

A Flavor of Entangled Charm

Werner Sun, Cornell University (CLEO-c) 1 October 2010, LEPP Journal Club, Cornell University

> Introduction Formalism Experimental results Summary and outlook

CESR & CLEO

- 1979–2008, symmetric e^+e^- collisions @ $\int s = 2 - 12 \text{ GeV}.$
 - Last 5 years: CESR-c/CLEO-c, *Js* ~ 4 GeV
- Good for flavor physics (weak interaction):
 - Threshold production: clean events
 - $e^+e^- \rightarrow \gamma^*$: initial state w/ known energy and quantum numbers.
 - Hermetic detector with excellent particle ID.
- Contributions to HEP for 30+ years
 - "Small" collaboration: ~20 institutions, < 250 authors.
 - Over 500 papers.
- Relevance of flavor to LHC era:
 - New Physics constraints from flavor are much higher than TeV scale.
 - NP that solves hierarchy problem must have non-trivial flavor structure.

Werner Sun, Cornell University 1 October 2010, LEPP Journal Club, Cornell University

- Running near $c\overline{c}$ threshold produces quantum correlated D^0 and \overline{D}^0 :
 - $e^+e^- \rightarrow \psi(3770) \rightarrow D^0\overline{D^0} \quad [C = -1] \quad \text{OR} \quad e^+e^- \rightarrow \gamma^* \rightarrow D^0\overline{D^0}\gamma \quad [C = +1]$
 - At $\psi(3770)$, same-CP final states forbidden; opposite-CP states enhanced
 - Tagging the CP of one D identifies the CP of other D.
 - Unique access to amplitude ratios, phases, & charm mixing.
 - Exploit interference effects in time-integrated rates.

Correlated amplitudes
$$\Gamma_{ij}^2 = \left| \left\langle i \mid D^0 \right\rangle \left\langle j \mid \overline{D^0} \right\rangle \mp \left\langle j \mid D^0 \right\rangle \left\langle i \mid \overline{D^0} \right\rangle \right|^2$$

- D⁰ strong phases are necessary inputs for
 - Charm mixing studies at *B*-factories, CDF, FOCUS
 - CKM studies at B-factories and LHCb

[Cabibbosuppressed] / ;

> [Cabibbo favored]

Action at a distance!

magnitude

strong phase

(weak phases are

• This talk: CLEO-c $\psi(3770)$ measurements of strong phases in $D^0 \rightarrow K^+\pi^- K^+\pi^-\pi^0 K^+\pi^-\pi^+\pi^- K_{S,L}^0h^+h^-$ (h = K or π)

Charm Mixing (no CPV)

$$\frac{\partial}{\partial t} \begin{pmatrix} D \\ \overline{D} \end{pmatrix} = \begin{pmatrix} H_{11} & H_{12} \\ H_{21} & H_{22} \end{pmatrix} \begin{pmatrix} D \\ \overline{D} \end{pmatrix} \text{ where } H_{11} = M_{11} - i \frac{\Gamma_{11}}{2} \text{ etc...}$$

• $H_{12}, H_{21} \neq 0 \Rightarrow$ flavor eigenstates $(D^0, \overline{D^0}) \neq$ mass eigenstates (D_1, D_2) .

- Standard Model predictions for x and y have large uncertainties.
- But measurements of x and y can constrain New Physics models.

Werner Sun, Cornell University 1 October 2010, LEPP Journal Club, Cornell University

Charm Mixing Measurements I

• time integrated mixing rate

$$R_M = \frac{\int_0^\infty \mathcal{P}_{\min}(t)dt}{\int_0^\infty \mathcal{P}_{\min-\min}(t)dt} = \frac{x^2 + y^2}{2 + x^2 - y^2}$$

- First evidence for mixing in 2007.
- Currently, no-mixing point excluded at 10.2 σ.
 - But no evidence for CP violation

Werner Sun, Cornell University

The CKM Matrix

- Unitary matrix of complex quark couplings.
- Only source of *CP* violation in SM.
 - Non-zero area of unitary triangle.
- Coherent experimental picture has emerged in last decade.
 - CKM measurements (weak interaction) are plagued by hadronic uncertainties (strong interaction).
- The most poorly-measured angle is still γ.
 - CLEO-c sheds light on strong interactions in charm.

Wolfenstein Parametrization

• Expand CKM matrix in powers of λ = sine of Cabibbo angle ~ 0.22

$$\mathbf{V}_{\mathrm{CKM}} = \begin{pmatrix} 1 - \frac{1}{2}\lambda^2 & \lambda & A\lambda^3(\rho - i\eta + \frac{i}{2}\eta\lambda^2) \\ -\lambda & 1 - \frac{1}{2}\lambda^2 - \mathbf{i}\eta\mathbf{A}^2\lambda^4 & A\lambda^2(1 + i\eta\lambda^2) \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix}$$

Removing Model Dependence in K⁰_{S,L} h⁺h⁻

• Model-dependent $\delta_D(x,y)$ from amplitude analysis incurs model uncertainty of $O(5^\circ)$ on γ/ϕ_3 , independent of *B* decay statistics.

- Each bin is a separate decay mode with $c_i = R_i \cos \delta_i$ and $s_i = R_i \sin \delta_i$.
 - Bins with $\delta \sim 0$ or π act like *CP* eigenstates \Rightarrow sensitive to cosines of phases.
 - Bins with $\delta \sim \pm \pi/2$ are sensitive to sines of phases.

Werner Sun, Cornell University

Quantum-Correlations Overview: $\psi(3770)$

Werner Sun, Cornell University

Quantum-Correlated Decay Rates: $\psi(3770)$

Selected references:

•Xing, PRD 55, 196 (1997)

•Goldhaber and Rosner, PRD 15, 1254 (1977)

•Bigi and Sanda, PLB 171, 320 (1986)

 $y \propto -2\sum A_i^2 r_i \cos \delta_i$

• Evaluating
$$\Gamma_{ij}^{2} = \left| \left\langle i \mid D^{0} \right\rangle \left\langle j \mid \overline{D^{0}} \right\rangle - \left\langle j \mid D^{0} \right\rangle \left\langle i \mid \overline{D^{0}} \right\rangle \right|^{2}$$

W

E

Werner Sun, Cornell University

ith $\frac{\left\langle i\right }{\left\langle i\right }$	$\left. \overline{D}^0 \right angle \ \overline{D}^0 ight angle =$	= -re	$e^{-i\delta}$ gives	Anti-symmetric wavefunction	 Gronau, Grossman, Rosner, PLB 508, 37 (2001) Atwood and Petrov, PRD 71, 054032 (2005) Asner and Sun, PRD 73, 034024 (2006); PRD 77, 019901(E) (2008)
Final S	tates		Time-Integra	ted Rate ($\times A_i^2 A_j^2$)	
	i	j	$1 + r_i^2 r_j^2 -$	$\cdot 2 r_i r_j \cos(\delta_i + \delta_j) \leftarrow$	No y dependence
xclusive	i	j	$r_i^2 + r_j^2 - 2$	$2 r_i r_j \cos(\delta_i - \delta_j)$	
nclusive	i	X	$1 + r_i^2$	+ 2 y $r_i \cos \delta_i$	Same as incoherent decay

- Interference with mixed amplitudes vanishes for C = -1
 - Exclusive rates probe bare amplitudes and strong phases directly.
- Inclusive rates come from summing exclusive rates.
 - Dependence on y appears in the sum.
 - Interference between unmixed and mixed+DCS amplitudes.

Extracting Physical Parameters from Yields

DT rate ~ $A_i^2 A_j^2 [1 + r_i^2 r_j^2 - 2 r_i r_j \cos(\delta_i + \delta_j)]$

- For some final states, we know r and δ : reference points for interference
 - *CP* eigenstates: r=1 and $\delta=0$ or π sensitive to $\cos\delta$ of the other side.
 - Semileptonic: r=0 sensitive to A^2 and r^2 of the other side.
 - To probe sinδ, need to interfere with a final state with $\delta \neq 0$ or π.
- Use CP-tagged exclusive rates to extract:

 $R_{WS} = \Gamma(D^0 \rightarrow K^+\pi^-)/\Gamma(D^0 \rightarrow K^-\pi^+)$ $= r_{K\pi}^2 + r_{K\pi}y' + (x^2+y^2)/2$

• $COSO_{K_{\Pi}}$: reconstruct K^+K^- (*CP*+) with $K^-\pi^+ \Rightarrow K^-\pi^+$ must come from D_1 (*CP*-). • Signal is O(10%) deviation from uncorrelated expectation:

rate $\propto B_{KK}(1+y)B_{K\pi}\left|1+re^{-i\delta}\right|^2 \approx B_{KK}B_{K\pi}(1+2r\cos\delta+R_{WS}+y)$

- **Y**: reconstruct K^+K^- (*CP*+) with semileptonic \Rightarrow SL must come from D_1 (*CP*-).
 - Semileptonic width independent of *CP*, but total width depends on *CP*. $n_{e/KK} / n_{KK(ST)} = B_e \Gamma / \Gamma_1 \approx B_e (1 + y)$

• Mixing/amplitude/phase parameters from double ratios of yields:

$$y + 2r\cos\delta \approx \frac{n(f,\bar{f})}{4n(f)} \left[\frac{n(CP-)}{n(CP-,f)} - \frac{n(CP+)}{n(CP+,f)} \right] \qquad y \approx \frac{n(f,l)}{4n(f)} \left[\frac{n(CP-)}{n(CP-,l)} - \frac{n(CP+)}{n(CP+,l)} \right]$$

Experimental Technique

- Single tag: fully reconstruct one D
- Double tag: reconstruct both D^0 and \overline{D}^0
 - Both D^0 and $\overline{D^0}$ fully reconstructed.

Or one missing particle (v or K_{L}^{0}):

 $K^+\pi^-$ vs.

 $K_{c}^{0}\pi^{0}$

(CLEO-c)

 MM^{02} , GeV^{12}/c^4

40

30

20

10

0

$$M_{BC} = \sqrt{E_{beam}^2 - |p_D|^2}$$

Use detector hermeticity and beam

parameters to infer missing mass.

Pair-produced D^0 and \overline{D}^0

ST
$$X \leftarrow \overline{D} \quad D \rightarrow i$$

DT $j \leftarrow \overline{D} \quad D \rightarrow i$

Clean event environment, very low backgrounds

Update: Strong Phase in $D^0 \rightarrow K\pi$ $\left[\delta_{\kappa\pi}\right]$

- Previous publication: PRL 100, 221801 (2008) / PRD 78, 012001 (2008).
 - Dataset: 281 pb⁻¹ at $\psi(3770) = 1$ million C-odd D^0D^0
 - First meas. of strong phase between CF $A(D^0 \rightarrow K^-\pi^+)$ and DCS $A(D^0 \rightarrow K^+\pi^-)$.

Inclusive $Xe^+\nu_e, Xe^-\bar{\nu}_e$

- Standard fit: $\cos \delta = 1.03^{+0.31}_{-0.17} \pm 0.06$
- **Extended fit:** $\cos \delta = 1.10 \pm 0.35 \pm 0.07$ mixing meas.]
 - [Incl. external $x \sin \delta = (4.4^{+2.7}_{-1.8} \pm 2.9) \times 10^{-3}$ Final States Type Flavored $K^{-}\pi^{+}, K^{+}\pi^{-}$ $K^+K^-, \pi^+\pi^-, K^0_S\pi^0\pi^0, K^0_L\pi^0$ S_+ $K_{S}^{0}\pi^{0}, K_{S}^{0}\eta, K_{S}^{0}\omega$ S_{-}

- **New today:** preliminary update with full CLEO-c dataset
 - 818 pb⁻¹ at $\psi(3770) = 3$ million *C*-odd D^0D^0 .

 e^{\pm}

- Additional final states.
 - Includes direct measurements of $r_{\kappa\pi}^2$ and $\sin \delta_{\kappa\pi}$.

Not yet in HFAG average

Final States $[\delta_{K\pi}]$

- Single tags for all fully-reconstructed modes except $K^{0}{}_{S}\pi^{+}\pi^{-}$.
- Double tags for almost all combinations of modes.
 - Like-sign and opposite-sign.
 - At most one missing particle (K^{0} , or v).
 - Except for Kev vs. K^{0} , π^{0} (2 missing particles).
- 261 yield measurements
 - $K^{0}{}_{s}\pi^{+}\pi^{-}$ from PRD 80, 032002 (2009)

Werner Sun, Cornell University

Semi-Muonic Decays $[\delta_{K\pi}]$

CLEO-c Preliminary

- CLEO muon chambers inefficient below 1 GeV.
- Identify right-sign $D^0 \rightarrow K^-\mu^+\nu$ using missing energy and momentum.
 - Main background: $D^0 \rightarrow K^-\pi^+\pi^0$ separated kinematically.
- Wrong-sign uses similar technique, but 300x lower yield.
 - Main background: mis-ID $K\pi$ flavor in RS decays.
 - Dramatically reduced by requiring kaon to be in Cherenkov counter acceptance.
 - S/(S+B) goes from 50% to 97%.
 - Combined Kev/Kµv relative uncertainty ~25%.
- Unlike with incoherent D^0 , wrong-sign gives r^2 , not R_{ws} .

 $R_{WS} = \Gamma(D^0 \rightarrow K^+\pi^-)/\Gamma(D^0 \rightarrow K^-\pi^+)$ $= r_{K\pi}^2 + r_{K\pi}y' + (x^2 + y^2)/2$

Mixing effects cancel in the interference term

Werner Sun, Cornell University

Ke ν vs. K_L π^0 [$\delta_{K\pi}$]

Used at B-factories for semileptonic decays

- Doubles the number of Kev vs. CP+
- Technique for two missing particles:

Paar/Brower: NIM A 421, 411 (1999) BaBar: PRL 97, 211801 (2006) Belle: PLB 648, 139 (2007)

- Kinematic constraints on v and K_{L}^{0} define two cones for D^{0} and $\overline{D^{0}}$.
- If cones intersect, then $0 < x_D^2 < 1$.

Werner Sun, Cornell University

- Fully-reconstructed single tags:
 - Fit beam-constrained mass distribution.

$$M_{BC} = \sqrt{E_{beam}^2 - |p_D|^2}$$

- Fully-reconstructed double tags:
 - Two fully-reconstructed STs
 - Count events in 2D M_{BC} plane.
- Exclusive *Kev* DTs:
 - One fully-reconstructed ST
 - Plus one *K* and one *e* candidate
 - Fit U distribution
- *K*⁰_L {π⁰, η, ω, π⁰π⁰} DTs:
 - One fully-reconstructed ST
 - Plus { π^0 , η , ω , $\pi^0\pi^0$ } candidate
 - Compute missing mass-squared
 - Signal peaks at $M^2(K^0)$.

Werner Sun, Cornell University

External Measurements $[\delta_{K\pi}]$

Parameter	Value (%)	Source		Averag	ge (%)
y_{CP}		HFAG		$1.107 \pm$: 0.217
\overline{x}	$1.9^{+3.2}_{-3.3} \pm 0.4 \pm 0.4$	CLEO II.V $[47]$		0.419 ± 0	.211 [41]
	$0.80 \pm 0.29 \pm 0.17$	Belle $[48]$			
	$0.16 \pm 0.23 \pm 0.12 \pm 0.08$	BABAR			
y	$-1.4 \pm 2.4 \pm 0.8 \pm 0.4$	CLEO II.V $[47]$		0.456 ± 0	.186 [41]
	$0.33 \pm 0.24 \pm 0.15$	Belle $[48]$			
	$0.57 \pm 0.20 \pm 0.13 \pm 0.07$	BABAR			
			С	orrelation	Coefficients
r^2	0.364 ± 0.017	Belle $[50]$	1	-0.834	+0.655
y'	$0.06\substack{+0.40\\-0.39}$			1	-0.909
$x^{\prime 2}$	$0.018\substack{+0.021\\-0.023}$				1
r^2	$0.303 \pm 0.016 \pm 0.010$	BABAR $[51]$	1	-0.87	+0.77
y'	$0.97 \pm 0.44 \pm 0.31$			1	-0.94
$x^{\prime 2}$	$-0.022 \pm 0.030 \pm 0.021$				1
r^2	0.304 ± 0.055	CDF	1	-0.971	+0.923
y'	0.85 ± 0.76			1	-0.984
$x^{\prime 2}$	-0.012 ± 0.035				1
r^2	0.333 ± 0.011	Average	1	-0.848	+0.701
y'	0.48 ± 0.23			1	-0.942
$x^{\prime 2}$	0.002 ± 0.012				1

- Mixing/amplitude/phase parameters determined from double ratios.
 - Reduces effect of correlated uncertainties.
- Efficiency systematics (correlated) determined with missing mass technique.

Source	Uncertainty (%)	Scheme
Track finding	0.3	per track
K^{\pm} hadronic interactions	0.5	per K^{\pm}
K_S^0 finding, flight signif. & mass cuts	0.94	per K_S^0
π^0 finding	2.0	per π^0
η finding	4.0	per η
dE/dx and RICH	0.1	per π^{\pm} PID cut
dE/dx and RICH	0.1	per K^{\pm} PID cut
EID	0.4	per e^{\pm}

- Other correlated uncertainties: modeling of ISR and FSR, ΔE cut, mass cuts, vetos on extra tracks/showers O(1%) each. $\Delta E = E_{max}$
 - $\Delta E = E_{cand} E_{beam}$
- Uncorrelated uncertainties: yield fit variations, sideband subtractions
- In the end, statistical uncertainties dominate.

Fit Results $[\delta_{K\pi}]$

CLEO-c Preliminary

- 51 free parameters
 - N_{DD}, 21 branching fractions
 - 24 amplitude/phase parameters for K⁰_sπ⁺π⁻
 - 5 Kπ and mixing parameters
- Fit performed with and without external measurements of y, x,
 y' (same as in HEAC May 2010 avg
 - y' (same as in HFAG May 2010 avg.)

- Statistical uncertainties on y and $r_{K\pi} \cos \delta_{K\pi}$ (w/o ext. meas.) 3x smaller than 2008 analysis.
 - Estimated impact on HFAG average: σ(y) reduced by ~10%
 - First direct measurements of $r_{K\pi}^2$ and $\sin \delta_{K\pi}$
- Preliminary systematics.

Parameter	Previous: PDG, HFAG, or CLEO	Fit: no ext. meas.	Fit: with ext. y, x, y'	-
y (10 ⁻²)	0.79 ± 0.13	3.0 ± 2.0 ± 1.2	0.635 ± 0.118	Average of y and
x ² (10 ⁻³)	0.037 ± 0.024	1.5 ± 2.0 ± 0.9	0.022 ± 0.017	= $y \cos \delta_{K\pi} - x \sin \delta_{K\pi}$
r _{κπ} ² (10 ⁻³)	3.32 ± 0.08	4.12 ± 0.92 ± 0.23	3.32 ± 0.08	SW (influed by $Sino_{K\pi}$)
cosδ _{Kπ}	1.10 ± 0.36	0.98 ^{+0.27} -0.20 ± 0.08	1.15 ± 0.16 ± 0.12	
sinδ _{Kπ}		-0.04 ± 0.49 ± 0.08	0.55 ^{+0.36} -0.40 ± 0.08	
$\delta_{K\pi}$ (°) [derived]	22 ⁺¹¹ ⁺⁹ ⁺⁹ ⁻¹¹	0 ± 22 ± 6	15 ⁺¹¹ -17 ± 7	

Werner Sun, Cornell University

Purity of Initial State $[\delta_{K\pi}]$

- C+ contamination of initial C- state (not expected, cf. A. Petrov):
 - $e^+e^- \rightarrow \gamma D^0 \overline{D^0}$ is C^+ , but photon must be radiated from
 - D^0 or \overline{D}^0
 - ψ(3770)
 - virtual *D** intermediate state.
 - ISR, FSR, bremsstrahlung photons do not flip C eigenvalue.
- Allow fit to determine C+ fraction.
 - Include same-CP double tags (CP±/CP±).
 - Allowed decay only for C+.
 - All yields consistent with zero.
 - Fit each yield to sum of C- and C+ contributions.
 - Results (from 2008 publication): $C + / C = -0.001 \pm 0.023$.
 - No evidence for *C*+.
 - Other results unchanged.

Strong Phase in $D^0 \rightarrow K^-\pi^+\pi^0$ and $K^-\pi^+\pi^-\pi^+$

- Published result using 818 pb⁻¹ of $\psi(3770)$ data
 - [PRD 80, 031105(R) (2009)]
- Similar formalism for $K\pi$, except now include coherence factors (R) for multi-body decay as free parameters.

Тур	е		Final stat	jes	
Flavor	red	$K^{\mp}\pi^{\pm}, K$	$X^{\mp}\pi^{\pm}\pi^{\pm}\pi^{\mp}\pi^{\mp}$	$^{\mp}, K^{\mp}\pi^{\pm}\tau$	Γ ⁰
CP-ev	ven K^+	$K^{-}, \pi^{+}\pi^{-}$	$-, K_S^0 \pi^0 \pi$	$K^0, K^0_L \pi^0,$	$K_L^0 \omega$
CP-0	dd	$K_S^0 \pi^0, K$	${}^0_S\omega, K^0_S\phi,$	$K^0_S\eta, K^0_S\eta$	η'
	total C	P-tagged	~3200 vs.	<i>K</i> +π ⁻ π+π ⁻	

From like-sign DT rates of *K*+π⁻π⁰ vs. *K*+π⁻π⁰ *K*+π⁻π+π⁻ vs. *K*+π⁻π+π⁻ ~ (1 - *R*²)

• 41 DT yield measurements.

events

• No single tags — estimate from external branching fractions.

~4700 vs. *K*⁺π⁻π⁰

Werner Sun, Cornell University 1 October 2010, LEPP Journal Club, Cornell University

$D^0 \rightarrow K^- \pi^+ \pi^0$ and $K^- \pi^+ \pi^- \pi^+$ Results

- Low coherence in K3π has advantages:
 - Gives sensitivity to y comparable to Kπ analysis
 - Also increases sensitivity to r_B
- Expect ~40% reduction in error on γ/ϕ_3 .
- Also useful for HFAG mixing average:
 - But first need to convert average K⁺π⁻π⁰ phase to K^{*}π phase

Parameter	Mixing constrained	Mixing unconstrained
$R_{K\pi\pi^0}$	0.84 ± 0.07	$0.78\substack{+0.11\\-0.25}$
$\delta_D^{K\pi\pi^0}$ (°)	227^{+14}_{-17}	239^{+32}_{-28}
$R_{K3\pi}$	$0.33\substack{+0.26\\-0.23}$	$0.36\substack{+0.24\\-0.30}$
$\delta_D^{K3\pi}$ (°)	114_{-23}^{+26}	118^{+62}_{-53}
x (%)	0.96 ± 0.25	$-0.8^{+2.9}_{-2.5}$
$y \ (\%)$	0.81 ± 0.16	$0.7^{+2.4}_{-2.7}$
$\delta_D^{K\pi}$	$-151.5\substack{+9.6\\-9.5}$	$-130\substack{+38\\-28}$

Werner Sun, Cornell University

Combining $K^-\pi^+$ and $K^-\pi^+\pi^0/K^-\pi^+\pi^-\pi^+$

- K⁺π⁻π⁰/K⁺π⁻π⁺π⁻ analysis includes δ_{Kπ} as external input.
- But there is also independent sensitivity to δ_{Kπ}.

Parameter	Mixing constrained	Mixing unconstrained
$R_{K\pi\pi^0}$	0.84 ± 0.07	$0.78^{+0.11}_{-0.25}$
$\delta_D^{K\pi\pi^0}$ (°)	227^{+14}_{-17}	239^{+32}_{-28}
$R_{K3\pi}$	$0.33\substack{+0.26\\-0.23}$	$0.36\substack{+0.24\\-0.30}$
$\delta_D^{K3\pi}$ (°)	114_{-23}^{+26}	118^{+62}_{-53}
x (%)	0.96 ± 0.25	$-0.8^{+2.9}_{-2.5}$
$y \ (\%)$	0.81 ± 0.16	$0.7^{+2.4}_{-2.7}$
$\delta_D^{K\pi}$	$-151.5\substack{+9.6\\-9.5}$	-130_{-28}^{+38}

 In particular, δ(K⁺π⁻π⁰/K⁺π⁻π⁺π⁻) ≠ 0 or π ⇒ K⁺π⁻ vs. K⁺π⁻π⁰/K⁺π⁻π⁺π⁻ DTs have enhanced sensitivity to sinδ_{Kπ}.

Final States			Time-Integrated Rate ($\times A_i^2 A_i^2$)	
	i	Ţ	$1 + r_i^2 r_j^2 - 2 r_i r_j \cos(\delta_i + \delta_j)$	$\cos(\delta_i + \delta_j) =$
Exclusive	i	j	$r_i^2 + r_j^2 - 2 r_i r_j \cos(\delta_i - \delta_j)$	$\cos \phi_i \cos \phi_j \sin \phi_j$
Inclusive	i	X	1 + r_i^2 + 2 y $r_i \cos \delta_i$	No sensitivity to $sin\delta_i$ when $sin\delta_j \sim 0$

• Combined analysis of $K^+\pi^-$ and $K^+\pi^-\pi^0/K^+\pi^-\pi^+\pi^-$ in progress.

Update: Strong Phase in $D^0 \rightarrow K^{0}_{S,L} h^+h^-$

- Previous results on $K_{S,L}^0\pi^+\pi^-$ using 818 pb⁻¹ of $\psi(3770)$ data:
 - PRD 80, 032002 (2009), 8 equal phase bins [used in $\delta_{K\pi}$ analysis]
- New today: updated results with same dataset.
 - Phase binning optimized for precision on γ/ϕ_{3} .
 - Different schemes explored.
 - Add $K^0_{S.L}K^+K^-$:
 - Use {2, 3, 4} bins instead of 8 because of lower statistics.

Werner Sun, Cornell University

$D^0 \rightarrow K^0_{S,L} h^+ h^-$ Results

- One set of binning choices shown at right.
- For most binning schemes, induced uncertainty on γ/ϕ_3 is smaller than current model uncertainty of 3 to 9 degrees:
 - arXiv:1005.1096 [BaBar]
 - PRD 81, 112002 (2010) [Belle]
- Also useful for mixing studies at *B*-factories:
 - Time-dependent Dalitz plot fit of K_s⁰h+h⁻ determines x and y simultaneously.
 - Depends on knowing strong phase across Dalitz plot.
 - Could be done w/o model dependence using CLEO-c measurements.

Werner Sun, Cornell University

Summary and Outlook

 Quantum-correlated CLEO-c dataset has yielded direct determinations of amplitudes and strong phases in D⁰ decays.

$D^{0} \rightarrow K^{+}\pi^{-} K^{+}\pi^{-}\pi^{0} K^{+}\pi^{-}\pi^{+}\pi^{-} K_{S,L}^{0}h^{+}h^{-}$

- All measurements are statistics-limited.
- Already significant impact on charm mixing and CKM studies.
- BES-III has exceeded CLEO's $\psi(3770)$ dataset.
 - Should be able to improve on CLEO-c results.
 - Eventually:
 - Competitive measurements of mixing parameters.
 - Use $C=+1 D^0 D^0 \gamma$ from higher-energy data.
 - Orthogonal sensitivity to mixing parameters and strong phases.
 - Access to CP violation.
- B-factories: radiative return to ψ(3770)?
 - Also gives boosted D^0D^0 pairs—time dependent analysis is sensitive to x.
- Many more possibilities to explore!