

Tracking to the Dark Side at ATLAS: the Present and the Potential

Yangyang Cheng University of Chicago

LEPP Journal Club, 11/06/2015

Outline

- Introduction
- Dark Matter Searches at ATLAS
 - mono-jet
 - mono-b(b)/ top
 - mono-Higgs(→bb)
- **Tracking**: the importance and challenge
- FastTracKer (FTK) trigger upgrade at ATLAS
 - Concept
 - Hardware Implementation
 - Physics Performance
- Conclusions and Outlook

Why Dark Matter?

6^h58^m42^s

36^s

30^s

University of Chicago

- Plethora of evidence from independent observations on different astrophysical scales: compelling proof for the existence of dark matter (DM)
- One of the most striking evidence of physics beyond the Standard Model (BSM).

245

 12^{5}

 18^{s}

What is Dark Matter?

x=m/T (time \rightarrow)

How to look for Dark Matter?

DM Models for Collider Searches

DM Models: EFT VS Simplified

Effective Field Theory (EFT)

- Heavy mediator not directly produced at collider energy
 - \rightarrow contact interaction
- Various operators (dim.; SI & SD)
- Most-generic, minimal parameters of interest:
 - DM mass & suppression scale
- Validity constraints:
 - momentum transfer *below* mediator mass
 - crucial when comparing with direct & indirect detection

Simplified Models

- Complete enough:
 - explicitly include mediators
- Simple enough:
 - minimal number of renormalizable interactions
- Valid enough:
 - satisfy all non-high pT constraints within parameter space
- → may be seen as a simplified version of a complete BSM theory containing only lightest dark-sector state

Collider Signature: E_T^{miss} + "X"

Event display for "mono-jet" candidate in the 7TeV collision data.

Final state:

- jet pT = 602 GeV
- $E_{T}^{miss} = 523 \text{ GeV}$
- no additional jet with pT > 30 GeV

Et^{miss} : what could have escaped?

Tile calorimet Ar hadronic end-cap and forward calorimeter

netic calorimeter

Physics Object of Interest: ET^{miss}

Physics Object of Interest: Jets

Mono-jet: Signal & Background

Mono-jet: Result

arXiv:1502.01518

• Collider limits stronger than direct detection for SI-DM at low mass

 nuclear recoil energy (~keV) hard to detect with current technology

Spin-Dependent (SD) DM

• Collider limits stronger than direct detection for SD-DM for most DM mass range:

• SD-DM less sensitive at direct detection due to coupling to nuclear spin (vs mass)

DM+Heavy Flavor: Motivation (EFT)

EFT: Diagram

EFT: Operators

<u>arXiv:</u>	
1008.178	-
1303.668	2

Coupling Group	Operator	Operator Structure	Coefficient			
Scalar quark	D1	$\overline{\chi}\chi\overline{q}q$	m_q/M_*^3			
Vector quark	D5	$\overline{\chi}\gamma^{\mu}\chi\overline{\pmb{q}}\gamma_{\mu}\pmb{q}$	$1/M_{*}^{2}$			
Tensor quark	D9	$\overline{\chi}\sigma^{\mu u}\chi\overline{\pmb{q}}\sigma_{\mu u}\pmb{q}$	$1/M_{*}^{2}$			
Gluon	D11	$\overline{\chi}\chi {\it G}_{\mu u}{\it G}^{\mu u}$	$\alpha_s/4M_*^3$			
Complex scalar DM						

Fermionic DM

Coupling Group	Operator	Operator Structure	Coefficient
Scalar quark	C1	$\chi^{\dagger}\chi\overline{m{q}}m{q}$	m_q/M_*^2
Vector quark	C3	$\chi^\dagger \partial_\mu \chi \overline{m{q}} \gamma^\mu m{q}$	$1/M_{*}^{2}$
Gluon	C5	$\chi^{\dagger}\chi {\it G}_{\mu u}{\it G}^{\mu u}$	$lpha_s/4M_*^2$

D1, C1: coupling normalized by quark mass D9: quark mass dependence from Yukawa coupling

DM+Heavy Flavor: Motivation (Simplified)

Excess of gamma rays from galactic center can be interpreted as DM annihilation:

 analysis favors DM of ~35GeV annihilating into bquarks via colored mediator

Physics Object of Interest: b-jet

b-tagging "MV1" multi-variant algorithm: input from multiple algorithms incl.
 I3PD (track-based) ; SV1 (secondary-vertex finding); JetFitter (neural network)
 →60%* , 70%, 80% b-jet ID efficiency working points
 *selected for optimal signal sensitivity: mis-ID rate ~15% for c-jet & <1% for light

• Jets considered for b-tagging: pT>20GeV, $|\eta|$ <2.5

Data-Driven Background: Z(vv)+jets

- Main & irreducible background \rightarrow data-driven estimation (no good MC at high pT)
- $E_T^{miss} < 200 \text{GeV}$, reweight from $Z(\rightarrow \mu\mu)$ +jets data

• Select $Z \rightarrow \mu \mu$ CR; TF: $Z \rightarrow \nu \nu$ (MC) $E_t^{miss} / Z \rightarrow \mu \mu$ (MC) ($E_T^{miss} + pT$ of 2μ)

• E_T^{miss} >200GeV, reweight from γ +jets data (low stats with $Z \rightarrow \mu \mu$)

•Similar production of Z,y when pT >> mZ; select 1 prompt, high pT photon

• TF: γ +jets(MC) (E^{miss} + γ pT) / Z $\rightarrow \nu\nu$ (MC) E^{miss}

DM+Heavy Flavor: Signal Regions

SR2: DM+ bbbar SR3: DM+ ttbar SR1-3 fully hadronic Additional SR4

using SUSY STop 1Lepton selection for DM+ttbar

arXiv:1410.4031

DM+Heavy Flavor: mono-b(b) Results

arXiv:1410.4031

EFT Model ²^{-10⁻³⁴ ²^{-10⁻³⁵} ^{10⁻³⁵} ^{10⁻³⁶}} 10 m_{χ} (GeV) ATLAS Scalar (D1) 10⁻³⁵⊧ 20.3 fb⁻¹, ∖s = 8 TeV 70 SuperCDMS (2013) LUX (2013) 60 10^{-37} all limits at 90% CL, $g=4\pi$ 10⁻³⁸ 50 SR4 10⁻³⁹ (DM+tt 1L) 40 10⁻⁴⁰ 30 10⁻⁴¹ 20 10⁻⁴² 10⁻⁴³ 10 10-44 10⁻⁴⁵ 10^{2} 10 m_x [GeV]

Stronger limit than mono-jet by ~x100! More sensitive than direct detection for low mass DM (SI-DM) !

Simplified Model (b-FDM)

First collider limits on b-FDM simplified model! First ATLAS results for C1 scalar operator set in this search as well!

DM+Higgs(\rightarrow bb): Motivation

We found the (a?) Higgs!

New Probe for DM

- Higgs unlikely from ISR → DM-SM coupling
- Search in Higgs→bb channel: large BR for 125GeV Higgs

Yangyang Cheng

DM+Higgs(→bb): Signal Models

Physics Object of Interest: Boosted Decay

Yangyang Cheng

Physics Object of Interest: Jet Substructure

DM+Higgs(→bb): Analysis Strategy

- Resolved channel:
 - Higgs pT 150GeV 450GeV
 - used for Z'-2HDM simplified model

AntiKt4

- Boosted channel:
- 50GeV Higgs pT > 450GeV mplified \rightarrow dR(b₁, b₂)<0.4 - used for EFT models AntiKt4 (R=0.4 jet) (R=0.3 track-jet) AntiKt3trk AntiKt3trk AntiKt10_Trimmed f_{cut}=5%, R_{sub}=0.3

Two complementary channels maintain acceptance for a wide kinematic range. Select either analysis channel with better sensitivity for either model!

11/06/2015

MET

(R=1.0 jet, trimmed)

DM+Higgs(→bb): Signal Selection

Resolved	Boosted	Deject
> 1.0	$> 1.0 \longrightarrow$	multiiet
$2 \le n_j \le 3$	$n_J \ge 1$	manifet
	$n_{j^{\mathrm{trk}}} \ge 2$ R	econstruct
$p_{\rm T}^{b_1} > 100 {\rm GeV}$	- b	o system
$n_b \ge 2 \ (60\% \ \text{eff.})$	$n_{b^{\text{trk}}} = 2 \ (70\% \text{ eff.})$	
$p_{\rm T}^{b_2} > 60 \text{ GeV}$ when $n_j = 3$	$p^{J_1} > 350 \text{ GeV} \longrightarrow$	Reject
$p_{\rm T}^{j_2} > 100 \text{ GeV}$ when $n_j = 3$	$p_{\rm T} > 550 {\rm GeV}$	τορ
-	$< \pi/2$	
$\Delta R(j_1, j_2) < 1.5$	-	
$90 \text{ GeV} \le m_{b_1 b_2} \le 150 \text{ GeV}$	$90 \text{ GeV} \le m_{J_1} \le 150 \text{ GeV}$	\rightarrow Higgs
> 150, 200, 300, or 400 GeV	> 300 or 400 GeV	mass
	Resolved> 1.0 $2 \le n_j \le 3$ $p_T^{b_1} > 100 \text{ GeV}$ $n_b \ge 2 \ (60\% \text{ eff.})$ $p_T^{b_2} > 60 \text{ GeV}$ when $n_j = 3$ $p_T^{j_2} > 100 \text{ GeV}$ when $n_j = 3$ $ \Delta R(j_1, j_2) < 1.5$ 90 GeV $\le m_{b_1b_2} \le 150 \text{ GeV}$ > 150, 200, 300, or 400 GeV	ResolvedBoosted> 1.0> 1.0 $2 \le n_j \le 3$ $n_J \ge 1$ $n_{jtrk} \ge 2$ $n_{jtrk} \ge 2$ $p_T^{b_1} > 100 \text{ GeV}$ - $n_b \ge 2 (60\% \text{ eff.})$ $n_b \text{trk} = 2 (70\% \text{ eff.})$ $p_T^{b_2} > 60 \text{ GeV}$ when $n_j = 3$ $p_T^{J_1} > 350 \text{ GeV}$ $p_T^{j_2} > 100 \text{ GeV}$ when $n_j = 3$ $p_T^{J_1} > 350 \text{ GeV}$ $ < \pi/2$ $\Delta R(j_1, j_2) < 1.5$ -90 GeV $\le m_{b_1b_2} \le 150 \text{ GeV}$ 90 GeV $\le m_{J_1} \le 150 \text{ GeV}$ > 150, 200, 300, or 400 GeV> 300 or 400 GeV

(J: R=1.0 jet; j_trk: track-jet; b_trk: b-tagged track-jet)

Sliding Er^{miss} cut:

 E_T^{miss} spectrum shifts with $m_{z'} / m_A$ in Z'-2HDM model, m_{χ} / operator in EFT models

ightarrow optimize for individual signal

DM+Higgs(\rightarrow bb): Background Overview

- Main backgrounds: good agreement to data in CRs & VRs
 - simulated: W(lv)/Z(ll)+jets, top, diboson(well-validated), Vh(bb)
 - data-driven: multijet, Z(vv)+jets (dominant in most SR)
- Data-driven background
 - − Z(vv)+jets: >=2b-tag SR \rightarrow 0b-tag/1b-tag Z \rightarrow vv CR
 - E_T^{miss} <200GeV, reweight from $Z \rightarrow \mu\mu$ (only used in resolved channel)
 - E_T^{miss} >200GeV, reweight from γ +jets (used in both channels)
 - multijet: jet-smearing method (resolved) | ABCD method (boosted)
- <u>Simulated background</u>: shape from MC; normalized to data in CR
 - − 0-lepton Signal Region (SR) \rightarrow 1-lepton Control Region (CR)
 - $N_j=2|$ no b-tag: W(lv)/Z(ll)+jets
 - N_j=3 | with b-tag: top (ttbar + single top)
- <u>Total background</u>
 - Olep Validation Region (VR): 2b-tag, inv. mass of bb in Higgs-mass sideband

DM+Higgs(\rightarrow bb): 0-lepton VR

Resolved Channel

Boosted Channel

Good agreement achieved in both channels.

DM+Higgs(→bb): Signal Region

Model-independent upper limit

	$E_{\rm T}^{\rm miss}$	$N_{\rm obs}$	$N_{\rm bkgd}$	$\langle \sigma_{\rm vis} \rangle_{\rm obs}^{95} [{\rm fb}]$	$N_{\rm BSMobs}^{95}$	$N_{\rm BSM exp}^{95}$	p(s=0)
	$> 150 { m ~GeV}$	164	148	3.6	74	63^{+22}_{-14}	0.31
Resolved	$> 200 { m ~GeV}$	68	62	1.3	27	$21^{+8.4}_{-3.9}$	0.28
	$> 300 { m ~GeV}$	11	9.4	0.49	9.9	$8.2^{+3.4}_{-1.9}$	0.31
	$> 400 { m ~GeV}$	2	1.7	0.24	4.8	$4.7^{+1.6}_{-1.0}$	0.39
Boosted	$> 300 { m ~GeV}$	20	11.2	0.90	18	$9.9^{+4.2}_{-2.9}$	0.03
	$> 400 { m ~GeV}$	9	7.7	0.43	8.8	$7.7^{+3.3}_{-2.0}$	0.37

Look-elsewhere effect calculation: ~10% likelihood excess from bkgd statistical fluctuation

DM+H(\rightarrow bb) Results: Z'-2HDM (Resolved)

First Collider Limits for the Z'-2HDM model!

- alignment limit ($\alpha = \beta \pi/2$) where h is SM-like; avoid constraints from fits to Higgs coupling
- Z' gauge coupling set to 95% CL U.L. from electroweak & dijet search constraints

DM+H(\rightarrow bb) Results: EFT (Boosted)

Strongest Collider Limits for these EFT models!

EFT Validity requirement for signal: $Q_{tr} = m_{\chi\chi} < m_V = \Lambda \sqrt{g_q g_x}, g = \sqrt{g_q g_x} \subset (0, 4\pi)$

University of Chicago

Summary (for the dark stuff)

- Collider searches for DM: large Et^{miss} + visible object(s)
 - Complementary to (in)direct detections; sensitive to both EFT and simplified models
- Mono-jet
 - Powerful for many models
 - <u>Stronger than direct detection</u> for low mass SI-DM and most SD-DM
- **DM + Heavy Flavor** (mono-b/bb/tt)
 - *First collider search* for DM in these final states
 - <u>Strongest/First collider limits</u> for EFT operators with quark-mass dependency (D1/C1)
 - <u>First collider limits</u> on b-flavor DM simplified model (\rightarrow Fermi-LAT gamma-ray excess)
- DM+ Higgs (→bb)
 - <u>First collider search</u> for DM in this final state
 - Adopt resolved + boosted topology for Higgs(\rightarrow bb) reconstruction
 - <u>First collider limits</u> for Z'-2HDM simplified model
 - <u>Strongest collider limits</u> for various EFT models (a few times better than DM+H($\rightarrow \gamma \gamma$)!)
 - Model-independent upper limit into high E^{miss} region helps guide future search

Tracks? Tracks!

Physics is Exciting! Tracking is Important!

- Jet reconstruction
- ET^{miss} reconstruction
- Lepton isolation

Physics is Exciting! Tracking is Tricky!

- More particles per collision
- More interactions per bunch
- \rightarrow complex challenge for tracking
- Ability to reach rare processes crucial

LHC 8 TeV p-p collision, ~5 1033 cm ²s ¹ @ 50 ms, 25 reconstructed ve

ATLAS Trigger Upgrade and the FastTracKer

- ATLAS Trigger Upgrades for Runll:
 - removed internal subdivision
 between Level-2 and HLT
 - improved network infrastructure
- Software-based full tracking still limited by ROIs to a fraction of the Level-1 triggers
- Where FastTracKer (FTK) comes in:
 - Hardware-based
 - Full tracking will be provided for every Level-1 trigger (up to 100 KHz)
 - Any trigger selection will be able to exploit the track information
 - FTK tracks can be used to bootstrap other tracking algorithms

FTK receives data in parallel to HLT
→ FTK output available at beginning of HLT

FTK: Core Concept

Pattern Recognition

Track Fitting

- use full resolution hits associated to patterns
- linear approximation in small region of detector

11/06/2015

University of Chicago

FTK: Parallel Processing

- Challenge: complex inner detector; large data volume
- Massive parallel structure
 - Segment inner detector to 64 (4-η X 16-φ)
 independent towers (with small overlap)
 - 8 independent processing unit per tower 2.1mk
- Map detector physical layers to logical layers
 - optimized for performance and efficiency

FTK: System Architecture

FTK: Auxiliary Card (Processor Unit)

FTK: Data Organizer

FTK Physics Performance: Track Finding

Robust with High Pile-up

FTK will provide reconstruction for all tracks with $p_T>1$ GeV in about 100 µs.

- performance close to those from offline.
- FTK tracks can be refitted using offline
- \rightarrow Allows the HLT to increase the use of selections based on tracks
- \rightarrow Reduce effects from high pile-up

FTK Physics Performance: Event Objects

$\begin{array}{c} 0.8 \\ 0.8 \\ 0.6 \end{array}$

τ-finding

- Significant improvement in complex objects esp. b- or T-jets
- Improvements to jet/ E^{T^{miss}} reconstruction, lepton isolation, primary vertex finding, trigger
 → Improve tracking in existing ROIs
 → Tracking finding without ROI constraints

Summary

- WIMP Dark Matter may be pair produced at colliders experiments and detected as large Et^{miss} with visible object(s)
 - Complementary to (in)direct detections
- Many models:
 - EFT, Simplified, UV-Complete...
- Many search channels "mono-X":
 - mono-jet: powerful for many models
 - mono-b(b), top: DM-SM flavor dependency
 - mono-Higgs: DM-Higgs sector interaction
 - mono-W/Z/γ ...
- Significant reliance on track-based event objects: jet, b-jet, track-jet, Et^{miss}, ...
- Improvements to tracking performance, incl. FTK, bring exciting prospects in Runll

What Can We Do in Runll?

Same cliff: existing searches

- Jump higher & further
- \rightarrow 13/14TeV; higher lumi; ...
- Become a better jumper
- → better detector/trigger/algor.
- → (boosted) top/W/Z/H tagging
- → high-pT b-tagging
- \rightarrow combination of channels
- \rightarrow search for mediators too!

Good tracking crucial for many of these!

(graphics c/o Henri Bachacou)

What Can We Do in Runll?

11/06/2015

Thank You!

Yangyang Cheng

BACKUP

The ATLAS Detector

Inner Detector (tracking)

- Pixel Detector (PIX)
- Semiconductor Tracker (SCT)
- Transition Radiation Tracker (TRT)
- Calorimeter (energy + location)
 - LAr + Tile
- Muon Spectrometer

Limit Interpretation: Collider->Direct Detection

EFT operators

Name	Operator	Coefficient	Name	Ope
D1	$\bar{\chi}\chi\bar{q}q$	m_q/M_*^3	C1	χ^{\dagger}
D2	$\bar{\chi}\gamma^5\chi\bar{q}q$	im_q/M_*^3	C2	$\chi^{\dagger} \chi$
D3	$\bar{\chi}\chi\bar{q}\gamma^5q$	im_q/M_*^3	C3	$\chi^\dagger \partial_\mu$
D4	$\bar{\chi}\gamma^5\chi\bar{q}\gamma^5q$	m_q/M_*^3	C4	$\chi^{\dagger}\partial_{\mu}\chi$
D5	$\bar{\chi}\gamma^{\mu}\chi\bar{q}\gamma_{\mu}q$	$1/M_{*}^{2}$	C5	$\chi^{\dagger}\chi c$
D6	$\bar{\chi}\gamma^{\mu}\gamma^{5}\chi\bar{q}\gamma_{\mu}q$	$1/M_*^2$	C6	$\chi^{\dagger}\chi c$
D7	$\bar{\chi}\gamma^{\mu}\chi\bar{q}\gamma_{\mu}\gamma^{5}q$	$1/M_{*}^{2}$	R1	χ
D8	$\bar{\chi}\gamma^{\mu}\gamma^{5}\chi\bar{q}\gamma_{\mu}\gamma^{5}q$	$1/M_{*}^{2}$	R2	χ^2
D9	$\bar{\chi}\sigma^{\mu\nu}\chi\bar{q}\sigma_{\mu\nu}q$	$1/M_*^2$	R3	$\chi^2 G$
D10	$\bar{\chi}\sigma_{\mu\nu}\gamma^5\chi\bar{q}\sigma_{\alpha\beta}q$	i/M_*^2	R4	$\chi^2 G$
D11	$\bar{\chi}\chi G_{\mu\nu}G^{\mu\nu}$	$\alpha_s/4M_*^3$		
D12	$\bar{\chi}\gamma^5\chi G_{\mu\nu}G^{\mu\nu}$	$i\alpha_s/4M_*^3$		
D13	$\bar{\chi}\chi G_{\mu\nu}\tilde{G}^{\mu\nu}$	$i \alpha_s / 4 M_*^3$		
D14	$\bar{\chi}\gamma^5\chi G_{\mu\nu}\tilde{G}^{\mu\nu}$	$\alpha_s/4M_*^3$		

Name	Operator	Coefficient
C1	$\chi^{\dagger}\chi \bar{q}q$	m_q/M_*^2
C2	$\chi^\dagger \chi \bar q \gamma^5 q$	im_q/M_*^2
C3	$\chi^{\dagger}\partial_{\mu}\chi\bar{q}\gamma^{\mu}q$	$1/M_{*}^{2}$
C4	$\chi^{\dagger}\partial_{\mu}\chi\bar{q}\gamma^{\mu}\gamma^{5}q$	$1/M_{*}^{2}$
C5	$\chi^{\dagger}\chi G_{\mu\nu}G^{\mu\nu}$	$\alpha_s/4M_*^2$
C6	$\chi^{\dagger}\chi G_{\mu\nu}\tilde{G}^{\mu\nu}$	$i\alpha_s/4M_*^2$
R1	$\chi^2 \bar{q} q$	$m_q/2M_*^2$
R2	$\chi^2 \bar{q} \gamma^5 q$	$im_q/2M_*^2$
R3	$\chi^2 G_{\mu\nu} G^{\mu\nu}$	$\alpha_s/8M_*^2$
R4	$\chi^2 G_{\mu\nu} \tilde{G}^{\mu\nu}$	$i\alpha_s/8M_*^2$

WIMP-Nucleon Xsec

$$\begin{split} \sigma_0^{D1} &= 1.60 \times 10^{-37} \text{cm}^2 \left(\frac{\mu_{\chi}}{1 \text{GeV}}\right)^2 \left(\frac{20 \text{GeV}}{M_*}\right)^6, \\ \sigma_0^{D5,C3} &= 1.38 \times 10^{-37} \text{cm}^2 \left(\frac{\mu_{\chi}}{1 \text{GeV}}\right)^2 \left(\frac{300 \text{GeV}}{M_*}\right)^4, \\ \sigma_0^{D8,D9} &= 9.18 \times 10^{-40} \text{cm}^2 \left(\frac{\mu_{\chi}}{1 \text{GeV}}\right)^2 \left(\frac{300 \text{GeV}}{M_*}\right)^4, \\ \sigma_0^{D11} &= 3.83 \times 10^{-41} \text{cm}^2 \left(\frac{\mu_{\chi}}{1 \text{GeV}}\right)^2 \left(\frac{100 \text{GeV}}{M_*}\right)^6, \\ \sigma_0^{C1,R1} &= 2.56 \times 10^{-36} \text{cm}^2 \left(\frac{\mu_{\chi}}{1 \text{GeV}}\right)^2 \left(\frac{10 \text{GeV}}{m_{\chi}}\right)^2 \left(\frac{10 \text{GeV}}{M_*}\right)^4 \\ \sigma_0^{C5,R3} &= 7.40 \times 10^{-39} \text{cm}^2 \left(\frac{\mu_{\chi}}{1 \text{GeV}}\right)^2 \left(\frac{10 \text{GeV}}{m_{\chi}}\right)^2 \left(\frac{60 \text{GeV}}{M_*}\right)^4 \end{split}$$

 μ_x : reduced WIMP-nucleon mass $M_{*:}$ suppression scale (also noted as Λ)

ATLAS L1 Calorimeter Trigger System

b-tagging

b-tagging eff. vs l-jet rejection

btagging calibration w/ ttbar

ATLAS/CMS Higgs Coupling Combination

"The combined signal yield relative to the Standard Model expectation is measured to be 1.09 +- 0.11... The data are consistent with the Standard Model predictions for all parameterisations considered."

DM+H(\rightarrow bb): Z'-2HDM Simplified Model

- A simplified model of dark matter production via Zp decay
 - model from <u>http://arxiv.org/abs/1402.7074</u>
 - "Higgs-portal" DM constrained by $h \rightarrow$ inv at low m_DM
 - precision electroweak constraints on Z, W mass constrain the amount of mixing and is imposed

DM+H(\rightarrow bb): Z' decay and Signal Process

 $Z' \rightarrow hA0, h \rightarrow bb, A0 \rightarrow \chi \chi \longrightarrow DM$ production signal process

$$\Gamma_{Z' \to hA^0} = (g_z \cos \alpha \cos \beta)^2 \frac{|p|}{24\pi} \frac{|p|^2}{M_{Z'}^2}$$

 $Z' \rightarrow hZ, h \rightarrow bb, Z \rightarrow vv \longrightarrow Additional source of h(bb)+MET$

$$\Gamma_{Z' \to hZ} = (g_z \cos \alpha \sin \beta)^2 \frac{|p|}{24\pi} \left(\frac{|p|^2}{M_{Z'}^2} + 3 \frac{M_Z^2}{M_{Z'}^2} \right)$$

mA0=300GeV: largest DM production xsec $\alpha = \beta - \pi/2$: alignment limit \leftarrow gz = 95% C.L. upper limit on eletroweak (ρ 0) and dijet constraints

for most of the parameter space, $Z' \rightarrow hA0$ is dominant process adding $Z' \rightarrow hZ$: ability to probe larger regions

Very similar

kinematics

Z'-2HDM Parameter Space and Production: g_z

- Signal xsec scales by gz^2; kinematics not affected by gz
- For sensitivity projections, signal xsec are scaled by gz² taking the maximum allowed gz value for given m_Zp & tanβ
 - gz < 0.03 * (g/cos $\theta_w \sin\beta^2$) * sqrt(MZp² MZ²)/MZ
 - additional constraints from dijet searches of $Z' \rightarrow qq$

$DM+H(\rightarrow bb): EFT Models$

Focus on EFT model for boosted channel

Model Name	EFT Operator	Dir	n Dark Matte	r Perturb. Req.	\mathcal{BR}_{inv} Req.
xxhh	$\chi\chi$ HH	4	Scalar	$\lambda < 4\pi$	$m_{\chi} < \frac{m_h}{2} \rightarrow \lambda \lesssim 0.016$
xxhhg5	$\bar{\chi}i\gamma_5\chi HH$	5	Fermion	$\Lambda < \frac{v}{4\pi}$	$m_\chi < rac{ar{m_h}}{2} ightarrow \Lambda \gtrsim 10 { m TeV}$
xdxhDh	$\chi^\dagger \partial^\mu \chi H^\dagger D_\mu H$	6	Scalar	$g_{Z_{\rm eff}} < 4\pi ~(\Lambda \gtrsim 30 { m GeV})$	$m_{\chi} < \frac{m_Z}{2} \rightarrow \Lambda \gtrsim 400 \text{GeV}$
xgxFhDh	$\bar{\chi}\gamma^{\mu}\chi B_{\mu\nu}H^{\dagger}D^{\nu}H$	8	Fermion	Use Truncation	N/A

EFT models has been constraint by monoHgamgam (arXiv:1506.01081) from ATLAS

(c/o S.C.Hsu)

DM+H(→bb) : EFT Models Cross-section scaling

(c/o S.C.Hsu)

Short Name	$\sigma_{h_{\chi\bar{\chi}}}$ (parameter	s)	Valid Domain
xxhh	$\begin{cases} \sigma_0 \cdot \left(\frac{\lambda}{\lambda_0}\right)^2 \\ \sigma_0 \cdot \left(\frac{\lambda}{\lambda_0}\right)^4 \end{cases}$	$\lambda \lesssim 1$ $\lambda \gtrsim 1$	$\lambda < 4\pi \cap ((m_{\chi} < \frac{m_h}{2} \cap \lambda \lesssim 0.016) \cup m_{\chi} > \frac{m_h}{2})$
xxhhg5	$\sigma_0 \cdot \left(\frac{\Lambda}{\Lambda_0}\right)^{-2}$		$\Lambda > \frac{v}{4\pi} \cap \left((m_{\chi} < \frac{m_h}{2} \cap \Lambda \gtrsim 10 \text{TeV}) \cup m_{\chi} > \frac{m_h}{2} \right)$
xdxhDh	$\int \sigma_0 \cdot \left(\frac{\Lambda}{\Lambda_0}\right)^{-8}$	$\Lambda \lesssim 100 GeV$	
xdxnDn	$\sigma_0 \cdot \left(\frac{\Lambda}{\Lambda_0}\right)^{-4}$	$\Lambda\gtrsim 100 GeV$	
xgxFhDh	$\sigma_0 \cdot \left(\frac{\Lambda}{\Lambda_0}\right)^{-8}$		
ecalar	$\int \sigma_0 \cdot \left(\frac{g_{DM}}{g_{DM,0}}\right)^2$	$g_{DM} \rightarrow 0$	$(m < \frac{m_h}{m_h} \cap a_{DM} < 0.01) \sqcup m > \frac{m_h}{m_h}$
scalar	$\sigma_0 \cdot \left(\frac{g_{DM}}{g_{DM,0}}\right)^4$	$g_{DM} \rightarrow \infty$	$(m_{\chi} < \frac{1}{2} + g_{DM} < 0.01) \cup m_{\chi} > \frac{1}{2}$
zpzp	$\sigma_0 \cdot \left(\frac{g_{DM}}{g_{DM,0}}\right)^2$		$(m_\chi < \frac{m_{Z'}}{2} \cap g_{DM} < 1) \cup m_\chi > \frac{m_h}{2}$

Kinematic dependences

Name	Dominant Production Mechanism/Diagrams	Kinematic Dependence
xxhh	$\begin{cases} 1 \text{ vertex g fusion } \lambda \lesssim 1 \\ 2 \text{ vertex g fusion } \lambda \gtrsim 1 \end{cases}$	$\left\{\begin{array}{ll} m_{\chi} & \lambda \lesssim 1 \\ m_{\chi}, \lambda & \lambda \gtrsim 1 \end{array}\right.$
xxhhg5	1 vertex g fusion	m _{\chi}
xdxhDh	$\begin{cases} 1 \text{ vertex g fusion } \Lambda \lesssim 100 \text{GeV} \\ 2 \text{ vertex q fusion } \Lambda \gtrsim 100 \text{GeV} \end{cases}$	$\begin{cases} m_{\chi} & \Lambda \lesssim 100 \text{GeV} \\ m_{\chi}, \Lambda & \Lambda \gtrsim 100 \text{GeV} \end{cases}$
xgxFhDh	1 vertex q fusion	m _x

DM+H(→bb) Simulated Bkgd: W+jets & Top

Resolved Channel

Boosted Channel

Good agreement achieved in both channels for Wjets, top, and 1lep_combined CRs.

11/06/2015

Data-Driven Background: $Z(\rightarrow vv)$ +jets

- Main & irreducible background \rightarrow use data-driven estimation (no good MC)
- $E_T^{miss} < 200 GeV$, reweight from $Z(\rightarrow \mu\mu)$ +jets data

• Select $Z \rightarrow \mu \mu$ CR; TF: $Z \rightarrow \nu \nu$ (MC) $E_t^{miss} / Z \rightarrow \mu \mu$ (MC) $E_T^{miss} + pT$ of 2μ

- E_T^{miss} >200GeV, reweight from γ +jets data (low stats with $Z \rightarrow \mu \mu$)
 - γ pT>>mZ; TF: γ +jets(MC) E_T^{miss} + γ pT / Z $\rightarrow \nu\nu$ (MC) E_t^{miss}

DM+H(→bb): Data-Driven Multijet Background

DM+Higgs(\rightarrow bb): Systematic Uncertainties

	Re	solved (%)	I	Boosted (%)
	Z'-2HDM	Total Background	EFT	Total Background
b-tagging	14	6-10	13	5.3
JES(small+large-R)	2.4	1.8 - 2.8	3.0	2.2 - 8.5
JER(small+large-R)	0.6	3.5–5.4	1.0	1.5 - 4.6
JMS(large-R)	-	-	1.0 - 2.5	1.3 Even
JMR(large-R)	-	-	2.0	1.6 – Exp.
JVF (small-R)	0.7	0.5 – 0.9	1.1	0.2 – 0.6
$E_{\rm T}^{\rm miss}$ resolution/scale	0.0	< 0.2	0.5	0.1 – 0.8
Pileup	0.3	0.1	0.1 - 1.7	2.4
Cross-section	10	6.0 - 11	10	7.6 - 8.1
PDF and α_s	3.8 - 7.0	2.9	2.0 - 21	1.8
$Z(\nu\bar{\nu})$ transfer function	-	1.4 – 2.7	-	5.4 - 5.8
Total syst.	18 - 19	10 - 16	13-25	13-14

Each source of systematic uncertainty treated as nuisance parameter in limit setting, with correlation between background processes and signal taken into account.

DM+Higgs(→bb): Signal Region

	Resolved Boosted						
$E_{\rm T}^{\rm miss}$	$> 150 { m ~GeV}$	$> 200 { m ~GeV}$	$> 300 { m ~GeV}$	$> 400 { m ~GeV}$	$> 300 { m ~GeV}$	$> 400 { m ~GeV}$	
$Z(\rightarrow \nu \bar{\nu}) + \text{jets}$	48 ± 32	21 ± 5	2.9 ± 1.1	0.3 ± 0.3	7.0 ± 2.0	5.2 ± 1.6	
Multijet	3.7 ± 3.1	0.02 ± 0.02			$< 0.0 \pm 0.1$	$< 0.0 \pm 0.1$	
$t\bar{t}$ & single-top	48 ± 10	17 ± 3.8	1.6 ± 0.5	0.3 ± 0.1	0.8 ± 0.5	0.6 ± 0.4	
W+jets & Z +jets	15 ± 3.4	6.2 ± 1.5	1.1 ± 0.3	0.3 ± 0.1	1.4 ± 0.7	0.8 ± 0.4	
Diboson	29.4 ± 7.5	13.2 ± 3.8	2.8 ± 1.0	0.6 ± 0.3	0.9 ± 0.5	0.6 ± 0.3	
Vh(bb)	5.0 ± 0.7	4.2 ± 0.6	1.0 ± 0.2	0.3 ± 0.1	1.0 ± 0.2	0.6 ± 0.1	
Total background	148 ± 30	62 ± 7.5	9.4 ± 1.8	1.7 ± 0.5	11.2 ± 2.3	7.7 ± 1.7	
Data	164	68	11	2	20	9	
$MS_{reternsolution}^{200} = \frac{10^3}{10^3} + ATLAS = 8 TeV, 20.3 f$	Resolved SR b ⁻¹	All and a second secon	Small excess 2.2σ) not signal-like	ATLAS s = 8 TeV, 20.3 fb ⁻¹ Boosted SR	• Data ·/// SM exp. $Z(\rightarrow v\overline{v})$ +jets $W(\rightarrow hv)/Z(\rightarrow ll)$ • t + single top Diboson ·/h ····· $\overline{\chi} \gamma^{\mu} \chi B_{\mu\nu} HD^{\nu} H$	+jets 	

DM+H(\rightarrow bb): Model-Independent Upper Limit

• Profile likelihood method (with *HistFitter-00-00-47*)

'likelihood assuming background only'

$$\widetilde{q}_0 = -2 \ln \frac{L(data \mid \mu = 0, \hat{\theta}_0)}{L(data \mid \hat{\mu}, \hat{\theta})}$$

'likelihood of best fit'

	$E_{\rm T}^{\rm miss}$	$N_{\rm obs}$	$N_{\rm bkgd}$	$\langle \sigma_{\rm vis} \rangle_{\rm obs}^{95} [{\rm fb}]$	$N_{ m BSMobs}^{95}$	$N_{\rm BSMexp}^{95}$	p(s=0)
Resolved	$> 150 { m ~GeV}$	164	148	3.6	74	63^{+22}_{-14}	0.31
	$> 200 { m ~GeV}$	68	62	1.3	27	$21^{+8.4}_{-3.9}$	0.28
	$> 300 { m ~GeV}$	11	9.4	0.49	9.9	$8.2^{+3.4}_{-1.9}$	0.31
	$>400~{\rm GeV}$	2	1.7	0.24	4.8	$4.7^{+1.6}_{-1.0}$	0.39
Peerted	$> 300 { m ~GeV}$	20	11.2	0.90	18	$9.9^{+4.2}_{-2.9}$	> 0.03
Doosted	$> 400 { m ~GeV}$	D0 GeV2011.20.9018D0 GeV97.70.438.8	$7.7^{+3.3}_{-2.0}$	0.37			

Look-elsewhere effect calculation: 10,000 pseudo-experiments in EXCLUSIVE regions \rightarrow trial factor ~ 3 \rightarrow ~10% likelihood the excess is due to statistical fluctuation in background

Model-independent upper limit on BSM events/visible xsec for each sliding Et^{miss} cut (up to high Et^{miss} region: NEW!) provides useful information for theorists & helps guide future searches.

DM+H(\rightarrow bb): Additional EFT Limits

DM+H(\rightarrow bb) Resolved: Systematic Uncertainties

Signal PDF Uncertainties

• Signals produced with central value of MSTW2008LO

• PDF uncertainty calculated for error sets of MSTW2008LO (40sets, asym. Hessian), central value&error sets of NNPDF2.1(100 sets, independent) per PDFLHC4 recommendation; in terms of signal acceptance at >=2btag selection $\Delta X_{env} = \frac{1}{2} \cdot \left[\max(X_0^{NNPDF} + \Delta X, X_0^{MSTW} + \Delta X^+) - \min(X_0^{NNPDF} - \Delta X, X_0^{MSTW} - \Delta X^-) \right]$

• Systematic Uncertainty in $Z \rightarrow vv$ estimation

Theoretical: Uncertainty in calculating TF itself

(numbers in percent)

$Z \rightarrow vv$ estimation	fit function	fit error	fit range in $E_{\rm T}^{\rm miss}$	fit stage	fit shape	photon-sys	total
$Z \rightarrow \mu\mu$ method	0.5	8	0	0.2	1	_	8.1
γ +jets method	0	0.2	0	4.6	2.5	4.0	6.9

Experimental: Detector systematics propagated through TF calculation (from MC samples) and reweighting process

- E_T^{miss} <200GeV, reweight on Z $\rightarrow \mu\mu$ data (background from MC subtracted)
- E_T^{miss} >200GeV, reweight on γ+jets data only

Data-Driven Background: Multijet

- Select QCD enriched region (seed) using dedicated trigger, low E^{miss} and F_Tmiss,sig
- Smear seed data with pre-defined jet response function
- Derive normalization and reweighting from $\Delta \phi_{\min}$ (jet, E_T^{miss})<0.7 QCD control region
- Apply analysis selection to smeared and normalized events
- Very good description
- Multi-jet background negligible after full selection

Data/MC

DM+H(→bb) Boosted: Multijet Background ABCD method: weakly correlated variables

 $N_{A(SR)}^{QCD} = \frac{N_B}{N_D} \times N_C \times R$ (c/o S.C.Hsu)

R: 2trk jet to b-tag+mass cut R=0.0072 ± 0.0006

R	egion	NB	ND	N _C
Emiss > 200 CaV	Diboson	193.64 ± 4.47	21.05 ± 1.59	2.62 ± 0.58
$E_{\rm T} > 200 GeV$	W+jets	2472.90 ± 14.88	277.33 ± 6.05	39.26 ± 1.64
	tī	1640.80 ± 17.95	201.16 ± 6.29	3.26 ± 0.74
	Zvv		37.25 ± 2.93	1.33 ± 0.33
	Single Top	175.20 ± 10.11	22.95 ± 3.10	1.80 ± 1.02
	Z+jets	145.27 ± 2.21	39.94 ± 1.13	1.61 ± 0.16
	$\gamma + jets$	7.96 ± 3.15	12.89 ± 6.41	0.00 ± 0.00
	Total non-QCD bkg	5499.81 ± 27.16	612.58 ± 11.80	49.89 ± 2.18
	Total Data	8029.00 + 89.60	1862.00 ± 43.15	45.00 ± 6.71
	Data - Bkg _{non-QCD}	2529.19 ± 93.63	1249.42± 44.73	-4.89 ± 7.05

Low purity of multijet in B motivates us to calculate bkg limit $N_{A(SR), 68\% C.L}^{QCD} = \frac{N_B}{N_D} \times N_{C, 68\% C.L} \times R = 0.11$

DM+H(\rightarrow bb): Look-Elsewhere Effect

	$E_{\rm T}^{\rm mis}$	^{is} cut	Nobs	N_{bkgd}	$\langle \epsilon \sigma \rangle_{\rm obs}^{95}$ [fb	N_{BS}	$M_{\rm obs}^{95}$ N_{BS}	$M_{\exp}^{95} p(s=0)$
Incl. SRs Resolved	≥ 150 GeV ≥ 200 GeV ≥ 300 GeV		164 68 11	Bu &	it there is c Boosted in	overlap MET>3	between R 00GeV 4	31 esolved 27 00GeV! 31
Boosted	≥ 40 > 30 > 40)0 GeV)0 GeV)0 GeV	$ \begin{array}{c} 2 \\ 20 \\ 9 \end{array} $	1.7 11.4 7.8	0.24 0.90 0.45	4. 18 9	8 4.6 .4 10.1 .1 7.8	$\begin{array}{c} +1.7 \\ -1.0 \\ +4.1 \\ -3.2 \\ +3.4 \\ 2.3 \end{array} \begin{array}{c} 0.03 \\ 0.03 \\ 0.37 \end{array}$
MET range		(150Ge	V,200GeV)	(200Ge	V,300GeV)	(300Ge	V,400GeV)	>400GeV
resolved && !b	oosted		86+/-28.1		52.6+/-6.8		7+/-1.3	0.8+/-0.34
boosted && !re	solved		Statisti recalcul	ical + sys ated co	stematic erro rresponding	ors ly &	2.7+/-0.9	6.8+/-1.7
resolved && boosted		combine value	combined; for overlap evts, use value from boosted channel			0.7+/-0.3	0.9+/-0.4	
Find a rando	m numl	per in a	(slightly la	arger; m	inimal differ	rence)		
Poisson dist. each of the 8 add them up	with m 3 excl. S 9 as toys	ean=N fo R 5 for Nob	or s	Find with the 2	a random nu the mean=N +2*3=8 excl	umber N Nbkgd & SRs (re	in a Gaussi sigma for ea	an dist. ach of tlap)
in each of th	e 6 incl.	SRs	Yangyang Che	eng Ui	niversity of Chicag	0		67

ATLAS Trigger Upgrade and the FastTracKer

Event rates

40 MHz

100 kHz

evel.

Trigger

Custom

Hardware

RolB

- ATLAS Trigger Upgrades for Runll:
 - removed internal subdivision between Level-2 and HLT
 - improved network infrastructure
- Software-based full tracking still limited by ROIs to a fraction of the Level-1 triggers
- Where FastTracKer (FTK) comes in:
 - Hardware-based
 - Full tracking will be provided for every Level-1 trigger (up to 100 KHz)
 - Any trigger selection will be able to exploit the track information
 - FTK tracks can be used to bootstrap other tracking algorithms

~ 160 GB/s O(100) FTK Readout System ~ 30k HLT Fragments Processing Unit ~ 25 GB/s Full event O(10) Data Logger ~ 1500 MB/s ~ 1000 Hz CERN Permanent Stora FTK receives data in parallel to HLT

Level 1 Accept

DAQ

Pixel /SCT

FE

ROD

FE

ROD

Detector

Muon

FE

ROD

Data rates

ATLAS Event 1.7(?)MB/25 ns

 \rightarrow FTK output available at beginning of HLT