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Neutrinos

  Neutrinos are the oddballs
  of the elementary fermions

Very tiny masses
Neutral charge
Rarely interact

 Only the left-handed ones interact

  Still a lot we don't know about them
     room for theoretical speculation

Are they related to matter dominance?
 Leptogenesis?

Are they related to Dark Matter?
 Heavy sterile neutrinos?

Are they related to Dark Energy?
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Probing Neutrinos

  Neutrino Oscillations
Mass squared splittings (Δm2

21, Δm2
32 ≈ Δm2

31)
Mixing Angles (θ12, θ23, θ13, δCP)
θ23, Δm2

32, θ13, δCP

  New Physics Searches
Take advantage of the uniqueness of neutrinos

Unknown neutrino-matter interaction
Superluminal neutrinos



Neutrino Oscillations
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    Weak Eigenstates

νe

νμ

ντ

Neutrino Eigenstates

Three known types of neutrinos

lνl

W

νi νi

E2 = p2 + m2

|          = e-iEt | >νi >νi(t) 

    Mass Eigenstates

ν1

ν2

ν3
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Mass eigenstates are a linear combination of weak states

Neutrino Mixing

|             ≈       exp[-iL(mj
2/2E)] U*

f,j
 | >νj >νf(L) Σ

Neutrino born in a weak flavor state is superposition of mass states
will oscillate among flavor states as it propagates

e




=U e 1 U e 2 U e 3

U 1 U 2 U 3

U  1 U  2 U 3
1

2

3

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3x3 Unitary Mixing Matrix

e




=U e 1 U e 2 U e 3

U 1 U 2 U 3

U  1 U  2 U 3
1

2

3


Can be fully described by 3 real angles and 1 complex phase for Dirac particles

e




=1 0 0

0 c23 s23

0 −s23 c23
 c13 0 s13 e−iCP

0 1 0
−s13 eiCP 0 c13

 c12 s12 0
−s12 c12 0

0 0 1
1

2

3


Atmospheric terms Unknown terms Solar terms

Neutrino Mixing Angles

cij = cosθij,  sij = sinθij

PMNS (Pontecorvo-Maki-Nakagawa-Sakata) Matrix
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e




=1 0 0

0 c23 s23

0 −s23 c23
 c13 0 s13 e−iCP

0 1 0
−s13 eiCP 0 c13

 c12 s12 0
−s12 c12 0

0 0 1
1

2

3


Atmospheric terms Unknown terms Solar terms

 Mixing Parameters – What we know
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e




=1 0 0

0 c23 s23

0 −s23 c23
 c13 0 s13 e−iCP

0 1 0
−s13 eiCP 0 c13

 c12 s12 0
−s12 c12 0

0 0 1
1

2

3


Atmospheric terms Unknown terms Solar terms

 Mixing Parameters – What we know

ν3

ν2

ν1

Mass Eigenstates

νe
νμ ντ

Weak Eigenstates
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e




=1 0 0

0 c23 s23

0 −s23 c23
 c13 0 s13 e−iCP

0 1 0
−s13 eiCP 0 c13

 c12 s12 0
−s12 c12 0

0 0 1
1

2

3


Atmospheric terms Unknown terms Solar terms

 Mixing Parameters – What we know

ν3

ν2

ν1

Mass Eigenstates From
Solar and Reactor

 Experiments

   sin2θ12 ≈ 0.321 + 0.023

   Δm2
21 ≈ (7.67 + 0.22) x 10-5 eV2

   

Weak Eigenstates

2008 Global Fits
M.C. Gonzalez-Garcia
and M. Maltoni
Phys Rept 460 (2008)

νe
νμ ντ



11

Gregory  Pawloski  —   University of Minnesota

e




=1 0 0

0 c23 s23

0 −s23 c23
 c13 0 s13 e−iCP

0 1 0
−s13 eiCP 0 c13

 c12 s12 0
−s12 c12 0

0 0 1
1

2

3


Atmospheric terms Unknown terms Solar terms

 Mixing Parameters – What we know

Weak Eigenstates
ν3

ν2

ν1

Mass Eigenstates From
Atmospheric and Accelerator

 Experiments
 |Δm2

32| ≈ 2.32          x 10-3 eV2

   
  sin22θ23 > 0.9

νe
νμ ντ

MINOS, PRL 106 181801 (2011)

+0.12
−0.08
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e




=1 0 0
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 c13 0 s13 e−iCP

0 1 0
−s13 eiCP 0 c13

 c12 s12 0
−s12 c12 0
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Atmospheric terms Unknown terms Solar terms

 Mixing Parameters – What we know

Weak Eigenstates
ν3

ν2

ν1

Mass Eigenstates

?

ν3

What is the mass hierarchy?

From
Atmospheric and Accelerator

 Experiments
 |Δm2

32| ≈ 2.32          x 10-3 eV2

   
  sin22θ23 > 0.9

νe
νμ ντ

MINOS, PRL 106 181801 (2011)

+0.12
−0.08
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e
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
=1 0 0

0 c23 s23

0 −s23 c23
 c13 0 s13 e−iCP

0 1 0
−s13 eiCP 0 c13

 c12 s12 0
−s12 c12 0

0 0 1
1
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Atmospheric terms Unknown terms Solar terms

 Mixing Parameters – What we know

Weak Eigenstates
ν3

ν2

ν1

Mass Eigenstates

Is θ23 non-maximal?

From
Atmospheric and Accelerator

 Experiments
 |Δm2

32| ≈ 2.32          x 10-3 eV2

   
  sin22θ23 > 0.9

MINOS, PRL 106 181801 (2011)

νe
νμ ντ

+0.12
−0.08
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e
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Atmospheric terms Unknown terms Solar terms

 Mixing Parameters – What we know

ν3

ν2

ν1

Mass Eigenstates Remaining Questions
                                                                                                          Weak Eigenstates

νe
νμ ντ
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e




=1 0 0

0 c23 s23

0 −s23 c23
 c13 0 s13 e−iCP

0 1 0
−s13 eiCP 0 c13

 c12 s12 0
−s12 c12 0
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Atmospheric terms Unknown terms Solar terms

 Mixing Parameters – What we know

ν3

ν2

ν1

Mass Eigenstates Remaining Questions
                                                                                                          

   What's the value of θ13?
Weak Eigenstates

νe
νμ ντ
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e




=1 0 0
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 c13 0 s13 e−iCP
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−s12 c12 0
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2
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Atmospheric terms Unknown terms Solar terms

 Mixing Parameters – What we know

ν3

ν2

ν1

Mass Eigenstates Remaining Questions
                                                                                                          

   What's the value of θ13?
sin2(2θ13) < O(10 −1)

Weak Eigenstates

νe
νμ ντ
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e




=1 0 0

0 c23 s23

0 −s23 c23
 c13 0 s13 e−iCP

0 1 0
−s13 eiCP 0 c13

 c12 s12 0
−s12 c12 0

0 0 1
1

2

3


Atmospheric terms Unknown terms Solar terms

 Mixing Parameters – What we know

ν3

ν2

ν1

Mass EigenstatesWeak Eigenstates Remaining Questions
                                                                                                          

   What's the value of θ13?
sin2(2θ13) < O(10 −1)

   What's the value of δCP?
Unknown

νe
νμ ντ
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e




=1 0 0

0 c23 s23

0 −s23 c23
 c13 0 s13 e−iCP

0 1 0
−s13 eiCP 0 c13

 c12 s12 0
−s12 c12 0

0 0 1
1

2

3


Atmospheric terms Unknown terms Solar terms

 Mixing Parameters – What we know

ν3

ν2

ν1

Mass EigenstatesWeak Eigenstates Remaining Questions
                                                                                                          

   What's the value of θ13?
sin2(2θ13) < O(10 −1)

   What's the value of δCP?
Unknown

Is there CP violation in the lepton sector?

νe
νμ ντ
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1) Is there a non-maximal mixing between the νμ and ντ states?
Is θ23 ≠ 45°?

2) What's the mass hierarchy?  

Is Δm2
32 > 0?

3) Is there an νe component to the ν3 mass state?
Is θ13 ≠ 0?

4) Is there CP violation in the lepton sector?  

Is δCP ≠ 0? (Is θ13 ≠ 0?)

The Remaining Questions
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1) Is there a non-maximal mixing between the νμ and ντ states?
Is θ23 ≠ 45°?

2) What's the mass hierarchy?  

Is Δm2
32 > 0?

3) Is there an νe component to the ν3 mass state?
Is θ13 ≠ 0?

4) Is there CP violation in the lepton sector?  

Is δCP ≠ 0? (Is θ13 ≠ 0?)

The Remaining Questions

     MINOS can potentially address these questions
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1) Is there a non-maximal mixing between the νμ and ντ states?
Is θ23 ≠ 45°?

2) What's the mass hierarchy?  

Is Δm2
32 > 0?

3) Is there an νe component to the ν3 mass state?
Is θ13 ≠ 0?

4) Is there CP violation in the lepton sector?  

Is δCP ≠ 0? (Is θ13 ≠ 0?)

The Remaining Questions

     MINOS can potentially address these questions
vμ disappearance analysis can potentially address this
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1) Is there a non-maximal mixing between the νμ and ντ states?
Is θ23 ≠ 45°?

2) What's the mass hierarchy?  

Is Δm2
32 > 0?

3) Is there an νe component to the ν3 mass state?
Is θ13 ≠ 0?

4) Is there CP violation in the lepton sector?  

Is δCP ≠ 0? (Is θ13 ≠ 0?)

The Remaining Questions

     MINOS can potentially address these questions
  ve appearance analysis can potentially address this



So how does MINOS 
study oscillations?
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Long Baseline Accelerator Neutrinos
 ν beam produced at Fermilab

 2 functionally identical detectors
 Far Detector in Soudan Mine
 Search for evidence of   

oscillations

 Near Detector at Fermilab
 Measures unoscillated  

beam composition
 Measures energy spectrum

 Near to Far Extrapolation
 Minimize uncertainties from:
 Cross section
  Flux
 Event detection
 Event selection

Far

Near
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Neutrino Production

Proton collision produces hadrons
Magnetic horns focus charged hadrons 
Decays produce neutrinos

π−

π+

Target Focusing Horns
2 m

675 m

νμ

νμ

15 m 30 m

120 GeV
p+
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Low Energy MC
Horn Off MC
High Energy MC

NuMI Beam Composition

 Control ν energy spectrum
 Target and horn positions
 Horn current

  
 Default configuration is
 Low Energy
 Optimizes L/E for

atmospheric Δm2

 CC interactions in the Near Detector are: 
 93% νμ

   6% νμ

   1% νe+ νe
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Two Detectors
Near Detector

1 kton mass (larger ν flux)
1 km from neutrino source
100 m underground
Measures beam before oscillations

Far Detector
5.4 kton (smaller ν flux)
735 km from neutrino source
705m underground
Measures changes in beam
relative to Near Detector



28

Gregory  Pawloski  —   University of Minnesota

Functionally Identical Detectors

Tracking calorimeters
 Alternating steel-scintillator layers

 Magnetized steel planes

 Scintillator planes segmented into strips

 Light read out by PMTs

Beam
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Event Topologies

νμ CC Event

Long muon track
Hadronic activity at vertex

Short event
Often diffuse

Compact event
EM shower profile

NC Event νe CC Event
νµ µ−

W

N
Hadrons

ν ν

Z

N
Hadrons

νe e−

W

N
Hadrons



MINOS Oscillation 
Results



νμ Charged Current Disappearance
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




 ∆θ−=ν→ µµ E
LmvP

2
22 27.1sin2sin1)(

νμ CC Disappearance
Looking for a deficit of νμ events in the Far Detector
 Precision measurements of atmospheric ∆m2 and sin2(2θ)
 Test the neutrino oscillation hypothesis

Unoscillated

Oscillated

  νµ spectrum                                            spectrum ratio

Monte Carlo Monte Carlo

,   L=735 km

  νµ Spectrum                                                    Spectrum Ratio

Example MC 
Parameters set to: sin2(2θ)=1, Δm2=3.35x10-3eV2 
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νμ CC Disappearance
Looking for a deficit of νμ events in the Far Detector
 Precision measurements of atmospheric ∆m2 and sin2(2θ)
 Test the neutrino oscillation hypothesis

Unoscillated

Oscillated

  νµ spectrum                                            spectrum ratio

Monte Carlo Monte Carlo

∆m2

,   L=735 km

  νµ Spectrum                                                    Spectrum Ratio






 ∆θ−=ν→ µµ E
LmvP

2
22 27.1sin2sin1)(

Example MC 
Parameters set to: sin2(2θ)=1, Δm2=3.35x10-3eV2 
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νμ CC Disappearance
Looking for a deficit of νμ events in the Far Detector
 Precision measurements of atmospheric ∆m2 and sin2(2θ)
 Test the neutrino oscillation hypothesis

Unoscillated

Oscillated

  νµ spectrum                                            spectrum ratio

Monte Carlo Monte Carlo

sin2(2θ)

∆m2

,   L=735 km

  νµ Spectrum                                                    Spectrum Ratio






 ∆θ−=ν→ µµ E
LmvP

2
22 27.1sin2sin1)(

Example MC 
Parameters set to: sin2(2θ)=1, Δm2=3.35x10-3eV2 
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νμ CC Disappearance
Selected νμ CC events in the Far Detector

Data consistent with oscillations
Pure decoherence1 disfavored at more than 9σ
Pure decay2 disfavored at more than 7σ

1G.L. Fogli et al., PRD 67:093006 (2003)
2V. Barger et al.,PRL 82:2640 (1999)
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νμ CC Disappearance
Fitting Oscillation Parameters

|Δm2| = 2.32         x 10-3 eV2+0.12
−0.08

sin2(2θ) > 0.90 (90% C.L.)

Dominant Systematics
Normalization

 NC Background
 Shower Energy
 Track Energy
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νμ CC Disappearance
Fitting Oscillation Parameters

|Δm2| = 2.32         x 10-3 eV2+0.12
−0.08

sin2(2θ) > 0.90 (90% C.L.)



νe Charged Current Appearance
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νe CC Appearance

P(νμ→νe) ≈ sin2(θ23)sin2(2θ13)sin2(1.27Δm2L/E) + ...

Constrain θ13 by looking for an excess of νe-like events

Searching for subdominant νμ → νe oscillations

νe CC Event
νe e−

W

N

Hadrons
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P(νμ→νe) ≈ sin2(θ23)sin2(2θ13)sin2(1.27Δm2L/E) + ...

Constrain θ13 by looking for an excess of νe-like events

Searching for subdominant νμ → νe oscillations

νe CC Appearance

NC Event νe CC Event
νe e−

W

N

Hadrons

Need to distinguish between hadronic showers and electrons

ν ν

Z

N

Hadrons
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P(νμ→νe) ≈ sin2(θ23)sin2(2θ13)sin2(1.27Δm2L/E) + ...

Constrain θ13 by looking for an excess of νe-like events

Searching for subdominant νμ → νe oscillations

NC Event νe CC Event

Need to distinguish between hadronic showers and electrons

νe CC Appearance

Short event
Often diffuse Compact event

EM shower profile
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Select electromagnetic shower topologies

νe CC Appearance
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Feed 3 variables from the 50 best 
matches and event energy into a 
neural network

Background: 
 π0’s generated via NC or deep-
  inelastic νµ-CC interactions
 τ in FD from oscillations
 Non-oscillation beam νe

Measure background rate at Near

Extrapolate to Far by background 
component in bins of energy and 
LEM discriminant

Fit prediction in bins of LEM and 
energy to Far Data

νe CC Appearance

Select electromagnetic shower topologies
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Far Detector background expectation: 49.6 + 7.0(stat.) + 2.7(syst.) events
Far Detector observation:    62 events

νe CC Appearance

Signal Enhanced Region of LEM > 0.7
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νe CC Appearance

Δm32
2>0

Δm32
2<0

Tightest constraints on θ
13

 
for a normal hierarchy

Assuming:
δCP=0, θ

23
 = π/4

normal (inverted) hierarchy

sin 22130.120.20

sin2213=0.04 0.08
90% CL

Best Fit

Exclude sin22θ
13

=0 at 89% CL
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νe CC Appearance

Normal Hierarchy Inverted Hierarchy

Comparison with T2K and Double Chooz
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Probing Neutrinos

  Neutrino Oscillations
Mass squared splittings (Δm2

21, Δm2
32 ≈ Δm2

31)
Mixing Angles (θ12, θ23, θ13, δCP)
θ23, Δm2

32, θ13, δCP

  New Physics Searches
Take advantage of the uniqueness of neutrinos

Unknown neutrino-matter interaction
Superluminal neutrinos



New Physics Searches



νμ Charged Current Disappearance
Search for new neutrino-matter interactions

 CPT Violation
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




 ∆θ−=ν→ µµ E
LmvP

2
22 27.1sin2sin1)(

Looking for a deficit of νμ events in the Far Detector
 Same as νμ disappearance analysis but with antineutrinos

Unoscillated

Oscillated

  νµ spectrum                                            spectrum ratio

Monte Carlo Monte Carlo

,   L=735 km

  νµ Spectrum                                                    Spectrum Ratio

͞νμ CC Disappearance
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




 ∆θ−=ν→ µµ E
LmvP

2
22 27.1sin2sin1)(

Looking for a deficit of νμ events in the Far Detector
 Same as νμ disappearance analysis but with antineutrinos

Unoscillated

Oscillated

  νµ spectrum                                            spectrum ratio

Monte Carlo Monte Carlo

,   L=735 km

  νµ Spectrum                                                    Spectrum Ratio

͞νμ CC Disappearance

CPT conservation: P(νμ→νμ) = P(νμ→νμ)
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͞νμ CC Disappearance
Why is this study interesting – old results
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͞νμ CC Disappearance
Selected  (νμ CC events in the Far Detector

Observed Events      = 193
Expectation (No Osc.) = 273
No oscillations ruled out at 7.3σ

sin2(2θ) =  0.86         (stat) ± 0.01 (sys)

|Δm2| = 2.62        (stat) ± 0.09(sys) x 10-3 eV2+0.31
−0.28

+0.10
−0.11
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͞νμ CC Disappearance



Superluminal Neutrinos????
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Neutrino Velocity Measurements
Fermilab ~500m baseline experiment (1979)

Muon Neutrinos
E > 30 GeV
|v-c|/c < 4x10-5

Supernova 1987a 
Electron Antineutrino Detection
E ~ 10-40 MeV
Arrived hours earlier than the light (light held by dense matter)
|v-c|/c < 2x10-9

Opera (2011)
Muon Neutrinos

 E ~ 17 GeV
(v-c)/c = [2.48 ± 0.28 (stat) ± 0.30 (sys)] x 10-5

Greater than 5σ measurement of superluminal velocity

Theory says...
Can't be flavor effect → Energy effect
High-E superluminal would radiate electron-positron pairs



57

Gregory  Pawloski  —   University of Minnesota

What does MINOS have to say about that
Performed measurement in 2007

Measured the difference in the time 
distribution between the Far and 
Near detector

To measure velocity you need to 
know distance and time

If neutrinos travel the speed of light it 
would take 2.45 ms to travel from 
ND to FD
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What does MINOS have to say about that

Difference in the time distribution between the Far and Near

1.8 σ 
Deviation
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MINOS Plans

Short-term (6-9 months):
Analyze data sample increased by a factor of 9 with respect to the 2007 result.
Reduce major systematics.

Medium-term (1 year):
Upgrade the timing system to take all new data from now on with better timing.
 (Collaborate with experts from NIST)
Analyze data taken before the NuMI shutdown.  Lower statistics but more precise.

Long-term (MINOS+):
MINOS+ running in the NOvA era with upgraded timing system
Higher energy neutrinos (peak ~7 GeV)
Goal to achieve O(1ns) total systematic error.
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These questions still remain unanswered
Is there a non-maximal mixing between the νμ and ντ states?

Is θ23 ≠ 45°?
What's the mass hierarchy?  

Is Δm2
32 > 0?

Is there an νe component to the ν3 mass state?
Is θ13 ≠ 0?

Is there CP violation in the lepton sector?  
Is δCP ≠ 0? (Is θ13 ≠ 0?)

But we are constraining the possible solutions
MINOS sets the tightest limits on θ13 assuming normal hierarchy
MINOS sets tightest constraints on the magnitude of Δm2

32

Search for new physics
Less compelling motivation for new neutrino-matter interaction
But we are compatible with superluminal neutrinos

Confirmation or refutation to come soon...

Conclusions
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