzer was connected to
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FIG. 2: Coupled LC oscillators circuit model of RF cavity

feedthroughs mounted on copper endplates at the cavities ends with a 1 inch hole concentric
to the axis of the cavity with antennae extending into the cavity. The network analyzer
traced the frequency shift of the frequency of the cavity with respect to the unperturbed
cavity’s resonant frequency, all in the phase mode. The bead was brass and chosen in size
such that the resonant frequency of the whole cavity shifted no more than 80kHz. The bead
was driven by an Mdrive17 stepping motor from IMS. The setup was computer controlled
and automated so that the user could leave the room during measuring and not disturb the
cavity. A Labview program was written based on a DESY program that set up the network
analyzer, then cycled through reading the frequency shift from the network analyzer, plotting
the frequency shift and the electric field, then stepping the motor. The program was designed
so that virtually every parameter could be controlled via the Labview console, such as span,
step size for motor, etc. A step size resolution of 1 mm was used with the bead starting at
the edge of the flange and stepping all the way through the cavity. This process was run for
all TM010 modes in the cavity, equal to the number of cells in the cavity. This data was
then used to determine how much the cavity should be tuned to achieve field flatness at the
correct frequency.

IV. MATHEMATICAL TUNING

Note: model and ensuing mathematics closely follow those initially discussed by [Sek 90]
and later by [Liepe 2001]

The Nc coupled oscillators of an RF cavity are often modeled as Nc capacitively coupled
LC oscillators. Each oscillator has its own periodicity, each oscillator affects only the oscil-
lator on each side proportional to its coupling constant, and there are Nc first order modes
of harmonic oscillation for Nc cells, all similar to an Nc cell RF cavity (see figure 2).

In addition, this model has an ωj for the entire circuit for each mode which corresponds
to the resonant frequencies ωj of the Nc modes in the RF cavity. Furthermore, the relative
electric field in each cavity for each mode corresponds to the current I j

n in the nth cell for
the jth mode. Kirchhoff’s loop rule was used to solve for the currents, which yielded the
following equations with impedance values

VL + VC1
+ VC1,2

= (iωjL + (
1

iωjC1

) + (
1

iωjC1,2

))I1 − (
1

iωjC1,2

)I2 (8)
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+ VCn−1,n

+ VCn,n+1
= −(

1
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)In−1 + (iωjL + (
1
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) + (
1

iωjCn−1,n

) + (
1
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))In

−(
1

iωjCn,n+1

)In+1 (9)
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VL + VCNc
+ VCNc−1,Nc

= −(
1

iωjCNc−1,Nc

)INc−1 + (iωjL + (
1

iωjCNc

) + (
1

iωjCNc−1,Nc

))INc
(10)

multiplying equations (8), (9), and (10) by iω2
oω

jCn and setting

LC =
1

ω2
o

,
C

Cn

= 1 + δn,
C

Cn,n+1

= kn,n+1 (11)

Equations (8), (9), and (10) become

ω2
o((1 + δ1 + k1,2)I

j
1 − (k1,2)I

j
2)) = (ωj)2I

j
1 (12)
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j
n − (kn,n+1)I

j
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n (13)

ω2
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)Ij
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)Ij

Nc
) = (ωj)2I

j
Nc

(14)

for the nth cell of the jth mode. This can be better expressed by the matrix equation

ω2
oAIj = (ωj)2Ij (15)

where A is the tridiagonal matrix

A =
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









1 + δ1 + k1,2 −k1,2 0 · · · 0

−k2,1 1 + δ2 + k2,1 + k2,3 −k2,3 · · · 0

0 −k3,2 1 + δ3 + k3,2 + k3,4 · · ·
...

...
...

...
. . . −kNc−1,Nc

0 0 · · · −kNc,Nc−1 1 + δ1 + kNc,Nc−1
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



(16)

which is defined by the physical constraints and geometry of the cavity and is constant
unless the cavity changes. In addition the current vector

Ij
n =


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

I
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I
j
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...
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

(17)

is the relative current in the nth oscillator in the jth mode of the circuit, corresponding
to the relative electric field strengths in the nth cell in the jth TM010 mode of the cavity. In
the model, ωj represents the resonant frequency of the j th mode of the circuit and cavity.

Furthermore, the ω2
oA matrix has many mathematical implications critical to the model.

For example, equation (15) is an eigenvalue matrix equation with ωj as the eigenvalues and
Ij
n as the corresponding jth column eigenvector .

On a physical level, it seems evident that by changing the relative shapes of the cells
(thereby changing the frequency of each cell), there should exist a solution such that the
field inside of all cells in the π mode have the same magnitude. In addition, it seems
evident that by tuning all cells the same amount, the resonant frequency of the cavity could
be changed without changing the relative field strengths. Mathematically, this is achieved
through changing the ω2

oA matrix such that the eigenvalues are the desired frequencies of
the model and the eigenvectors are the corresponding relative currents in each oscillator.
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According to the model, this is achieved by changing the relative capacitances Cn of each
oscillator, the variable that gives rise to the different In for each cell. Therefore, there exists
a matrix P such that

ω2
o(A + P)Ij

tuned = (ωj
tuned)

2I
j
tuned (18)

where

P =


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
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(19)

is a diagonal matrix representing the amount to tune each capacitor so that the ideal
currents and frequencies are calculated.

V. PHYSICAL TUNING

Since all of the modeling was done using relative measurements, but the cavity must have
an absolute characteristics, a method must be devised to translate the mathematical change
into a physical number. The easiest way is to tune cell by cell, which is the same as tuning
element by element of the P matrix. Thus, setting all values of the P matrix to 0 except P1,1

is like mathematically tuning just the first cavity the exact amount it should be. Adding the
new P matrix to the A matrix, then calculating the eigenvalues of the ω2

o(A + P) matrix
will return the absolute values of the modes after the first cell is correctly tuned. Due to
changing conditions in the lab, the frequency shift from the measured frequency of the π

mode and the calculation is used to tune the cell. The first cell is then tuned until the π

mode has shifted the same amount that the model says it should in order for cell 1 to be in
tune. The process is repeated for cell two. All values but the first two on the diagonal in
the P matrix are set to zero, and the eigenvalues of this ω2

o(A + P) matrix are calculated.
The π mode frequency is then subtracted from the final frequency after just cell one is in
tune, yielding the frequency shift the π mode undergoes while tuning the second cell with
the first cell already in tune. The process is then carried out for all cells.

Referring back to equation (3), a frequency shift can be induced as with the bead by
changing only the electric field of a cell. If such a change were permanent, the frequency
shift of the cavity would be permanent. Tuning the cells works on this premise. Cells are
deformed by crushing or pulling the sides of the cell. This greatly changes the electric field
across the cell, but barely changes the vanishing magnetic field by the iris of the cell. The
cells are tuned in order that the math tells us. The tuning mechanism consists of two steel
plates, approximately 16 inches square, 1/2 inch thick with 3 3/4 inch holes cut in the
middle to match the outer diameter of the cavity’s iris. The plates were tapered down to
approximately 1/4 inch thick at the edge of where the hole was cut, starting approximately
four inches away from the edge. This allowed the plates to fit between the cells snugly and
conform to the elliptical shape of the cell it was tuning. The plates were cut in half, one
of each half mounted vertically on a track on a heavy duty two way vice. The cavity was
placed so that the plates were on either side of the cell desired to be tuned. The other half
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FIG. 3: The relative electric field strength calculated from beadpulls in arbitrary units along the

axis (l) before the tuning (r) after the tuning

of both plates were placed to match up with their counterparts on the track, hugging the
iris on either side of the cell to be tuned. The plates were then moved together crushing the
cavity or apart pulling the cavity, to lower or raise the frequency, respectively.

This process was used to tune a 1.5 GHz 6 cell niobium cavity. Note that the Cornell
ERL proposal wishes to have 1.3 GHz cavities, but this experiment was a development
of a process to be used on the future RF cavities. The beadpull frequency shift for all
six TM010 were recorded and converted to relative field strength. This data along with the
resonant frequencies were fed into a matlab program which performed all the aforementioned
mathematics and output the frequency shift to be observed by the π mode while tuning each
cell in order. The tuning of the cavity was done using aforementioned tuning apparatus to
stretch and crush the cells. Due to the nature of niobium which has an elastic stretch, the
cells must be over tuned so that the cavity will relax back to the desired frequency. The
final frequencies of the π mode after tuning each cell were all within 3 kHz of the actual
shift determined by matlab.

VI. RESULTS AND CONCLUSIONS

The flatness of the cavity went from 83% to 99% with a single iteration using the formula

fieldflatness =
(peaks)

peakmax

(20)

In addition, the resonant frequency of the cavity went from 1,499.863 MHz (off by 154
kHz) to 1,500.050 MHz (off by 50 kHz). This minute discrepancy can be accounted for by
minute thermal shifts between the time of tuning and the final measurement taken.

Similarly, when the cavity is in the linac, it will be at ∼ 2K. The temperature change
induces a drastic change in resonant frequency of the cavity, but since the niobium is ho-
mogeneous and symmetrical, it will shrink evenly and all of the relative dimensions will be
the same in the cavity. Thus, the relative field strength does not change but the resonant
frequency does change. The goal for this experiment was a warm resonance tuning exercise,
further research must be done to find out how much the resonant frequency of the cavity
will change upon cooldown. Once this number is determined, it must be added to the 17
kHz of the nylon string and added on to 1.300000 GHz. This will be the input to the matlab
program as the final desired frequency of the cavity so that when placed in the machine in
LHe, the cavity should have a flat field at exactly 1.3 GHz.
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Since resonant frequencies of the cavity change in the lab and inside the cryostat, a cold
tuning system is to be used in conjunction with the RF cavities. This will be modeled after
the ones used at the Tesla Test Facility (TTF) which consists of a mechanical device that
stretches the whole cavity uniformly within the cryostat. All cold tuning is done within the
elastic limit of niobium and has a range of a few hundred kHz. Thus, field flatness must be
perfect at room temperature, but the resonant frequency may vary from the goal number of
1.3 GHz (+ nylon string shift + cooldown shift) as lab conditions change because it can be
made up for in the cryostat.

The goal was met to achieve 95% field flatness within ∼ 50kHz in a single iteration. Ac-
curacy should improve as the setup becomes permanent and the tuner becomes trained. The
setup was merely a prototype and with more accurate devices and controlled lab conditions
(especially during measuring) accuracy should improve. The greatest source of error in the
process is still the human error in tuning, especially due to the elastic nature of the niobium.
Even having a perfect mathematical model and resolution greater than 1 kHz does not help
because overtuning the cell by about 100 kHz to relax back perfectly to a value ± 1 kHz
requires better lab training for a tuner.
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