

Measurement of the form factor shape for the semileptonic decay $\Lambda_b \rightarrow \Lambda_c \mu v$

Christos Hadjivasiliou Syracuse University

Overview of flavor physics The LHC and LHCb detector **□**Heavy baryon decays in HQET $\Box Experimental study of \Lambda_{\rm b} \rightarrow \Lambda_{\rm c} \mu \nu$ • Analysis strategy and steps □Systematic uncertainties Comparison with lattice QCD **U**Summary and conclusions

The Standard Model

The CKM matrix

Unitarity triangle

$|V_{xb}|$ current status

The Large Hadron Collider

The LHC is a proton-proton collider located at CERN, with a circumference of 27km, a design center-of-mass energy of 14TeV. The high luminosity of the LHC is delivered through intense bunches, separated by 50ns intervals between each crossing.

3fb⁻¹ of pp collisions data recorded at a center-of-mass energy of 7 and 8 TeV

 \Box Λ_b system is an ideal laboratory to apply the "heavy quark effective theory" as light di-quark system accompanying the bquark has spin zero and thus not affected by the chromomagnetic correction.

$$w = v_{\Lambda_b} \bullet v_{\Lambda_c} = \frac{m_{\Lambda_b}^2 + m_{\Lambda_c}^2 - q^2}{2m_{\Lambda_b}m_{\Lambda_c}}$$

and UNA

The form factors can be parameterized by a universal "Isgur-Wise" (IW) function $\xi(w)$:

$$\frac{d\Gamma(\Lambda_b \rightarrow \Lambda_c^+ \mu^- \overline{\nu}_{\mu})}{dw} = \frac{G_F^2 m_{\Lambda_b}^5 \left| V_{cb} \right|^2}{24\pi^3} r_{\Lambda}^3 \sqrt{w^2 - 1} \Big[6w + 6w r_{\Lambda}^2 - 4r_{\Lambda} - 8r_{\Lambda} w^2 \Big] \xi^2(w)$$

$$\boldsymbol{\xi}(w) = \boldsymbol{\xi}(1) \times \begin{bmatrix} 1 - \rho^2 (w - 1) + 0.5\sigma^2 (w - 1)^2 \end{bmatrix}$$

slope curvature
IW function

IW function old lattice QCD calculation:

UKQCD hep-lat/9709028

 $\rho^2 = 1.1 \pm 1.0$

Sum rules that constrain parameterization of IW function, most recent constraint: $\sigma^2 \ge \frac{5}{4}\rho^2$

$$\sigma^{2} \ge \frac{1}{5} \left[4\rho^{2} + 3(\rho^{2})^{2} \right] \qquad \text{hep-ph/0307197}$$

□Input from lattice QCD: 1503.01421 [hep-lat]

1

Analysis steps:

- 1. We start with the inclusive $\Lambda_b \rightarrow \Lambda_c \mu v X$ with $\Lambda_c \rightarrow p K \pi$.
- 2. We study $\Lambda_c \pi^+ \pi^- \mu \nu$ final states to infer contributions from excited states.
- 3. We correct the measured exclusive *w* spectrum for HLT2 efficiency using TISTOS method.
- 4. We unfold the data using RooUnfold package and SVD (Singular Value Decomposition) method to obtain dN/dw_{true} .
- 5. We correct the unfolded data for acceptance and selection criteria using MC simulation.
- 6. We fit to functional forms "theoretically motivated".

Neutrino reconstruction

- □ In this analysis, the Λ_b direction is inferred from the line of flight, connecting the closest primary vertex to the $\Lambda_c \mu$ secondary vertex.
- \square $|p_{\Lambda b}|$ in semileptonic decays can be determined with a two-fold ambiguity from the Λ_b direction (we keep the lowest solution).
- □ Once we know the Λ_b momentum, we can reconstruct the neutrino four-vector and other relevant kinematic quantities.

The $\Lambda_b \rightarrow \Lambda_c \mu v X$ final state

□ Simultaneous fit of the logarithm of the IP distributions and invariant mass distributions for RS $\Lambda_c(pK\pi)$ events. The prompt background is **1.5%** of the total number of Λ_c reconstructed and can be safely neglected.

 \Box 2.7 millions $\Lambda_b \rightarrow \Lambda_c \mu v X$ candidates

The $\Lambda_c \pi^+ \pi^- \mu v$ final states

The $\Sigma_c \pi \mu v$ final states

 $2587 \text{MeV} \le M(\Lambda_c^+ \pi^+ \pi^-) \le 2612 \text{MeV}$

nesonances	1 Ieius	I mai state	110(2000)	110(2020)	110(2100)	116(2000)	Encirca	1111
hag	olino	$\Sigma_c(2455)^{++}\pi^{-}$	4711 ± 155	1476 ± 111	3331 ± 102	443 ± 43	11754 ± 246	11827 ± 306
Dasenne		$\Sigma_{c}(2455)^{0}\pi^{+}$	3496 ± 165	1280 ± 111	2103 ± 81	214 ± 30	8447 ± 215	8675 ± 232
$\Lambda_{c}(2595)^{+}$	8569 ± 144	$\Lambda_c \pi^+ \pi^-$ 3-body	1002 ± 208	21843 ± 498			21992 ± 362	22251 ± 433
$A_{c}(2625)^{+}$	22965 ± 266	$\Sigma_c(2520)^{++}\pi^{-}$			1378 ± 89	$330{\pm}39$	1623 ± 103	1920 ± 133
		$\Sigma_{c}(2520)^{0}\pi^{+}$			1503 ± 90	307 ± 39	$1485 {\pm} 103$	1828 ± 130
Спеск								
$\Lambda_{c}(2595)^{+}$	9822 ± 129							
$\Lambda_{c}(2625)^{+}$	21923 ± 168	We measur	e 36114	± 389 y	ields com	ning fron	n all Λ_c^*	excited
Higher mass resonances		states. The	Σ_{c} and	3-body yi	elds are	added t	o 46501	± 608,
$\Lambda_{c}(2765)^{+}$	2975 ± 225	roculting on		f 10207 +	777 ND.	violde		
1(2000)+	$1COF \perp OF$	resulting an	excess o	1030/ I	IZZ INKY	leius.		

 $\Lambda_{c}(2880)^{+}$

 1605 ± 95

The $\Lambda_c \pi^+ \pi^- \mu v$ final states

w resolution

□ w_{res} is defined from $\Delta w = w_{gen} - w_{rec}$ and calculated in different w_{gen} bins. □ The PDF used in the fits of each w bin is a triple gaussian distribution.

□ The w_{res} is studied in terms of several kinematic variables, such as the flight distance of Λ_b .

Ktck Efficiency ratios for excited states

- □ Need to scale up the contributions from the excited states. Scale factors obtained by estimating reconstruction efficiency in MC with PID correction (π , K, p, μ) in bins of η , p_T derived from calibration samples (PIDCalib).
- □ Uncertainty associated with excited states decaying into neutrals by changing the fraction of neutral to charged di-pion final states ($R_{MC} = 0.67$):

$$R_{meas} = \frac{N(\Sigma_{c}^{++}) + N(\Sigma_{c}^{0})}{N(\Sigma_{c}^{++}) + N(\Sigma_{c}^{0}) + N(\Sigma_{c}^{+}) \left[\varepsilon(\Lambda_{c}^{+} \pi^{+} \pi^{-} \mu^{-}) / \varepsilon(\Lambda_{c}^{+} \pi^{0} \mu^{-}) \right]} = 0.63 \pm 0.14$$

We need to solve the problem: $\mathbf{\hat{A}}\mathbf{x} = \mathbf{b}$

between the true (x) and measured (b) distributions with \hat{A} being the *response matrix* of the detector.

- Singular Value Decomposition (SVD): Â=USV^T with U and V orthogonal matrices and S a diagonal matrix with elements called *singular values*.
- $\square \underline{\text{Regularization}}: \text{For SVD, the unfolding is something like a Fourier expansion. Choosing the regularization parameter k effectively, determines up to which frequencies the terms in the expansion are kept.}$

Choice of regularization parameter

- This needs to be tuned for any given distribution, number of bins, and approximate sample size — with k between 2 and the number of bins.

The response matrix

Kick Efficiency correction after unfolding

MC validation

- **RooUnfoldSvd:** We use the SVD regularization method for the unfolding (arXiv:hep-ph/9509307) and k=4 (regularization parameter).
- □ **RooUnfoldInvert:** This is not accurate for small matrices and produces inaccurate unfolded distributions.
- □ We get back the original generated distribution by unfolding. We repeated the procedure for different form factor ($\rho^2 = 1.50$) and it works.

Fit to functional forms

Systematic uncertainties

ltem	σ(ρ²)
MC statistics	0.02
MC modeling	0.02
Form factor change in MC	0.03
Λ_{b} kinematic dependencies	0.02
Additional components of SL spectrum	0.02
HLT2 trigger efficiency	0.02
w binning	0.03
SVD unfolding regularization	0.03
Phase space averaging	0.03
Signal PDF for $\Lambda_c(2595)$	0.02
Signal fit for Λ_c	0.02
Sum	0.08

<u>MC modeling</u> includes the calculation of the efficiency for the two additional excited states $\Lambda_c(2765)$ and $\Lambda_c(2880)$ and the fraction of neutral to charged di-pion final states.

□ Recent lattice predictions (arXiv:1503.01421v2) of the form factors of $\Lambda_b \rightarrow \Lambda_c \mu v$ are expressed in terms of q^2 : $s_{\pm} = (m_{\Lambda_b} \pm m_X)^2 - q^2$.

$$\begin{aligned} \frac{\mathrm{d}\Gamma}{\mathrm{d}q^2} &= \frac{G_F^2 |V_{qb}^L|^2 \sqrt{s_+ s_-}}{768 \pi^3 m_{\Lambda_b}^3} \left(1 - \frac{m_\ell^2}{q^2}\right)^2 \\ &\times \left\{ 4 \left(m_\ell^2 + 2q^2\right) \left(s_+ \left[(1 - \epsilon_q^R)g_\perp\right]^2 + s_- \left[(1 + \epsilon_q^R)f_\perp\right]^2\right) \right. \\ &\left. + 2 \frac{m_\ell^2 + 2q^2}{q^2} \left(s_+ \left[(m_{\Lambda_b} - m_X)\left(1 - \epsilon_q^R\right)g_+\right]^2 + s_- \left[(m_{\Lambda_b} + m_X)\left(1 + \epsilon_q^R\right)f_+\right]^2\right) \right. \\ &\left. + \frac{6m_\ell^2}{q^2} \left(s_+ \left[(m_{\Lambda_b} - m_X)\left(1 + \epsilon_q^R\right)f_0\right]^2 + s_- \left[(m_{\Lambda_b} + m_X)\left(1 - \epsilon_q^R\right)g_0\right]^2\right) \right\}, \end{aligned}$$

□ As lattice calculations offer the prospect of extraction of the CKM parameter V_{cb} with increasing accuracy, it is important to check the form factor shape predicted by them.

□Absolute normalization and measurement of V_{cb} . Normalization modes: $\Lambda_b \rightarrow \Lambda_c \pi$ and $B \rightarrow D^* \mu v$.

$$B(\Lambda_b \to \Lambda_c \mu \nu) = \frac{\Gamma(\Lambda_b \to \Lambda_c \mu \nu)}{\Gamma(\Lambda_b)} = \tau_{\Lambda_b} \cdot \Gamma(\Lambda_b \to \Lambda_c \mu \nu) = \left| V_{cb} \right|^2 \tau_{\Lambda_b} \int_{1}^{w_{max}} \frac{d\Gamma'}{dw} \cdot dw$$

- □ We studied the Isgur–Wise function with different functional forms and the results are consistent with the sum rule bounds. From sum rules, the bound on the curvature is $\rho^2 > 1.5$.
- □ This FF shape measurement represents a considerable improvement with respect to the DELPHI collaboration result (hep-ex/0403040): $\rho^2 = 2.03 \pm 0.46(stat)^{+0.72}_{-1.00}(sys)$

$$\rho^2 = \pm 0.03(stat) \pm 0.08(sys)$$

 \Box The q² spectrum is compared with Meinel's *et al.* prediction from lattice QCD.

Back-up slides follow

Included in the MC cocktail

Λ _c (2595)⁺ decay	Branching fraction
Σ _c ⁺⁺ (Λ _c ⁺ π ⁺)π ⁻	0.24
Σ _c ⁰ (Λ _c ⁺ π ⁻)π ⁺	0.24
$\Lambda_{c}^{+}\pi^{+}\pi^{-}$	0.18
$Σ_c^+(Λ_c^+π^0)π^0$	0.24
$Λ_c^+ π^0 π^0$	0.09
Λ _c γ	0.01

Λ _c (2625)⁺ decay	Branching fraction
$\Lambda_c^+\pi^+\pi^-$	0.66
$\Lambda_{c}^{+}\pi^{0}$	0.33
$\Lambda_c^+\gamma$	0.01

Definition of the form factors

□ The form factors are extracted at different lattice spacings and quark masses from non-perturbative Euclidean correlation functions.

- □ Global fits of the helicity form factors are performed based on the simplified z-expansion (arXiv:0807.2722).
- □ The pole mass in each dataset is evaluated as the sum of the B_c mass and the mass splitting between the meson with the relevant quantum numbers and B_c .

$$f(q^2) = \frac{1}{1 - q^2 / (m_{\text{pole}}^f)^2} \left[a_0^f + a_1^f z(q^2) \right],$$

$$f_{\text{HO}}(q^2) = \frac{1}{1 - q^2 / (m_{\text{pole}}^f)^2} \left[a_0^f + a_1^f z(q^2) + a_2^f z^2(q^2) \right].$$