Measurement of the form factor shape for the semileptonic decay $\Lambda_{b} \rightarrow \Lambda_{c} \mu \nu$

Christos Hadjivasiliou
Syracuse University

Table of contents

\square Overview of flavor physics
-The LHC and LHCb detector
\square Heavy baryon decays in HQET
\square Experimental study of $\Lambda_{b} \rightarrow \Lambda_{c} \mu \nu$
\square Analysis strategy and steps
\square Systematic uncertainties
\square Comparison with lattice QCD
\square Summary and conclusions

LHCb

The Standard Model

Based on the gauge group $S U(3) \times S U(2) \times U(1)$

The CKM matrix

$$
V=\left(\begin{array}{ccc}
V_{u d} & V_{u s} & V_{u b} \\
V_{c d} & V_{c s} & V_{c b} \\
V_{t d} & V_{t s} & V_{t b}
\end{array}\right)=\left(\begin{array}{ccc}
1-\lambda^{2} / 2 & \lambda & A \lambda^{3}(\rho-i \eta) \\
-\lambda & 1-\lambda^{2} / 2 & A \lambda^{2} \\
A \lambda^{3}(1-\rho-i \eta) & -A \lambda^{2} & 1
\end{array}\right)+O\left(\lambda^{4}\right)
$$

From unitarity ($\mathrm{V}_{\text {СКM }} \mathrm{V}^{+}{ }_{\text {CKM }}=1$) : CKM has four free parameters: 3 real: $\lambda(\approx 0.22), A(\approx 1), \rho$ $V_{u d} \cdot V_{u b}^{*}+V_{c d} \cdot V_{c b}^{*}+V_{t d} \cdot V_{t b}^{*}=0$ 1 imaginary: i η

$\alpha \equiv \arg \left(-\frac{V_{t d} V_{t b}^{*}}{V_{u d} V_{u b}^{*}}\right)$
$\beta \equiv \arg \left(-\frac{V_{c d} V_{c b}^{*}}{V_{t d} V_{t b}^{*}}\right)$
$\gamma \equiv \arg \left(-\frac{V_{u d} V_{u b}^{*}}{V_{c d} V_{c b}^{*}}\right)$

LHCk

Unitarity triangle

V_{cb} plays an important role in the prediction of FCNC: $\propto\left|V_{t b} V_{t s}\right|^{2} \cong\left|V_{c b}\right|^{2}\left[1+O\left(\lambda^{2}\right)\right]$

Red

$\left|\mathbf{V}_{\text {xb }}\right|$ current status

LHCk
 The Large Hadron Collider

The LHC is a proton-proton collider located at CERN, with a circumference of 27 km , a design center-of-mass energy of 14 TeV . The high luminosity of the LHC is delivered through intense bunches, separated by 50 ns intervals between each crossing.

LHCh
 The LHCb detector

$3 \mathrm{fb}^{-1}$ of pp collisions data recorded at a center-of-mass energy of 7 and 8 TeV

Heavy baryon decays in HQET

$\square \Lambda_{\mathrm{b}}$ system is an ideal laboratory to apply the "heavy quark effective theory" as light di-quark system accompanying the b quark has spin zero and thus not affected by the chromomagnetic correction.

$$
w=v_{\Lambda_{b}} \cdot v_{\Lambda_{c}}=\frac{m_{\Lambda_{b}}^{2}+m_{\Lambda_{c}}^{2}-q^{2}}{2 m_{\Lambda_{b}} m_{\Lambda_{c}}}
$$

LHCb Heavy baryon decays in HQET

\square The form factors can be parameterized by a universal "Isgur-Wise" (IW) function $\xi(\mathrm{w})$:

$$
\begin{gathered}
\frac{d \Gamma\left(\Lambda_{b} \rightarrow \Lambda_{c}^{+} \mu^{-} \bar{v}_{\mu}\right)}{d w}=\frac{G_{F}^{2} m_{\Lambda_{b}}^{5}\left|V_{c b}\right|^{2}}{24 \pi^{3}} r_{\Lambda}^{3} \sqrt{w^{2}-1}\left[6 w+6 w r_{\Lambda}^{2}-4 r_{\Lambda}-8 r_{\Lambda} w^{2}\right] \xi^{2}(w) \\
\xi(w)=\xi(1) \times\left[1-\boldsymbol{\rho}^{2}(w-1)+0.5 \boldsymbol{\sigma}^{2}(w-1)^{2}\right] \\
\text { slope } \\
\text { curvature }
\end{gathered}
$$

IW function
IW function old lattice QCD calculation:
$\rho^{2}=1.1 \pm 1.0$
UKQCD hep-lat/9709028

Theoretical input

\square Sum rules that constrain parameterization of IW function, most recent constraint:

$$
\begin{aligned}
& \sigma^{2} \geq \frac{5}{4} \rho^{2} \\
& \sigma^{2} \geq \frac{1}{5}\left[4 \rho^{2}+3\left(\rho^{2}\right)^{2}\right]
\end{aligned}
$$

hep-ph/0307197
[Input from lattice QCD: 1503.01421 [hep-lat]

$$
\begin{aligned}
& \text { Effective IW function: } \\
& \xi_{\text {eff }}(1)=0.904 \pm 0.011_{\text {stat }} \pm 0.022_{\text {syst }} \\
& \frac{d \xi_{\text {eff }}}{d w}(1)=-1.26 \pm 0.10_{\text {stat }} \pm 0.16_{\text {syst }}
\end{aligned}
$$

Experimental study of $\Lambda_{b} \rightarrow \Lambda_{b} \mu v$

Analysis steps:

1. We start with the inclusive $\Lambda_{b} \rightarrow \Lambda_{c} \mu \nu \mathrm{X}$ with $\Lambda_{\mathrm{c}} \rightarrow \mathrm{pK} \pi$.
2. We study $\Lambda_{c} \pi^{+} \pi^{-} \mu \nu$ final states to infer contributions from excited states.
3. We correct the measured exclusive w spectrum for HLT2 efficiency using TISTOS method.
4. We unfold the data using RooUnfold package and SVD (Singular Value Decomposition) method to obtain $\mathrm{dN} / \mathrm{d} w_{\text {true }}$.
5. We correct the unfolded data for acceptance and selection criteria using MC simulation.
6. We fit to functional forms "theoretically motivated".

Requiring $\left(p_{B}-p_{X \mu}\right)^{2}=p_{\nu}^{2}=0$, in four-vector notation, leads to the kinematic constraint for a semileptonic decay:
where $\rho=\left|\vec{\Lambda}_{\Lambda_{b}}\right|$ and $M^{2}=m_{\Lambda_{b}^{\rho}}^{2}+m_{\Lambda_{c \mu} \mu}^{2}$.

$$
w=v_{\Lambda_{b}} \cdot v_{\Lambda_{c}}=\frac{m_{\Lambda_{b}}^{2}+m_{\Lambda_{c}}^{2}-q^{2}}{2 m_{\Lambda_{b}} m_{\Lambda_{c}}}
$$

\square In this analysis, the Λ_{b} direction is inferred from the line of flight, connecting the closest primary vertex to the $\Lambda_{c} \mu$ secondary vertex.
$\square\left|\mathrm{p}_{\wedge \downarrow}\right|$ in semileptonic decays can be determined with a two-fold ambiguity from the Λ_{b} direction (we keep the lowest solution).
\square Once we know the Λ_{b} momentum, we can reconstruct the neutrino four-vector and other relevant kinematic quantities.

HCb
 The $\Lambda_{b} \rightarrow \Lambda_{c} \mu v X$ final state

\square Simultaneous fit of the logarithm of the IP distributions and invariant mass distributions for $\mathrm{RS} \Lambda_{\mathrm{c}}(\mathrm{pK} \pi)$ events. The prompt background is $\mathbf{1 . 5 \%}$ of the total number of Λ_{c} reconstructed and can be safely neglected.
2.7 millions $\Lambda_{\mathrm{b}} \rightarrow \Lambda_{\mathrm{c}} \mu \nu \mathrm{X}$ candidates
$\boldsymbol{\Lambda}_{b} \rightarrow \mathbf{\Lambda}_{\mathrm{e}} \pi^{+} \pi^{-} \boldsymbol{\mu v}$

The $\Lambda_{0} \pi^{T} \tau^{\tau}-\mu v$ final states

河

kick
 The $\Sigma_{c} \pi \mu v$ final states

Resonances	Yields
baseline	
$\Lambda_{c}(2595)^{+}$	8569 ± 144
$\Lambda_{c}(2625)^{+}$	22965 ± 266
check	
$\Lambda_{c}(2595)^{+}$	9822 ± 129
$\Lambda_{c}(2625)^{+}$	21923 ± 168
Higher mass resonances $^{2} \Lambda_{c}(2765)^{+}$	2975 ± 225
$\Lambda_{c}(2880)^{+}$	1605 ± 95

Final state	$\Lambda_{c}(2595)^{+}$	$\Lambda_{c}(2625)^{+}$	$\Lambda_{c}(2765)^{+}$	$\Lambda_{c}(2880)^{+}$	Excited	All
$\Sigma_{c}(2455)^{++} \pi^{-}$	4711 ± 155	1476 ± 111	3331 ± 102	443 ± 43	11754 ± 246	11827 ± 306
$\Sigma_{c}(2455)^{0} \pi^{+}$	3496 ± 165	1280 ± 111	2103 ± 81	214 ± 30	8447 ± 215	8675 ± 232
$\Lambda_{c} \pi^{+} \pi^{-} 3$-body	1002 ± 208	21843 ± 498			21992 ± 362	22251 ± 433
$\Sigma_{c}(2520)^{++} \pi^{-}$			1378 ± 89	330 ± 39	1623 ± 103	1920 ± 133
$\Sigma_{c}(2520)^{0} \pi^{+}$			1503 ± 90	307 ± 39	1485 ± 103	1828 ± 130

We measure 36114 ± 389 yields coming from all $\Lambda_{c}{ }^{*}$ excited states. The Σ_{c} and 3 -body yields are added to 46501 ± 608, resulting an excess of $\mathbf{1 0 3 8 7} \pm \mathbf{7 2 2}$ NR yields.

Reg

The $\Lambda_{0} \tau^{*} \pi^{\tau}-\mu v$ final states

Λ_{c} sideband background from RS events. The WS contribution is subtracted from the RS one since its already included in the fit.

After subtracting $\Lambda_{c}{ }^{+}$sideband background from "background" excess, we measure $11690 \pm 502 \Lambda_{b} \rightarrow \Lambda_{c} \pi^{+} \pi^{-} \mu v$ NR yields.

w	$\Lambda_{c}(2595)^{+}$	$\Lambda_{c}(2625)^{+}$	$\Lambda_{c}(2765)^{+}$	$\Lambda_{c}(2880)^{+}$	bkg excess	Λ_{c}^{+}sideband
$1.000-1.031$	16 ± 6	89 ± 13	0 ± 3	0 ± 8	1395 ± 66	999 ± 54
$1.031-1.062$	143 ± 18	337 ± 23	10 ± 36	26 ± 20	1990 ± 105	1651 ± 67
$1.062-1.092$	309 ± 28	830 ± 34	114 ± 41	61 ± 23	2103 ± 121	1761 ± 78
$1.093-1.123$	443 ± 31	1456 ± 52	146 ± 47	112 ± 27	2831 ± 137	1737 ± 76
$1.124-1.154$	563 ± 43	2073 ± 74	142 ± 49	135 ± 27	2581 ± 143	1836 ± 78
$1.154-1.185$	817 ± 42	2479 ± 68	177 ± 50	156 ± 28	3050 ± 145	1580 ± 77
$1.185-1.216$	883 ± 43	3021 ± 73	448 ± 53	198 ± 29	2364 ± 146	1575 ± 75
$1.216-1.247$	1095 ± 47	3044 ± 75	260 ± 50	185 ± 28	2220 ± 142	1250 ± 66
$1.247-1.278$	998 ± 45	3085 ± 74	204 ± 48	157 ± 27	2206 ± 136	849 ± 64
$1.278-1.309$	936 ± 44	2559 ± 70	292 ± 45	104 ± 25	1903 ± 127	532 ± 56
$1.309-1.340$	818 ± 45	2314 ± 73	172 ± 41	171 ± 24	1345 ± 113	601 ± 54
$1.340-1.371$	635 ± 38	1569 ± 57	155 ± 35	85 ± 20	989 ± 93	340 ± 49
$1.371-1.402$	371 ± 30	930 ± 44	31 ± 28	89 ± 17	939 ± 73	87 ± 41
$1.402-1.432$	128 ± 15	303 ± 22	0 ± 7	0 ± 3	690 ± 47	117 ± 32

wresolution

wres $\mathrm{w}_{\text {res }}$ is defined from $\Delta \mathrm{w}=\mathrm{w}_{\text {gen }}-\mathrm{w}_{\text {rec }}$ and calculated in different $\mathrm{w}_{\text {gen }}$ bins.
The PDF used in the fits of each w bin is a triple gaussian distribution.
The $\mathrm{w}_{\text {res }}$ is studied in terms of several kinematic variables, such as the flight distance of Λ_{b}.

UHCb
 Efficiency ratios for excited states

\square Need to scale up the contributions from the excited states. Scale factors obtained by estimating reconstruction efficiency in MC with PID correction ($\pi, \mathrm{K}, \mathrm{p}, \mu$) in bins of $\eta, \mathrm{p}_{\mathrm{T}}$ derived from calibration samples (PIDCalib).
\square Uncertainty associated with excited states decaying into neutrals by changing the fraction of neutral to charged di-pion final states $\left(R_{M C}=0.67\right)$:

$$
R_{\text {meas }}=\frac{N\left(\Sigma_{c}^{++}\right)+N\left(\Sigma_{c}^{0}\right)}{N\left(\Sigma_{c}^{++}\right)+N\left(\Sigma_{c}^{0}\right)+N\left(\Sigma_{c}^{+}\right)\left[\varepsilon\left(\Lambda_{c}^{+} \pi^{+} \pi^{-} \mu^{-}\right) / \varepsilon\left(\Lambda_{c}^{+} \pi^{0} \mu^{-}\right)\right]}=0.63 \pm 0.14
$$

Unfolding $\mathbf{w}_{\text {true }}$

$$
\left(A_{i j}\right) \frac{d N}{d w_{\text {true }, j}}=\frac{d N}{d w_{\text {meas }, i}}
$$

We need to solve the problem: $\hat{\mathbf{A}} \mathbf{x}=\mathbf{b}$ between the true (x) and measured (b) distributions with \hat{A} being the response matrix of the detector.

Singular Value Decomposition (SVD): $\hat{A}=U S V^{\mathrm{T}}$ with U and V orthogonal matrices and S a diagonal matrix with elements called singular values.

Regularization: For SVD, the unfolding is something like a Fourier expansion. Choosing the regularization parameter k effectively, determines up to which frequencies the terms in the expansion are kept.

Choice of regularization parameter

\square This needs to be tuned for any given distribution, number of bins, and approximate sample size - with k between 2 and the number of bins.

The response matrix

Mapping of $w_{\text {gen }}$ and $w_{\text {rec }}$ for ground state $\Lambda_{b} \rightarrow \Lambda_{c} \mu \nu$

LHCD Efficiency correction after unfolding

R RooUnfoldSvd: We use the SVD regularization method for the unfolding (arXiv:hep-ph/9509307) and $k=4$ (regularization parameter).
\square RooUnfoldInvert: This is not accurate for small matrices and produces inaccurate unfolded distributions.
\square We get back the original generated distribution by unfolding. We repeated the procedure for different form factor $\left(\rho^{2}=1.50\right)$ and it works.

Fit to functional forms

Systematic uncertainties

Item	$o\left(\rho^{2}\right)$
MC statistics	0.02
MC modeling	0.02
Form factor change in MC	0.03
Λ_{b} kinematic dependencies	0.02
Additional components of SL spectrum	0.02
HLT2 trigger efficiency	0.02
w binning	0.03
SVD unfolding regularization	0.03
Phase space averaging	0.03
Signal PDF for $\Lambda_{c}(2595)$	0.02
Signal fit for Λ_{c}	0.02
Sum	$\mathbf{0 . 0 8}$

MC modeling includes the calculation of the efficiency for the two additional excited states $\Lambda_{c}(2765)$ and $\Lambda_{c}(2880)$ and the fraction of neutral to charged di-pion final states.

Input from lattice

\square Recent lattice predictions (arXiv:1503.01421v2) of the form factors of $\Lambda_{b} \rightarrow \Lambda_{c} \mu \nu$ are expressed in terms of q^{2} :

$$
s_{ \pm}=\left(m_{\Lambda_{b}} \pm m_{X}\right)^{2}-q^{2}
$$

$$
\begin{aligned}
\frac{\mathrm{d} \Gamma}{\mathrm{~d} q^{2}}= & \frac{G_{F}^{2}\left|V_{q b}^{L}\right|^{2} \sqrt{s_{+} s_{-}}}{768 \pi^{3} m_{\Lambda_{b}}^{3}}\left(1-\frac{m_{\ell}^{2}}{q^{2}}\right)^{2} \\
& \times\left\{4\left(m_{\ell}^{2}+2 q^{2}\right)\left(s_{+}\left[\left(1-\epsilon_{q}^{R}\right) g_{\perp}\right]^{2}+s_{-}\left[\left(1+\epsilon_{q}^{R}\right) f_{\perp}\right]^{2}\right)\right. \\
& +2 \frac{m_{\ell}^{2}+2 q^{2}}{q^{2}}\left(s_{+}\left[\left(m_{\Lambda_{b}}-m_{X}\right)\left(1-\epsilon_{q}^{R}\right) g_{+}\right]^{2}+s_{-}\left[\left(m_{\Lambda_{b}}+m_{X}\right)\left(1+\epsilon_{q}^{R}\right) f_{+}\right]^{2}\right) \\
& \left.+\frac{6 m_{\ell}^{2}}{q^{2}}\left(s_{+}\left[\left(m_{\Lambda_{b}}-m_{X}\right)\left(1+\epsilon_{q}^{R}\right) f_{0}\right]^{2}+s_{-}\left[\left(m_{\Lambda_{b}}+m_{X}\right)\left(1-\epsilon_{q}^{R}\right) g_{0}\right]^{2}\right)\right\}
\end{aligned}
$$

\square As lattice calculations offer the prospect of extraction of the CKM parameter V_{cb} with increasing accuracy, it is important to check the form factor shape predicted by them.

KHCb
 Results using the nominal model

Measurement of $\left|V_{c b}\right|$

\square Absolute normalization and measurement of V_{cb}. Normalization modes: $\Lambda_{b} \rightarrow \Lambda_{c} \pi$ and $B \rightarrow D^{*} \mu \nu$.

$$
B\left(\Lambda_{b} \rightarrow \Lambda_{c} \mu v\right)=\frac{\Gamma\left(\Lambda_{b} \rightarrow \Lambda_{c} \mu v\right)}{\Gamma\left(\Lambda_{b}\right)}=\tau_{\Lambda_{b}} \cdot \Gamma\left(\Lambda_{b} \rightarrow \Lambda_{c} \mu v\right)=\left|V_{c b}\right|^{2} \tau_{\Lambda_{b}} \int_{1}^{w_{\max }} \frac{d \Gamma^{\prime}}{d w} \cdot d w
$$

Conclusions

\square We studied the Isgur-Wise function with different functional forms and the results are consistent with the sum rule bounds. From sum rules, the bound on the curvature is $\rho^{2}>1.5$.
\square This FF shape measurement represents a considerable improvement with respect to the DELPHI

$$
\rho^{2}=\quad \pm 0.03(\text { stat }) \pm 0.08(\text { sys })
$$

The q^{2} spectrum is compared with Meinel's et al. prediction from lattice QCD.

Back-up slides follow
THE END

Included in the MC cocktail

$\Lambda_{c}(2595)^{+}$decay	Branching fraction
$\Sigma_{c}^{++}\left(\Lambda_{c}^{+} \pi^{+}\right) \pi^{-}$	0.24
$\Sigma_{c}{ }^{0}\left(\Lambda_{c}{ }^{+} \pi^{-}\right) \pi^{+}$	0.24
$\Lambda_{c}^{+} \pi^{+} \pi^{-}$	0.18
$\Sigma_{c}^{+}\left(\Lambda_{c}^{+} \pi^{0}\right) \pi^{0}$	0.24
$\Lambda_{c}^{+} \pi^{0} \pi^{0}$	0.09
$\Lambda_{c} \gamma$	0.01

$\Lambda_{c}(2625)^{+}$decay	Branching fraction
$\Lambda_{c}^{+} \pi^{+} \pi^{-}$	0.66
$\Lambda_{c}^{+} \pi^{0}$	0.33
$\Lambda_{c}^{+} Y$	0.01

Definition of the form factors

\square The form factors are extracted at different lattice spacings and quark masses from non-perturbative Euclidean correlation functions.
\square Global fits of the helicity form factors are performed based on the simplified z-expansion (arXiv:0807.2722).

The pole mass in each dataset is evaluated as the sum of the B_{c} mass and the mass splitting between the meson with the relevant quantum numbers and B_{c}.

$$
\begin{aligned}
f\left(q^{2}\right) & =\frac{1}{1-q^{2} /\left(m_{\text {pole }}^{f}\right)^{2}}\left[a_{0}^{f}+a_{1}^{f} z\left(q^{2}\right)\right], \\
f_{\mathrm{HO}}\left(q^{2}\right) & =\frac{1}{1-q^{2} /\left(m_{\text {pole }}^{f}\right)^{2}}\left[a_{0}^{f}+a_{1}^{f} z\left(q^{2}\right)+a_{2}^{f} z^{2}\left(q^{2}\right)\right] .
\end{aligned}
$$

