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The purpose of the CESR-c fast luminosity monitor (FLM) is to count the rate

of photons emitted from radiative bhabha events at the interaction point. Instan-

taneous luminosity can thus be determined which will guide the CESR operator in

optimizing the accelerator. We wrote a χ
2 minimization program for a Gaussian

function to account for all photons, including those that do not strike the monitor’s

window. Testing the fitter with data representing the range of possible beam pa-

rameters and additional noise, we find that the algorithm works well to produce a

1% statistical measurement of luminosity.

I. INTRODUCTION

Recently, an initiative to incorporate a fast luminosity monitor into Cornell’s particle
accelerator at Wilson Lab has been approved. Much effort is being put forth towards its
design, construction, and testing. This monitor will measure the rate at which photons are
emitted from radiative bhahba events at the interaction point. Ultimately, the FLM will
provide a reliable means of collecting data to calculate the instantaneous luminosity at the
interaction point. In order for luminosity to be determined, the data must first be analyzed
with the aid of a computer program. By measuring the luminosity, we can determine the
number of interesting physics events in CLEO. The CESR operator can use this timely
information to find the best machine parameters in order to maximize luminosity. Past
experience suggests that three times improvement in luminosity is obtained through careful
tuning of initial design conditions. Significant reduction in luminosity maintenance time is
also expected.

First, I will present some background information about luminosity and discuss the basic
design and theory of the fast luminosity monitor. Then, I will show that such a detector
really is feasible. A description of my program which finds the best fit Gaussian curve for the
FLM data will be followed by a presentation of results. Uncertainties and ideas for future
work will come last.

II. LUMINOSITY

When an electron and positron collide at CLEO, an array of sub-atomic particles is
produced. The specific emission, however, depends on the type of interaction. A common
interaction is the radiative bhabha event, an inelastic collision between the electron and
positron. The energy loss from this type of event is used to produce a photon. Luminosity
can be determined by measuring the rate at which these photons are emitted.
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The rate R of the radiative bhabha events is related to the luminosity L at the interaction
point by the equation

R = σL. (1)

Here, σ is the cross-section for the radiative bhabha process and has a well defined value. R,
however, cannot be precisely known as it is different from the observed rate which is equal
to R times an acceptance and efficiency factor. Consequently, we have that

L ∝ R(RB) (2)

where RB stands for radiative bhabha.

III. PHOTON BEAM

The radiative bhabha photons are emitted in the direction of the positron beam at the
interaction point. The angular distribution of the beam is characterized by a typical 1/γ
cone. With CESR operating at 1.88 GeV per beam, one expects most of the photons to
be emitted within a cone of 0.27 mrad around the positron beam direction. However, it is
the divergence of the positron beam itself that plays a more integral role in determining the
shape of the photon beam. The horizontal divergence is controlled quite well by the hardware
of the accelerator and remains at 0.65 mrad. More difficulties arise with maintaining the
vertical divergence, and this will typically range from anywhere between 0.47 to 0.82 mrad.
Given that

θtotal ≈
√

θ2
γ + θ2

beam (3)

where θ represents divergence, and using the mean values for θγ and θbeam, we see that
θtotal=0.66 mrad. Thus, it is the positron beam divergence at the interaction point that
plays the predominate role in determining the divergence of the photon beam.

This divergence is critical as the spot size at the detector depends on it. The photons exit
the vacuum chamber 16.1 m away from the interaction point. At this distance and with the
beam energy of 1.88 GeV, one standard deviation of the horizontal spot size will be 1.05 cm.
In the vertical direction, one standard deviation of the spot size will typically range from
0.76 to 1.32 cm.

IV. THE DETECTOR

The detector itself, which will be placed 16.1 m to the west of the interaction point, is
made up of three main componenets: an aluminum window, scintillators, and photomul-
tiplier tubes. Six plastic scintillators placed 1.1 cm apart make up the vertical portion of
the readout. These are placed behind the rectangular window which is 5.08 cm tall and
11.05 cm wide. The window is a one inch thick piece of aluminum. The six scintillators are
connected to light guides which connect to photomultiplier tubes, one for each scintillator.
(See Fig. 1).

The incoming high energy photons first strike the aluminum window. Here, pair pro-
duction occurs as the photons enter the electric fields surrounding the nuclei of the high
Z aluminum atoms where Z is the charge on the nucleus. During this process, the initial
intensity I0 of the photon beam is reduced by a factor of e to I where

I = I0 exp
(

−
7x

9X0

)

. (4)
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FIG. 1: A drawing of the proposed fast luminosity monitor. Green segments are the scintillators

and blue segments are light guides leading to the photomultiplier tubes. The detector is mounted

on the vacuum chamber.

One radiation length is given by X0 which describes the distance needed in a given material
for a photon to pair produce [? ]. The aluminum is 0.26 radiation lengths thick. This means
that about 20% of the photons will actually convert.

Typically, either two or four electrons and positrons exit the aluminum and enter the
scintillators where molecules are excited. When the electrons of the molecules fall back to
their ground state, a visible photon is emitted. Upon passing through light guides, these
photons then strike the photocathode of the photomultiplier tube where they emit electrons
via the photoelectric effect. After passing through a series of annodes, each electron is
multiplied by a factor of about 104 − 106. This is read out from the photomultiplier tubes
as a current.

Before constructing and implementing the dectector, we must confirm that it will work
well and meet the needs of the project. Here, we will perform a simple calculation to estimate
an expected output current and then compare that to the photomultiplier tube specifications.
First, we assume that due to the geometry of the situation, half of the photons emitted from
the scintillator will reach the photomultiplier tubes. Then, for every 100 MeV of energy, one
photon will be produced in the scintillators [? ]. We project that the photomultiplier tube
will be 10% efficient in creating electrons and that it has a gain factor of 106 electrons.

The only other necessary piece of information to calculate the current is a value for the
photon energy density per unit time at the fast luminosity monitor. We get this from a
GEANT simulation as seen in Fig. 2. Using a peak value of 1.9 × 1011 eV/cm3/s, current
is approximately 9 µA.

The Hamamatsu R7400U photomultiplier tube functions with currents up to 13 µA. The
9 µA we expect is well within that range. Furthermore, as seen in Fig. 3, a gain of 105 is
in the middle of the R7400’s operating range. This is important as one can easily provide
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FIG. 2: A GEANT simulation showing a possible photon distribution at the detector.

new voltages to the PMT to increase or decrease the gain factor accordingly when working
in new accelerator regimes. Another factor to consider is the time response, which for this
photomultiplier tube is 0.78 ns. One of the goals of building the fast luminosity monitor is
to have bunch by bunch capability. The beam bunches have frequencies of 14 ns, so this
PMT has a fast enough response time for high resolution between beam bunches.

V. GAUSSIAN FITTER

As the window of the detector is 11.05 cm wide and the horizontal divergence of the
beam results in a one sigma spot size of 1.05 cm, one can be confident that the window will
‘see’ all of the incoming radiative bhabha photons. However, with a limited vertical length
of 5.08 cm, the fast luminosity monitor will not detect all of the photons. In most cases,
only a portion of the Gaussian distribution of photons will be observed, yet a complete
count is necessary for finding luminosity as Eq. 2 demonstrates. Thus, we must create a
program that takes the limited information from the six channels of the detector and finds
the parameters to describe a best-fit Gaussian curve.

The equation for a Gaussian distribution is

G =
N

σ
√

2π
e−(x−µ)2/2σ2

, (5)

where N is a normalization factor, σ is one standard deviation, and µ is the mean. To find
how well our guesses for the three parameters match an ideal Gaussian curve, we calculate
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FIG. 3: Graph depicting the operating range of the Hamamatsu R7400U photomultiplier tube used

in the fast luminosity monitor.

a value for χ2 where

χ2 =
∑

i

(G2(i) − G1(i))
2

σ2
i

. (6)

G2(i) is the theoretical probability distribution that we are testing and G1(i) is the distri-
bution of actual data points from the fast luminosity monitor [? ]. We assume uniform σi’s
and remove an overall factor of 1/σ2 from our minimization. By minimizing χ2, we find the
best-fit Gaussian function under which integration accounts for all photons, whether they
struck the monitor or not.

The primary component of the χ2 minimization program is the Numerical Recipes sub-
routine frprmn [? ]. Written in Fortran 90, this routine calls two other subroutines called
func and dfunc both of which we had to provide. Func takes in a value for σ, µ, and N and
is also provided with the data read from the fast luminosity monitor. It’s sole purpose is
to calculate χ2 for those particular parameters. Then, dfunc calculates the derivative of χ2

with respect to σ, µ, and N . This derivative is found numerically by

∂χ2

∂P
=

(χ2(P + δ) − χ2(P ))

δ
(7)

where P represents one of the three parameters and δ is a small fraction of P .
Using this gradient information, frprmn performs consecutive line minimizations to ef-

fectively work its way down the gradient. After each iteration, a new value of σ, µ, and N
is used as input to frprmn and this process continues until χ2 is sufficiently small. Frprmn

ultimately finds the ‘bottom’ of this multi-dimensional bowl representing the values of χ2

for all three parameters.
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Centroid Fit Error, µ = 0.0 cm
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FIG. 4: Histogram plotting the fit-true values for the centroid when µ=0.0 cm without gain error.

A. Data Deviations

Although the ideal situation is that the distribution of radiative bhabha photons at the
detector is a perfect Gaussian and all we need do is take the six sample points to determine
the shape, this cannot be expected. There will be deviations in the data points with three
main sources of error to consider. First, fluctuations in the photon rate will cause a non-
perfect Gaussian distribution. However, since we are dealing with rates of magnitude 109

photons/sec, deviations approximated by
√

N/N amount to only 0.003% which can be
considered negligible for our purposes of testing the fitter. A second source of deviation
arises from electronics noise and here, errors might range from between 0.01% and 1.0%.
Third, discrepencies in gain factors from one photomultiplier tube to the next may result in
up to 5% deviations from an ideal Gaussian.

These last two scenarios are significant and the fitter must be tested under these condi-
tions. To do so, we wrote a program to generate example data sets with these deviations.
For the electronics noise, we set the noise level NL according to

NL =
N

σ
√

2π
∗ perc (8)

where perc represents the percentage of deviation. This is then multiplied by a random
number that the Numerical Recipes random number generator gasdev provides. The result
is added to the theoretical data point. To account for gain errors, we implemented the
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Centroid Fit Error, µ = 2.0 cm
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FIG. 5: Histogram plotting the fit-true values for the centroid when µ=2.0 cm without gain error.

random number generator again and multiplied each data point by a gain factor where the
root mean square of the sequence of gain factors can be varied.

VI. RESULTS

We test the fitter for both the scenario of electronics noise with no gain factor and
the more realistic scenario which includes noise and gain errors. We use twelve different
combinations of photon beam position and divergence. Values for the centroid of the beam,
µ, range from 0.0 to 2.0 cm and the divergence, σγ , ranges from 0.75 to 3.0 cm. The six
scintillators are placed at -2.75, -1.65, -0.55, 0.55, 1.65, and 2.75 cm from the center of the
window. We ran the fitter 10,000 times for each combination of µ and σγ , letting the random
number generator use different numbers each time. A constant value of N=1 was used. For
all data presented here, the root mean square of the gain factor is 4.6% and the noise error
is 1.0%.

Figure 4 is a histogram depicting how well the fitter program could find the centroid of
the beam. When the beam is such that µ=0.0, the center is found to always be within
2.0 mm of the actual value no matter what the divergence is. When the beam is offset (see
Fig. 5) by 2 cm, the fitter still works very well, only ever underestimating the centroid by
at most 3.0 mm for σγ=3.0. For an electronics noise of 1%, the fact that the precision is at
the 1.0 mm level is very good as that is the best that we can hope for. With gain errors,
the centroid is still found with very high accuracy and a precision on the order of a tenth of
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Centroid Fit Error, µ = 0.0 cm
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FIG. 6: Histogram plotting the fit-true values for the centroid when µ=0.0 cm with gain error.

a millimeter as shown in Figures 6 and 7. This even holds true for the worst case scenario
when the beam is widely spread out and displaced 2 cm from the center of the monitor.

As the purpose of the fast luminosity monitor is to count the number of photons and
then relate that to a value for luminosity, how well the fitter finds the correct value of the
normalization constant N is very important. We see in Fig. 8 and 9 where the histograms
show fractional errors, that there is at most a 1.0% difference between real and fitted values.
The uncertainties are all around 1.5%, again consistent with the 1% electronics noise added
on. Including gain errors to each channel provides more interesting results as offhand, we see
how the fitter overestimates the rate when the beam is centered (See Fig. 10) and the fitter
underestimates the rate when the beam is displaced 2 cm (See Fig. 11). When σγ=0.75 cm,
there is a spread of 5% in the accuracy of finding the rate. For such a narrow Gaussian
distribution, most of the data is concentrated in one channel, so the particular gain factor
plays a larger role than with the wider beams. Despite this effect, we are still finding the
rate with a high precision on the order of 1%.

The fractional fit error for the third parameter, divergence of the photon beam, is shown
in Figures 12-15. Given no gain errors, the divergence is found to within a fraction of a
percent. We see that the fitter is slightly less accurate and precise when it has to fit to the
wider beam of σγ=3.0 cm, but this has at most a 1.0% deviation from the actual value with
a 1.9% uncertainty for the case when µ=2.0 cm. When σγ=1.0 cm, the average percent
error is 0.3%. Interesting effects are seen upon adding in gain errors. As the beam is shifted
from the center to an offset of 2.0 cm on the window, the effects of the specific gains for
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Centroid Fit Error, µ = 2.0 cm
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FIG. 7: Histogram plotting the fit-true values for the centroid when µ=2.0 cm with gain error.

each channel are seen. For all cases of divergence when the centroid is at µ=0, the accuracy
is at the worst a 2.7% overestimate. We see this change to at worst a 5.8% underestimate
when µ=2.0 cm. However, the precision does not vary much and it ranges from 1.0 to 1.9%.

VII. CONCLUSIONS

Testing Gaussian fitter and its χ2 minimization subroutine for various situations of ex-
pected photon beam divergence and centering on the detector proves the algorithm works
well. Given that the beam will have a typical divergence of 1 to 2 cm, we tested these
two values as well as extrema on either side for a perfectly centered beam and a beam dis-
placed 2 cm in the 5.08 cm length window. Electronics noise and gain errors to account for
discrepancies from one photomulitplier tube to the next were added to prototype data.

The fitter always finds the centroid of the beam to within 0.2 mm of the actual center
and with a high precision of 0.1-0.2 mm. Thus, the CESR operator will be able to easily
detect when the beam becomes misaligned and can bring it back to the center. However, it
is important to note that even when not centered and with gain errors, the fitter finds the
rate of photons with only at most a 2.9% error when σγ=0.75 cm. This error is merely 0.5%
with the more likely case of σγ =1.0 cm.

Systematic biases creep in with gain errors especially when the beam is very narrow. This
is seen in determining the rate where the percent error jumps from -2.3% to 2.9% for µ=0
to 2 cm. The high discrepancies that these gain errors cause from one data set to the next
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Rate Fractional Fit Error, µ = 0.0 cm
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FIG. 8: Histogram plotting the fractional errors for the rate when µ=0.0 cm without gain error.

set the level at which we must calibrate the readout channels. Without a careful calibration
of these gains, we can expect a several percent systematic offset in determining the photon
beam divergence among the other parameters.

Thus, with the limitations of one piece of data from each of the six scintillators, and a
fast luminosity monitor window of 5.08 cm in the vertical direction which is not large enough
to count all incoming radiative bhabha photons, we have nonetheless created a program to
find the luminosity at the interaction point. This luminosity is only a relative value, but
absolute calibration takes place using CLEO Barrel measurements. However, the fitter fails
every 1/10,000 times. With an update rate of 1 Hz, this corresponds to an average of one
failure every few hours.

Future work to improve the code constitutes optimizing a delta finding routine. While
numerically calculating the gradient of χ2, deltas for each of the parameters must be deter-
mined. Currently, the fitter uses a preset value which might not provide the most accurate
result or which might be more precise than is necessary, using extra computing time. Fur-
thermore, altering some of the structure of the code so that one can easily include more
parameters would be ideal. Last, as installation of the fast luminosity monitor will begin
within this next week, creating the interface between the Gaussian fitter program and the
CESR control system computers is the next most important step to take.
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Rate Fractional Fit Error, µ = 2.0 cm
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FIG. 9: Histogram plotting the fractional errors for the rate when µ=2.0 cm without gain error.
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Rate Fractional Fit Error, µ = 0.0 cm
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FIG. 10: Histogram plotting the fractional errors for the rate when µ=0.0 cm with gain error.
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Rate Fractional Fit Error, µ = 2.0 cm
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FIG. 11: Histogram plotting the fractional errors for the rate when µ=2.0 cm with gain error.
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σ Fractional Fit Error, µ = 0.0 cm
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FIG. 12: Histogram plotting the fractional errors for the divergence when µ=0.0 cm without gain

error.
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σ Fractional Fit Error, µ = 2.0 cm
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FIG. 13: Histogram plotting the fractional errors for the divergence when µ=2.0 cm without gain

error.
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σ Fractional Fit Error, µ = 0.0 cm
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FIG. 14: Histogram plotting the fractional errors for the divergence when µ=0.0 cm with gain

error.
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σ Fractional Fit Error, µ = 2.0 cm
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FIG. 15: Histogram plotting the fractional errors for the divergence when µ=2.0 cm with gain

error.


