
Software Development for Linear Accelerator Data Acquisition

Systems

Jackson DeBuhr
Department of Physics, Applied Physics, and Astronomy,

Rensselaer Polytechnic Institute, Troy, NY, 12180

(Dated: August 12, 2004)

The TESLA Test Facility at DESY in Hamburg is a research and development

facility demonstrating superconducting technology for a linear accelerator and a

prototype free electron laser in the vacuum ultraviolet range. An upgrade to the

facility was recently completed and a data acquisition system (DAQ) is undergoing

development. Key components of the data output end of the DAQ were completed

including routines to handle the concurrent output of the data into different formats

that will ultimately be the primary means through which the machine data will be

analyzed. At the conclusion of the project every component vital to the DAQ data

flow has a solution and the data can make it from the front-end devices to tape

storage for later analysis.

I. INTRODUCTION

A linear collider is considered to be the next project that the high energy physics com-
munity needs. There are many aspects of high energy physics that could be explored with
a linear collider, including such things as supersymmetry and the Higg’s Mechanism. Ad-
ditionally, the links between elementary particle physics and cosmology are well recognized
and the discoveries made about the small scale world of elementary particles could tell much
about the entire universe. The technical challenges to such a project are large. For instance,
some of these difficulties include accelerating the beams to high energy and attaining desir-
able beam characteristics.

Currently two methods for the beam acceleration are being considered, the so-called
“warm” and “cold” options. The “warm” option would use conventional accelerator cavities
while the “cold” would involve superconducting cavities. Again, there are many technical
challenges to creating superconducting accelerator modules, one example of which is the low
temperature at which they operate: about 4 K. The Laboratory for Elementary Particle
Physics (LEPP) at Cornell University is a member of the TESLA collaboration, which
is a group working on an implementation of a future linear collider facility. In addition
to the work done with superconducting acceleration cavities, LEPP is also involved with
developing a data acquisition system for the TESLA Test Facility (TTF2), where various
modern technologies for control and acquisition systems are deployed and put to use.

TTF2

TTF2 is an accelerator prototype at the DESY site in Hamburg Germany which demon-
strates, among other things, superconducting technologies for RF cavities, and a free electron
laser in the vacuum ultraviolet range (VUV-FEL) based on the principle of self amplified
stimulated emission (SASE)[1]. Though the TTF2 project has turned their emphasis more



2

FIG. 1: Layout for the proposed linear collider

toward the VUV-FEL, the research done with the superconducting acceleration cavities and
the beam characteristics will prove very valuable for a future linear collider project. The
250 meter long beam line carries scores of diagnostic and control devices that will be used
to study such properties as the emittance and size of the beam, both of which would be very
important factors to optimize in a linear collider.

FIG. 2: Layout of TTF2

Another aspect of TTF2 project that deserves mentioning is that it is also prototyping
the Global Accelerator Network (GAN) concept[2]. The scale and complexity of future plans
in the high energy physics community has grown beyond the point where one institution or
even one country can hope to complete all of the necessary work in any reasonable timeframe.
Recognizing this, the GAN concept was formed so that the best use could be made of the
ideas, resources, and centers of excellence in accelerator physics for completion of a linear
collider project.

The TTF2 DAQ

The problem that the TTF2 data acquisition system (DAQ) must solve is how to get
data from all of the various components into some useful form. The system that has been
devised is based highly on the DOOCS[3] framework. DOOCS, which is a Distributed
Object Oriented Control System, allows the data acquisition to work transparently between
computers across the local network or even from off site. This remote capability built into
DOOCS follows well with the GAN concept. All of the components along the DAQ flow are
implemented as DOOCS servers. This allows a high degree of modularity as the interface



3

between DOOCS servers is very well defined. Another important overall feature of the
DAQ system is that an object oriented approach was utilized to increase the modularity
and ease of maintenance of the entire system. With object oriented code, a small piece of
the system can be rewritten without effecting the rest. Portability is another possibility of
object oriented code. What this means is that an existing system can be used at different
sites or experiments with very little work.

To gain some understanding of the design of the DAQ some data will be followed from
its conception in the devices until it is written to disk for later analysis. As an example of
one data source at the TTF2 site, consider a stripline beam position monitor (BPM). At the
TTF2 site an RF gun is the source of the electrons in the beam. A laser is turned on briefly,
and during this time, electrons are ejected from the photocathode of the gun. These bunches
are created many times in rapid succession forming what is know as a macropulse. As the
bunch passes the BPM, a signal is produced in the electronics of the device. A dedicated
computer, which is running a DOOCS server, is located near all of the devices along the
beamline. The purpose of this server is to convert the signals the BPM detects into a digital
form. These ADC servers are the first step in the DAQ. In addition to the digitizing of
the data coming from the devices, DOOCS affords the ability to run filtering algorithms,
fitting routines and other processing capabilities that can be performed on the raw data.
The raw data along with any of the processed information is sent by the server to the next
major component of the DAQ: the Shared Buffer Manager. This Buffer Manager acts as a
repository for the numerous servers that provide data from the machine. While in the Buffer
Manager, the various data is sorted and reconstructed into an event record. Essentially, these
event records contain all of the data the machine outputs for a given macropulse. These
event records are then sent over the network to the Event Builder, the last major DAQ
component. The Event Builder is responsible for taking the event records and converting
the data into a more usable format for analysis. Additionally, the Event Builder is capable
of processing and filtering events and therefore behaves as an additional software-based filter
level. This data is then written to disk using the storage system dCache[4]. This system
provides efficient storage and retrieval of the large quantities of data produced in accelerator
facilities. One important feature of dCache is that it is GRID[5] enabled, which is becoming
increasingly important for handling and analysis of massive data sets.

II. EVENT BUILDER

The work of this project focused on completing components of the Event Builder. The
Event Builder is the critical step in the DAQ process, because without it the data would not
be very accessible to the general user. Though the event records are usable, the author can
assure that it is not a trivial job to work with this format. So to facilitate the analysis of
the data, the Event Builder converts the event record into a usable data format (see Fig. 3).
Like every component in the DAQ the event builder makes heavy use of DOOCS and object
oriented design techniques. The object oriented approach is not only cleaner conceptually,
but it affords easy maintenance, upgrade capability and portability.

At the beginning of this project the Event Builder was still missing some major pieces of
its functionality. The link with the Buffer Manager had not been completed. Also, the data
output routines had not been started. Though much work had already been put into the
Event Builder, these two ends of the data flow had not been implemented. The goal of this
project was to complete the link with the Buffer Manager, and to provide an implementation



4

for the data output. With these components in place, the Event Builder could be run, and
the entire data flow of the DAQ would be completed. This would mean that data would be
able to get from the devices all the way to the tape archive for later analysis.

FIG. 3: An overview of the design of the Event Builder

III. DATA LINK

The first piece of the Event Builder that needed work was the link to the Buffer Manager.
Without this link the Event Builder would not receive any data and could therefore not
provide any for the users. This component was a relatively straightforward application of
the UNIX socket implementation. In keeping with the object oriented design of the DAQ,
two objects were created to realize this link. One of them, the sender, was responsible for
contacting the receiver and sending the information. The other object, the receiver, connects
to the sender and waits for the information.

IV. EVENT PARSER

The event record format used in the Buffer Manager is not conducive to easy analysis.
An object was created that took data in the Buffer Manager format and parsed the data. In
other words, this event parser, takes the event record and provides a kind of handle to each
of the logical components of the record. This was a very important step for all of the Data
Output routines described below. Additionally, having one object responsible for parsing
the data will allow an almost trivial update if the event record format is ever changed.

Functionality was added to the Event Parser to print the event records in an easily
readable form. This allowed some debugging work to take place including catching some
errors in the event records themselves which the Buffer Manager’s maintainer promptly
fixed.



5

V. ROOT DATA OUTPUT FORMAT

The main purpose of collecting machine data is so the experimenters and operators can
analyze the recorded data. There are many analysis packages that are widely used, and it
is possible that eventually output routines will be written for each of these packages, but
for the beginning it was decided to implement a data format for the analysis package called
ROOT[6]. One of the major concepts that ROOT provides is the “Tree object.” A ROOT
tree is essentially an ntuple, with the columns of the ntuple given the name branches. One
feature of trees are their flexibility which allows a much more powerful and dynamic data
representation.

There was much discussion about the format that will be used for the ROOT output.
In fact, the ROOT format was always a major point during the collaboration meetings the
author attended during the project. Care needed to be taken as it will be used by everyone.
The design that was decided on was a multiple tree organization. There are first two general
classes of data: machine data, which is anything that comes from the machine controls or
diagnostics, and the user experiment data. Each of these types then will have two subtypes,
the so-called fast data and slow data. The fast data is anything that has a repetition rate
equal to the rate of macropulses. For instance the signals detected in the BPM’s are fast
data. Slow data, on the other hand, generally has a slower update time. One example of
slow data is the current in a given magnet. It was decided that there will be one tree for
each of the types: a fast machine data tree, a slow machine data tree, a fast user experiment
tree, and a slow user experiment tree.

Each of the trees will share a similar layout. There will be one branch that holds the event
header. This is information such as a run number, the time of the event and the macropulse
number. Then, there will be some number of branches that hold the server block header
information. Information contained in the server block headers includes, for example, which
channels a server provides and the trigger mask. This data is less useful to the general user,
but may be important for technical debugging of the data path. Then there will be some
number of branches holding the actual channel data. An additional ROOT mechanism will
be used to connect the various trees together so that analysis may use data from all of the
trees.

Given this scheme, the actual objects that will be contained in the tree needed to be
defined and implemented. A first version of the object definitions were created that were
focused on the channels as the basic object type. So a regular beam position monitor,
which has two channels representing the x and y positions of the beam, would have two
objects in the tree and two branches. After some discussion with the group and some
helpful hints, a new version was made which was centered on devices, but which also made
use of another ROOT feature called splitting. This splitting can make one branch act also
as if it were many sub-branches. This scheme allowed not only branches for each device,
but also branches for each channel of the device. This allowed the most flexibility for the
users who can look at devices or channels. Objects were created for both the fast and slow
machine data. Currently, the objects for the slow tree mimick the event record format that
the Buffer Manager uses, but the author is certain there is a better way to handle the slow
event. However, due to time constraints, this was not explored further.



6

VI. DATA OUTPUT MODULES

The most important piece of the Event Builder is its output routines. Without these,
there would be no data for the experimenters and machine operators. The proposed design
for the Event Builder output involves a flexible and dynamically reconfigurable output. This
means that as the DAQ is running, there should be the capability to change what formats
are being output by the Event Builder. One way to achieve this is to encapsulate all of
the work of output in a given format into an object. The sole task of this object is to get
data from the Event Builder and correctly output it in the desired format. Then all that is
needed is some mechanism to manage these objects.

ASCII Output Module

One of the output formats that was implemented was a simple text output module. The
primary purpose of such a format is debugging the DAQ. It is a quick and very readable
form for the data which will allow the operators and system designers to ascertain if the
system is working as it was intended to. This was not a very complicated object to make,
and essentially all of the work for output in a human readable format had been completed
during work on the Event Parser. This module, along with the ROOT output module relied
heavily on the functionality of the Event Parser to split up the incoming data into its logical
pieces.

ROOT Output Module

The purpose of the ROOT output module was to take the event records and fill a ROOT
structure as described above. This will be the most important piece of the Event Builder
when the machine starts running as this will provide the primary means with which the
operators and users will interact with the data. The root files and the associated format
will effect everyone using data from the machine. Consequently, much care had to be taken
when writing this object. At the end of the time for the project, the object would correctly
fill the fast machine data into the appropriate tree. The slow machine tree, at the moment,
does not get filled, but will be a relatively trivial addition, and was not completed only due
to time constraints.

Output Handler

Managing the various output modules is also done by an object. This object keeps track
of all the output modules and guarantees that each completes its output of the events.
A multi-threaded approach was taken to this handling. The reason for this was that the
writing may take different amounts of time for different modules. Each module is run as
its own thread so if one of the modules is waiting for an operation to complete, the other
modules can continue working. This allows the usage of time to improve drastically over the
non-threaded approach.

With the multi-threaded approach a difficulty arises in synchronizing the various output
modules. It would not be good if one of the output threads was still working when the next



7

event was loaded. This would result in a useless collection of garbled data. To synchronize
the output process an additional thread was created to keep in contact with the output
modules and assure they have finished their work before retrieving the next event.

VII. CONCLUSION

At the end of the project, each of the components of the Event Builder has a working
solution. This will allow the assembly of the Event Builder from these components, and
upon its completion, the entire DAQ system can, in principle, be run. Though there are still
a few pieces of the DAQ that are missing, the data flow is complete and it will be possible
to get data starting at the devices on the beamline into the ROOT files at the other end.

VIII. ACKNOWLEDGEMENTS

The author would like to thank the following individuals: Tim Wilksen for his guidance
during the project and for proposing the project, and Rich Galik for organizing and running
the program. This work was supported by the National Science Foundation REU grant
PHY-0243687 and research cooperative agreement PHY-9809799.

[1] “The Conceptual Design Report for the TESLA Test Facility”, Edited by D. A. Edwards,

DESY, Hamburg, 1995. http://tesla.desy.de/TTFReport/CDR/TTFcdrTab.html

[2] K. Rehlich, “The TESLA Test Facility as a Prototype for the Global Accelerator Network”,

PCaPAC 2002

[3] G. Gyrgiel, O. Hensler, K. Rehlich, “DOOCS: a Distributed Object Oriented Control System

on PC’s and Workstations”, ICALEPCS 97, Beijing, 1997.

[4] Patrick Fuhrmann, “dCache, the Commodity Cache”, Twelfth NASA Goddard and Twenty

First IEEE Conference on Mass Storage Systems and Technologies

[5] Grid Physics Network Homepage, http://www.griphyn.org/

[6] Rene Brun and Fons Rademakers, “ROOT - An Object Oriented Data Analysis Framework”,

Proceedings AIHENP’96 Workshop, Lausanne, Sep. 1996, Nucl. Inst. & Meth. in Phys. Res. A

389 (1997) 81-86. See also http://root.cern.ch/.


