

TOLED A.D.

5 Graphics stolen from Colin Bernet

SUSY at 1 fb⁻¹

Josh Thompson Cornell Theory/Exp discussion 11 Nov 11

LHC status

- The LHC is doing great (and so are the experiments)
- Most results are currently updated to the ~1 fb⁻¹ dataset from early July
 - Expect updates to the full dataset ASAP

 \rightarrow ATLAS is probably similar

CMS Searches for Supersymmetry

- Hadron collider → production of colored objects (q~, g~) → decay to colored objects (jets)
- Lightest SUSY particle is stable and weakly interacting → escapes detector
 - Provides universal signature of (R-parity conserving) SUSY models \rightarrow missing transverse energy (ME_T)
- CMS emphasizes:
 - Complementary analyses
 - Signatures, background methods, kinematic variables
 - Data-driven background estimates

0 lepton 0 lep+b 1 lepton OSDL SSDL Z	photon
$\begin{array}{c} MH_{T},\alpha_{T},\\ M_{T2},\\ Razor\\ {}_{(\operatorname{approved}_{\operatorname{Wednesday})}} \end{array} \begin{array}{c} ME_{T} + b,\\ M_{T2} + b \\ ME_{T} \end{array} \begin{array}{c} Lepton + \\ jets + \\ ME_{T} \end{array} \begin{array}{c} Opposite \\ -sign \\ dilepton \\ dilepton \\ dilepton \\ dilepton \\ HE_{T} \end{array} \begin{array}{c} Z + jets \\ HE_{T} \end{array} \begin{array}{c} ME_{T} \\ ME_{T} \\ ME_{T} \end{array} \begin{array}{c} ME_{T} \end{array} \begin{array}{c} ME_{T} \\ \\ ME_{T} \end{array} \begin{array}{c} ME_{T} \end{array} $	Photon + jets + ME _T

ATLAS has a similar program....

Not in this talk: $monojet + ME_T$

2011 CMS results (so far)

A word on triggers

Collisions at 20 MHz

- maybe 40 MHz next year, but in that case with lower pileup
- CMS writes ~300 Hz to disk (driven by offline)
 - ATLAS slightly higher???
- Trick is to throw out the massive QCD background, keep the interesting physics
 - Final states with e, μ are thus easier
 - Although single soft lepton is still hard
 - Triggers for hadronic searches are hard
 - Use variants on HT+MET, but PU has made the rates go up quickly....

Slightly dated numbers (September), but they give an idea

Lowest thresholds of unprescaled triggers @3e33

Single e/γ	32 GeV
Di-electron	10, 17/8 GeV
HT (total jet activity)	600 GeV
HT / MissingHT	350 / 90 GeV

iets

Jets+Missing Energy

CMS PAS SUS-11-003 CMS PAS SUS-11-004 CMS PAS SUS-11-005

- Select events with large hadronic activity: $H_T = \sum |\vec{p}_T|$
 - ${\scriptstyle \square}~~M_{T2}{:}~H_T{>}600$ GeV, ${>}{=}2$ jets
 - MH_T : H_T >350 GeV and up, >=3 jets
 - α_T : H_T>275 GeV (shape analysis), >=2 jets
- Veto leptons (ttbar, W+Jets rejection)
- Expect SUSY to show up in the tails of the various missing energy variables

Moving to shape analysis

- Many analyses have multiple "search regions"
 - For example in the MHT analysis: $Baselin (H_{\rm T} > 350)$

•	Baseline	Medium	High H_T	High ∦ _T
' -	$(H_{\rm T} > 350 \text{ GeV})$	(H _T >500 GeV)	(H _T >800 GeV)	$(H_{\rm T} > 800 \text{ GeV})$
	$(H_T > 200 \text{ GeV})$	$(H_T > 350 \text{ GeV})$	$(H_T > 200 \text{ GeV})$	$(H_T > 500 \text{ GeV})$

- Not mutually exclusive = hard to combine
- In $\alpha_{\rm T}$ search, summer 2011 analysis is performed in (mutually exclusive) bins of HT
 - Significant gain in sensitivity
- Everybody will move in this direction
 - Requires correctly handling the correlated systematics between bins

(Also, Razor analysis is a 2D(!) likelihood fit, not cut-and-count)

On background methods

• Jet smearing for QCD low MET/MHT \rightarrow high MET/MHT

J. Thompson, Cornell 11 Nov 11

CMS PAS SUS-11-011

Opposite-sign dileptons

SUSY with leptons

- Leptons can originate from decays of charginos, or SM daughters of SUSY particles (W, top)
- Data agree with data-driven SM predictions

- $Z \rightarrow II$ provides a clean search environment
- 2 complementary searches:
 tail of jet-Z balance (JZB), ME_T tail

CMS Preliminary

√s = 7 TeV, *L*dt = 1.14 fb⁻¹

Observed, NLO

Expected, NLO ±1σ, NLO

bino-like, m_e = 375 (GeV/c²)

1500

2000

 $M_{\tilde{a}}$ (GeV/c²)

SUSY with photons CMS PAS SUS-11-009

- gauge-mediated symmetry breaking scenario:
 - LSP is gravitino
 - Decay chain depends on NLSP type:

Interpretation in the CMSSM (aka mSugra)

All CMS tan β =10 results on one plot →Hadronic searches are the most powerful for CMSSM exclusion →Jets+MHT has best exclusion but α_{T} is similar

(watch for updated results from Razor analysis...)

Note that α_T was weaker in 2010. Nearly "caught up" to MHT by adding shape analysis

> n.b.: Some people made a big deal about the fact that 1 TeV squarks are "eliminated" already....

About expected limits For those who aren't familiar with the limit-setting business

Observed limit is what you get ~ when you compare observed data to predicted background. *Expected limit* is what you get ~ if you had observed exactly the predicted background. *Error band on expected limit* / then reflects the size of the error on your predicted background.

Predicted background: $10.6 \pm 1.9 \pm 4.8$ Observed: 19 events

So they either got "unlucky", or they have the first hint of a signal! (Or their background estimate is biased...)

J. Thompson, Cornell 11 Nov 11

CMSSM: Summer 2011 ATLAS+CMS

- CMS just a bit better at low m₀
- Similar at high m_0 (Razor result will be better here)
- ATLAS has more expansive MC generation than CMS (out to 3500 GeV!)

J. Thompson, Cornell 11 Nov 11

CMSSM: Summer 2011 ATLAS+CMS

• Interesting note: there is some discussion about why ATLAS's $\pm 1\sigma$ band on the expected limit expands so dramatically at high m_0 , while CMS's does not. ATLAS suggests it is due to PDF uncertainties (gluon PDFs more important at high m_0). The only thing that is completely clear is that the experiments are doing something differently....

Interpretation in Simplified Models

- The CMSSM is not the only model of interest
 - CMSSM is somewhat "opaque"
 - Not trivial to see how masses, etc are changing as a function of the parameter space
 - CMSSM does not necessarily span a large range of kinematics across the phase space
- Broad push to interpret results in "Simplifed Models"
 - Not really "models", but rather extremely simple production and decay topologies

<u>For example</u>

Production: gluino-gluino Decay: gluino \rightarrow q q LSP

The only parameters are the masses of the gluino and LSP

Example results for Simplified Model

SS di-leptons + MET search

Leptonic searches can probe the compressed mass spectrum better than current hadronic analysis

1-lepton + MET in SMS (ATLAS)

M_{q~}= 4.5 TeV

 $\widetilde{g} \rightarrow q\overline{q}\widetilde{\chi}_{1}^{\pm} \rightarrow q\overline{q}W\widetilde{\chi}_{1}^{0}$

 $M_{g^{\sim}} / M_{q^{\sim}-3rd Gen.} = 4.5 \text{ TeV}$

 $\widetilde{q} \rightarrow q' \widetilde{\chi}_1^{\pm} \rightarrow q' W \widetilde{\chi}_1^0$

1 lepton + MET + ≥ 3,4 jets channel interpreted in simplified models

Note: less (no) sensitivity for x=1/4 -> Low pT leptons !

13/22

LPCC workshop 31 October 2011

Illustrating the wide range of kinematics

- Jets+MET+b analysis has 4 selections:
 - (Loose, Tight) x ($\geq 1b$, $\geq 2b$)
 - Loose = HT>350 GeV, MET>200 GeV
 - Tight = HT>500 GeV, MET>300 GeV
 - For each point in scan, decide which selection to use by the best *expected* limit
- Optimal selection changes with the varying kinematics of the model

_{SUSY} = 1

LEP2 \tilde{q}

2000

J. Thompson, Cornell 11 Nov 11

CMS preliminary

For limits on $m(\tilde{g}), m(\tilde{q}) > > m(\tilde{g})$ (and vice versa). $\sigma^{\text{prod}} = \sigma^{\text{NLO-QCD}}$.

 $m(\tilde{\chi}^{\pm}), m(\tilde{\chi}_{2}^{0}) \equiv \frac{m(\tilde{g}) + m(\tilde{\chi}^{0})}{2}.$

 $m(\tilde{\chi}^0)$ is varied from 0 GeV/c^2 (dark blue) to $m(\tilde{g})-200 \ GeV/c^2$ (light blue).

Search for stop

A lot of theory interest now in stop Only ATLAS has a public result (for now)

Summary

- Lots of signature-oriented searches going on now
 - Unfortunately all have the same results, as you know... (SM stands firm for now)
- There are some that I missed here
 - For example, ATLAS has a specific search for very high jet multiplicity (6-8 jets) + MET
- The thought that SUSY might be discovered early has been proven false, but there's a long road left
 - Experimentalists must now double down
 - Continue to improve/update current analyses with more data
 - Try to plug the holes that are left by current searches
 - Difficult spectra, etc

Graphics stolen from Colin Bernet

J. Thompson, Cornell 11 Nov 11

Extra slides and fun pictures

Backup

ATLAS SUSY searches typically probe masses ~ 500 – 1000 GeV

Didar Dobur

23/23

2010 limits in CMSSM

Tracking at high pileup Recent event with >20 vertices

