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The beam position algorithm presently used in the Cornell Electron Storage Ring

(CESR) does not accurately resolve the position of the beam at large displacements

from the beam pipe center. To reduce this problem, a new beam position algorithm is

being implemented. This paper discusses the implementation of this new algorithm,

and also additional corrections made for misalignments of the beam position monitor

buttons.

I. INTRODUCTION

Identifying the position of electron and positron bunches is a very important task for
accelerator physics inside the Cornell Electron Storage Ring (CESR). Accurate positioning
simplifies accelerator and luminosity tuning and enables simple testing of the magnetic
elements inside the ring. The beam position monitors (BPM’s) inside CESR consist of four
button pick-ups, or electrodes, which measure a signal due to a charged bunch (Fig. 1).

The current method used to resolve the position assumes that combinations of the four
signals si are proportional to the transverse beam position (x, y) and is termed the difference

over sum method [1]. The transverse position is calculated using the following equations:

x = x0
(s2 + s4) − (s1 + s3)

∑

i si

, (1)

y = y0
(s3 + s4) − (s1 + s2)

∑

i si

, (2)

where x0 and y0 are scale factors.
The difference over sum method for converting BPM signals to position works well for

beams near the center of the beam pipe, but the linear relationship breaks down at large
displacements. The pretzel orbit in CESR has large displacements and thus renders the
difference over sum method ineffective. The implementation of a method that accurately

FIG. 1: 2D transverse cross section of a CESR arc BPM. The white rectangles represent the buttons

and the gray area is the interior of the vacuum pipe.
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resolves beam positions at large displacements from the beam pipe center is described in
this paper. For this, a new beam position algorithm based upon a 2D electrostatic model
of the BPM’s was developed. Furthermore, calibration coefficients were introduced that
account for geometrical misalignment of BPM buttons. The two processes will first be
briefly described, followed by a description of their implementation and measurements that
test their usefulness.

II. 2D ELECTROSTATIC MODEL

Using the 2D electrostatic model, a general method for finding the beam position has
been developed that can be used for beams at an arbitrary transverse position in the beam
pipe, whereas the linear difference over sum method is only accurate for small transverse
displacements. The conditions necessary for accuracy of the 2D method are ultra-relativistic
speeds and sufficiently long beam bunches. When these conditions are met, the 3D problem
of converting measured signals from the 3D BPM structure to transverse positions simplifies
into a 2D electrostatic problem [2]. This 2D problem consists of finding the position (x, y)
of a stationary charge given the four measured button signals, s1, s2, s3, s4. One could
compute potentials at the button pick-ups directly for a large set of beam positions (x,y).
However, this would involve many electrostatic calculations and would be very time con-
suming. Instead, a useful and efficient solution is used that only requires one electrostatic
calculation [3]. A description of this solution method follows.

Consider the two separate cases inside a beam position monitor (Fig. 2):

1. A static charge at position (x,y) inside the BPM with all electrodes grounded,

2. Placing a potential on button i with no charge inside the BPM and buttons j, j 6= i

grounded.

A relationship given by Green’s Reciprocity theorem [3] is qsi = q

Vb

φi(x, y), where qsi is

the induced charge on button i in case 1, q is the charge at (x, y) in case 1, φi(x, y) is the
potential at (x, y) in case 2, and Vb is the voltage on button i in case 2. The measured
signals are assumed to be proportional to the induced charge, and so si = kqsi = kq

Vb

φi(x, y),
where k is a constant of proportionality. Using this relationship for i = 1, 2, 3, 4 with Vb

constant, the position of the beam can be found by

1. Calculating φi for a large set of positions inside the interior of a BPM.

2. Minimizing the following χ2 of the fit between normalized signals and normalized
potentials,

χ2 =
∑

i

(
si

∑

j sj

− φi(x, y)
∑

j φj(x, y)
)2. (3)

The charge q, button voltage Vb, and proportionality constant k are all eliminated by dividing
each si by

∑

j sj, leaving only a dependence on φi(x, y). Thus, the division of signal si by
the sum of signals and the division of the potential φi(x, y) by the sum of potentials should
yield two normalized quantities that are equal, or

si
∑

j sj

=
φi(x, y)

∑

j φj(x, y)
. (4)
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These four constraints (i = 1, 2, 3, 4) are used in the χ2 minimization to find the two trans-
verse position parameters x and y. The problem is over-constrained, but this should not
affect the solution unless there are faulty signals.

The minimization is performed by an algorithm that systematically searches different
transverse positions, which correspond to different potentials φi(x, y), and finds the position
where the χ2 is smallest.

The electrostatic field solver Poisson was used to solve for the potentials inside the
BPM’s. This was done for each type of BPM used in CESR including the Arcs, and those
at quadrupole magnets Q0, Q1, Q2, Q48, and Q49. An output file was created for each
BPM type and contains a table of potentials, φ1(x, y), calculated at an evenly spaced grid of
points. All the BPM’s contain geometrical symmetries that allow each φi(x, y), i = 2, 3, 4, to
be calculated by a simple rotation or reflection of coordinates in the table. The grid spacing
for each output file is approximately 0.12 cm. To obtain potentials at positions between grid
points, the algorithm uses a bicubic spline interpolation.

III. BUTTON MISALIGNMENT

The previous method is a general one, but it assumes that the buttons are perfectly
aligned. That is, they are aligned exactly as specifications dictate. In reality, there are
small differences between the actual and specified positions of the electrodes. Consider an
increase in the height of a button relative to the surface of the vacuum chamber. Because
of the increased distance of the button pick-up to a beam, the value of the measured button
signal due to a beam will decrease. This change in button signal causes a small error in the
calculated position of the beam. Corrections for this type of error utilize a set of calibration

(a) Physical representation of case 1 (b) Physical representation of case 2

for i = 3 and Vb = 10V . Vb is placed

on button 3 and all the other buttons

are grounded. The potential is

calculated throughout the interior of

the BPM by Poisson Electric Field

Solver.

FIG. 2: Two different electrostatic problems related by Green’s Reciprocity Theorem.
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coefficients that are unique to each BPM. A complete derivation of these coefficients can be
found in Keil [4].

If a beam passes through a BPM with misaligned button i, then the measured potential
on button i will be Ũi = biUi, where Ui is the potential that would be induced on a perfectly
aligned button, and bi is the calibration coefficient associated with button i. The measured
signal si is assumed to be proportional to the measured potential Ũi = biUi, and thus si

contains information about the button misalignment. The χ2 minimization, Eqn. 3, assumes
perfect alignment of the buttons, and so each si must be divided by bi to create the signals
of perfectly aligned buttons. These “perfect” signals are then put into the minimization
algorithm in order to resolve the beam position. Thus, the importance of the calibration
coefficients is that they improve upon the beam position accuracy of the algorithm.

To find the value of the each calibration coefficient, a spectrum analyzer was used to
place a known RF signal on one button and measure the RF signal on another button.
The buttons are separated by space and so the measurement is analogous to placing a
potential on one plate of a capacitor and measuring the potential on the other plate, with
each “plate” being connected to ground by a termination resistor. The measurement is
related to the capacitive coupling of the two buttons, and so it contains information about
the misalignment and calibration coefficients of both. Let Ũij be the measured RF signal on
button j due to placing a RF signal on button i, and let Uij be the RF signal on button j

due to an RF signal on button i if all the buttons were perfectly aligned. The relationship
between the measured signal and perfect button signal is Ũij = bibjUij [4]. To find b1, b2,

b3, and b4, six measurements must be made, Ũ12, Ũ13, Ũ14, Ũ24, Ũ23, Ũ43, that encompass all
measurement combinations. Then the following two relationships of a BPM with perfectly
aligned buttons are utilized:

1. The coupling between i and j is the same as between j and i, and hence Ũij = Ũji

assuming the terminating resistances are all equal (they are designed to be).

2. Physical symmetries dictate that U12 = U43, U13 = U24, U14 = U23 (again, assuming
that the termination resistances are equal). This comes from the fact that the button
configurations are symmetric about the BPM’s horizontal and vertical axes.

Each bi is solved for in terms of b1. The χ2 minimization process uses ratios of the bi,
so they can be scaled arbitrarily. Setting b1 = 1 and solving for b2, b3, and b4 yields the
following equations for the calibration coefficients:

b1 = 1 (5)

b2 =

√

√

√

√

Ũ23Ũ24

Ũ13Ũ14

(6)

b3 =

√

√

√

√

Ũ23Ũ43

Ũ12Ũ14

(7)

b4 =

√

√

√

√

Ũ24Ũ43

Ũ12Ũ13

(8)

The signal measured by the spectrum analyzer is the signal across the termination resistor
of button j with resistance R, and hence Ũij = VR. A simple RC series circuit has the
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FIG. 3: Beam position monitor circuit diagram.

relationship that VR = VmaxRCω√
1+(RCω)2

. When ω << 1
RC

, then the linear relationship between

potential and frequency, VR = VmaxRCω, holds. Assuming a parallel plate capacitor model
of the buttons, 1

RC
is near 100 GHz. The real capacitance is much smaller than that of the

parallel plate model, and hence 1
RC

> 100 GHz. Since the maximum ω used is 100 MHz <<

100 GHz < 1
RC

, the spectrum analyzer measurements should produce an output signal that

is linearly proportional to ω. Each Ũij is linearly proportional to ω, and so the quotients in
the Eqns. 5 through 8 cancel out the dependence of bi on ω (Note: this only applies when
the signal is linearly proportional to ω). Hence, only the slope of the RF signal vs. ω curve
needs to be known to calculate the coefficients. Actual measurements consist of measuring
the slopes of a Ũij vs. ω curve. These slopes are then put into Eqns. 5 through 8 to calculate
the calibration coefficients.

IV. PROCEDURE

The calibration coefficients for each BPM in the CESR ring were measured using an
HP3588 Spectrum Analyzer. The buttons not involved in a particular measurement were
grounded with shorting caps. Each measurement was made by putting a known RF signal
on one button and measuring the slope of the resulting RF signal on another button with a
frequency sweep of 1 to 100 MHz (Fig. 4). The circuit diagram for the BPM simplifies to a
simple series RC circuit (Fig. 3), and so a fairly linear signal response curve was expected and
observed. The rationale for using the 1-100 MHz span was that the measurements stopped
being linear outside these bounds. Possible causes of nonlinearity include standing waves
inside the coax cables, cable interference, and outside noise. Each measurement consisted
of averaging 70 individual measurements using the exponential averaging feature available
on the spectrum analyzer.
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FIG. 4: Sample spectrum analyzer measurement.

V. PROCEDURAL NOTES

Because of the symmetry argument made in the Button Misalignment section, only six
measurements were performed. However, this assumed that all terminating resistances were
identical for a particular BPM. In reality, they are not identical and can vary by up to 1Ω
out of 80Ω. This affects the theoretical argument in two ways:

1. Reversing the source and output buttons will change the measurement. If Ri 6= Rj,
then

Ũij = VmaxRjCω 6= VmaxRiCω = Ũji. (9)

Hence the assumption Ũij = Ũji is no longer valid.

2. If only six measurements are taken, all the values of the termination resistors must be
known to correctly calculate each bi.

The termination resistances were obtained by recording the value written on each BPM
and were used in the calculation of each bi. However, they did not significantly improve
the fitting, and so their usefulness is questionable. For this reason, any reference to imple-
mentation of calibration coefficients in the proceeding sections does not use the termination
resistors.

VI. RESULTS OF CALIBRATION

The values of the calibration coefficients usually ranged from 0.93 to 1.07. For most
BPM’s, the χ2 of the fit was smaller when the coefficients were used as compared to when
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FIG. 5: Plot of difference in χ2 when the coefficients are not used and when they are. The BPM

number, which identifies its position in the ring, is on abscissa. The measurements were taken

during one complete orbit of a beam bunch in the ring.

they were not used (Fig. 5). A smaller χ2 of the fit indicates better accuracy of beam
position, which in turn leads to the conclusion that the coefficients make an improvement
to the beam positioning system. However, there were BPM’s where the χ2 of the fit did
not improve when the coefficients were used. Calibration measurements were repeated for
two of these BPM’s. The new calibration data did not improve the χ2, and so it can be
reasonably concluded that the signals from these BPM’s are corrupted in some other way.

VII. TESTING

Two tests were performed with the new beam positioning algorithm:

1. Vary pretzel amplitude and measure horizontal position,

2. Vary horizontal and vertical separator voltages by fixed increments and measure the
position.

The relationship between horizontal beam position and pretzel amplitude is basically
linear. Fig. 6 shows that the old beam position algorithm, or difference over sum method,
became nonlinear at displacements of about 1 cm, whereas the new algorithm, or 2D elec-
trostatic method, keeps its linear relationship out to the highest displacement shown. This
linear relationship shows that the new algorithm is behaving as one would predict when vary-
ing the pretzel amplitude, and shows that it is much more accurate at large displacements
from the beam pipe center.
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FIG. 6: Horizontal Position vs. Pretzel Amplitude

Varying the horizontal and vertical separator voltages by fixed increments and calculating
the resulting positions should yield a very uniform looking grid. This is because changes in
separator voltages are linearly proportional to changes in position. Fig. 7 shows the difference

over sum calculated positions in red and the 2D electrostatic calculated positions in black.
At large displacements from the beam pipe center, the edges in the plot for the difference

over sum method begin to curve and show a nonlinear relationship between position and
separator voltage. The 2D electrostatic method keeps a fairly linear relationship at the
outer edges. This is further evidence that the new algorithm being implemented does in fact
improve position resolution for large displacements.

VIII. CONCLUSIONS & RECOMMENDATIONS

Preliminary testing of the new beam position monitor algorithm used by CESR shows
that it is more accurate than the old algorithm in resolving the position of the beam at
large displacements from the beam pipe center. In addition, the inclusion of the calibration
coefficients seems to improve the positioning accuracy of the BPM’s. It is recommended to
use the calibration coefficients on the BPM’s where the χ2 of the fit improves.
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FIG. 7: Calculated positions of varying separator by fixed increments
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