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The Standard Model 
Based	on	the	
gauge	group	

SU(3)×SU(2)×U(1)	
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From	unitarity	(VCKM		V†
CKM=1)	:	

CKM	has	four	free	parameters:		
				3	real:	λ (≈0.22) , A	(≈ 1),	ρ
				1	imaginary:	iη	
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Unitarity triangle 

γ

α

α

dm∆ Kε
sm∆ & dm∆

SLubV

ν τubV

bΛubV

βsin 2
(excl. at CL > 0.95)

 < 0βsol. w/ cos 2

α

βγ

ρ
-0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0

η

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
ex

cl
ud

ed
 a

re
a 

ha
s 

C
L 

> 
0.

95

EPS 15

CKM
f i t t e r

10/2/15	 Cornell	University	 5	

≈ x Vcb
4
+…

Vcb	plays	an	important	role	in	the	predicLon	of	FCNC:	∝ VtbVts
2
≅ Vcb

2 1+O(λ 2 )#$ %&



|
cb

|V
0.036 0.037 0.038 0.039 0.040 0.041 0.042 0.043 0.044 0.045 0.046

p-
va

lu
e

0.0

0.2

0.4

0.6

0.8

1.0

EPS 15

CKM
f i t t e r

semilept. aver.
excl.
incl.

|
cb

w/o |V
 

|
ub

|V
0.0025 0.0030 0.0035 0.0040 0.0045 0.0050 0.0055

p-
va

lu
e

0.0

0.2

0.4

0.6

0.8

1.0

EPS 15

CKM
f i t t e r

semilept. aver.
excl.
incl.

|
ub

w/o |V
 

SL,exclcbV
SL,inclcbV

SLcbV

bΛcbV/ubV

SL,exclubV

SL,inclubV

SLubV

|
cb

|V
0.032 0.034 0.036 0.038 0.040 0.042 0.044 0.046 0.048

|
ub

|V

0.0020

0.0025

0.0030

0.0035

0.0040

0.0045

0.0050

0.0055

0.0060

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
p-value

excluded area has CL > 0.95EPS 15

CKM
f i t t e r

|Vxb| current status 

10/2/15	 Cornell	University	 6	



The Large Hadron Collider 
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The	 LHC	 is	 a	 proton-proton	 collider	 located	 at	 CERN,	 with	 a	
circumference	 of	 27km,	 a	 design	 center-of-mass	 energy	 of	 14TeV.		
The	high	luminosity	of	the	LHC	is	delivered	through	intense	bunches,	
separated	by	50ns	intervals	between	each	crossing.		



The LHCb detector 
3Y-1	of	pp	collisions	data	recorded	at	a	center-of-mass	energy	of	7	and	8	TeV	

RICH:	
ε(K→K)≈95%	for	(π→K)	mis-ID≈5%	

VeLo:	
≈20μm	IP	resoluLon	

Muon:	
ε(μ→μ)≈97%	for	(π→μ)	mis-ID≈2%	

Tracking:	
≈0.5%	

momentum	
resoluLon		
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Heavy baryon decays in HQET 

q Λb system is an ideal 
laboratory to apply the 
“heavy quark effective 
theory” as light di-quark 
system accompanying the b-
quark has spin zero and thus 
n o t  a f f e c t e d b y t h e 
chromomagnetic correction. 

 

  
w= vΛb

•vΛc
=

mΛb

2 +mΛc

2 −q2

2mΛb
mΛc
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Heavy baryon decays in HQET 
q The form factors can be parameterized by a 

universal “Isgur-Wise” (IW) function ξ(w): 
 
 
 
 
         IW function 
IW function old lattice QCD calculation: 
ρ2 = 1.1 ± 1.0        UKQCD     hep-lat/9709028 
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+µ−νµ )

dw
=
GF
2mΛb

5 Vcb
2

24π 3 rΛ
3 w2 −1 6w+ 6wrΛ

2 − 4rΛ −8rΛw
2%& '(ξ

2 (w)

ξ (w) = ξ (1)× 1− ρ 2 (w−1)+0.5σ 2 (w−1)2#
$

%
&

slope	 curvature	

10/2/15	 Cornell	University	 10	



1.00 1.05 1.10 1.15 1.20 1.25 1.30 1.35 1.40

w

0.0

0.2

0.4

0.6

0.8

1.0

� e
�
(w

)

�b ! �c µ� �̄µ

Figure 1: The ⇤b ! ⇤c “e↵ective Isgur-Wise function”, evaluated using the form factors from Ref. [1].
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Theoretical input 
q Sum rules that constrain parameterization of 

IW function, most recent constraint:   

hep-ph/0307197 
q Input from lattice QCD:   1503.01421 [hep-lat] 
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σ 2 ≥
5
4
ρ2

σ 2 ≥
1
5
4ρ2 +3(ρ2 )2"# $%

ξeff (1) = 0.904± 0.011stat ± 0.022syst
dξeff
dw

(1) = −1.26± 0.10stat ± 0.16syst

EffecLve	IW	funcLon:	



Experimental study of Λb⇾Λcμν  
Analysis steps: 
1.  We start with the  inclusive Λb⇾ΛcµνX with Λc⇾pKπ.  
2.  We study Λcπ+π-µν final states to infer contributions 

from excited states.  
3.  We correct the measured exclusive w spectrum for 

HLT2 efficiency using TISTOS method. 
4.  We unfold the data using RooUnfold package and 

SVD (Singular Value Decomposition) method to 
obtain dN/dwtrue. 

5.  We correct the unfolded data for acceptance and 
selection criteria using MC simulation. 

6.  We fit to functional forms “theoretically motivated”. 
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Neutrino reconstruction 

q  In this analysis, the Λb direction is inferred from the line of flight, 
connecting the closest primary vertex to the Λcµ secondary vertex. 

q  |pΛb| in semileptonic decays can be determined with a two-fold 
ambiguity from the Λb direction (we keep the lowest solution). 

q Once we know the Λb momentum, we can reconstruct the neutrino 
four-vector and other relevant kinematic quantities.   

Appendix B

Neutrino reconstruction

This appendix describes how we infer the neutrino four-vector in this analysis and

the calculation of the momentum transfer squared.

B.1 Kinematic constraints

Figure B.1: B ! Xqµ⌫ kinematics.

In this analysis, the ⇤0
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The Λb⇾ΛcμνX final state 

q Simultaneous fit of the logarithm of the IP distributions 
and invariant mass distributions for RS Λc(pKπ) events. 
The prompt background is 1.5% of the total number of 
Λc reconstructed and can be safely neglected.           

q 2.7 millions Λb⇾ΛcµνX candidates 
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Λb⇾Λcπ+π-μν  
q Only first column is expected to 

appear in the final state of the 
Λb semileptonic decay (due to 
the isospin conservation). 

 
 
 
 
q Many states are uncertain. 

q Only the Λcπ+π- final states have 
been observed. 

Lots to be studied here! 
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Fig. 1. (a) The known charmed baryons, and (b) the
lightest “4-star” strange baryons. Note that there are two
JP = 1/2+ Ξc states, and that the lightest Ωc does not
have J = 3/2. The JP = 1/2+ states, all tabbed with
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The	effect	of	isospin	breaking	in	a	
Cabibbo	favored	Λb	semileptonic	
decay	has	not	been	measured.	
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The Λcπ+π-μν final states 
AlternaLve	fit	

Λc(2595)	yields:	9822	±	129	
Λc(2625)	yields:	21923	±	168		

Baseline	fit	
Λc(2595)	yields:	8569	±	144	
Λc(2625)	yields:	22965	±	266		
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Resonance	 Measured	
mass	(MeV)	

Measured	
sigma	(MeV)	

PDG	
mass	(MeV)	

PDG	
width	(MeV)	

Λc(2765)	 2769	±	2.0	 24.8	±	2.4	 2766.6	±	2.4	 ≈50	

Λc(2880)	 2883	±	0.5	 6.5	±	0.5	 2881.5	±	0.35	 5.8	±	1.1	

ExponenLal	
threshold	funcLon	
for	background	

based	on	the	pion	
like-sign	events	
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Λc(2765)	yields:	2975	±	225	
Λc(2880)	yields:	1605	±	95		 BW (m) = m×Γ(m)

m2 −mR
2( )+ mR ×Γ(m)( )2

mR				:	Λc(2595)	resonance	mass	
Γ(m):	mass-dependent	width	

RelaLvisLc	Breit-Wigner:	



40 Chapter 3. Measurement of the form factor shape for ⇤0
b ! ⇤+

c µ
�⌫µ

within ±5MeV of ⇤c(2595)+ mass, the blue dots correspond to events with invari-

ant mass m(⇤+
c ⇡

+⇡�) within ±5MeV of ⇤c(2625)+, the black dots are for all the

remaining events. We can clearly see the diagonal band extending from 2420MeV

to 2490MeV corresponding to the ⇤c(2625)+ resonance and also the two lobes cor-

responding to the ⇤c(2595)+, with enhancements at the ⇤+
c ⇡

+ mass corresponding

to the ⌃++
c and ⌃0

c lobes.

Table 3.8: Partial branching fraction in the decay ⇤c(2595)+ ! ⇤c⇡+⇡�

Final state % of ⇤c(2595)+ yield PDG B
⌃++

c 0.51±0.02 0.37±0.10
⌃0

c 0.38±0.01 0.37±0.10
⇤c⇡+⇡� 3-body 0.11±0.01 0.27±0.10

First we consider a slice of the ⇤c⇡+⇡� centered around the known mass of the

⇤c(2595)+. Figure 3.7 shows the fits to the projections of the mass di↵erence plots.

We fit the two projections along the ⌃++
c and ⌃0

c axes simultaneously, to account

for reflections. We use four PDFs, describing the ⌃++
c , ⌃0

c signals, the ⇤c⇡⇡ three

Table 3.9: ⌃c yields obtained with di↵erent mass constraints on the ⇤c⇡+⇡� final
state in ⇤b semileptonic decays. The column “All” represents the number of ⌃c’s in
in the inclusive plot shown in Fig. 3.9.

Final state ⇤
c

(2595)+ ⇤
c

(2625)+ ⇤
c

(2765)+ ⇤
c

(2880)+ Excited All
⌃

c

(2455)++⇡� 4711±155 1476±111 3331±102 443±43 11754±246 11827±306
⌃

c

(2455)0⇡+ 3496±165 1280±111 2103±81 214±30 8447±215 8675±232
⇤
c

⇡+⇡� 3-body 1002±208 21843±498 21992±362 22251±433
⌃

c

(2520)++⇡� 1378±89 330±39 1623±103 1920±133
⌃

c

(2520)0⇡+ 1503±90 307±39 1485±103 1828±130

body final state, and the false ⌃c background respectively. The background PDF is

derived from the wrong-sign invariant mass shape, corresponding to di-pions with

the same charge. Both pions are combined with the ⇤+
c candidate to produce a

⌃c candidate. The normalization of the PDF is a fit parameter. The three body

final state PDF is derived from MC. The two signal shapes are modeled with double

Gaussian PDFs with independent means and sigmas. Table 3.8 shows the measured

ratios of these three di↵erent final states. Included is a comparison of the result

from these studies with the PDG summaries [11]. Next we perform analogous fits in

The Σcπμν final states 
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Figure 3.5: The higher portion of the mass di↵erence m(pK�⇡+⇡+⇡�)�m(pK�⇡+)
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MeV of ⇤+
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is the background component (2nd order polynomial), and the two signal peaks are
fitted with Gaussian PDFs. The curves are described in the text.

Table 3.7: Summary of the total signal yields for ⇤0
b semileptonic decays to

⇤c(2595)+, ⇤c(2625)+, ⇤c(2765)+ and ⇤c(2880)+ resonances.

Resonances Yields
baseline

⇤c(2595)+ 8569± 144
⇤c(2625)+ 22965± 266

check
⇤c(2595)+ 9822± 129
⇤c(2625)+ 21923± 168
Higher mass resonances
⇤c(2765)+ 2975± 225
⇤c(2880)+ 1605± 95

40 Chapter 3. Measurement of the form factor shape for ⇤0
b ! ⇤+

c µ
�⌫µ

within ±5MeV of ⇤c(2595)+ mass, the blue dots correspond to events with invari-

ant mass m(⇤+
c ⇡

+⇡�) within ±5MeV of ⇤c(2625)+, the black dots are for all the

remaining events. We can clearly see the diagonal band extending from 2420MeV

to 2490MeV corresponding to the ⇤c(2625)+ resonance and also the two lobes cor-

responding to the ⇤c(2595)+, with enhancements at the ⇤+
c ⇡

+ mass corresponding

to the ⌃++
c and ⌃0

c lobes.

Table 3.8: Partial branching fraction in the decay ⇤c(2595)+ ! ⇤c⇡+⇡�

Final state % of ⇤c(2595)+ yield PDG B
⌃++

c 0.51±0.02 0.37±0.10
⌃0

c 0.38±0.01 0.37±0.10
⇤c⇡+⇡� 3-body 0.11±0.01 0.27±0.10

First we consider a slice of the ⇤c⇡+⇡� centered around the known mass of the

⇤c(2595)+. Figure 3.7 shows the fits to the projections of the mass di↵erence plots.

We fit the two projections along the ⌃++
c and ⌃0

c axes simultaneously, to account

for reflections. We use four PDFs, describing the ⌃++
c , ⌃0

c signals, the ⇤c⇡⇡ three

Table 3.9: ⌃c yields obtained with di↵erent mass constraints on the ⇤c⇡+⇡� final
state in ⇤b semileptonic decays. The column “All” represents the number of ⌃c’s in
in the inclusive plot shown in Fig. 3.9.

Final state ⇤
c

(2595)+ ⇤
c

(2625)+ ⇤
c

(2765)+ ⇤
c

(2880)+ Excited All
⌃

c

(2455)++⇡� 4711±155 1476±111 3331±102 443±43 11754±246 12689±341
⌃

c

(2455)0⇡+ 3496±165 1280±111 2103±81 214±30 8447±215 9062±271
⇤
c

⇡+⇡� 3-body 1002±208 21843±498
⌃

c

(2520)++⇡� 1378±89 330±39 1623±103 1984±136
⌃

c

(2520)0⇡+ 1503±90 307±39 1485±103 1621±134

body final state, and the false ⌃c background respectively. The background PDF is

derived from the wrong-sign invariant mass shape, corresponding to di-pions with

the same charge. Both pions are combined with the ⇤+
c candidate to produce a

⌃c candidate. The normalization of the PDF is a fit parameter. The three body

final state PDF is derived from MC. The two signal shapes are modeled with double

Gaussian PDFs with independent means and sigmas. Table 3.8 shows the measured

ratios of these three di↵erent final states. Included is a comparison of the result

from these studies with the PDG summaries [11]. Next we perform analogous fits in

We	 measure	 36114	 ±	 389	 yields	 coming	 from	 all	 Λc
*	 excited	

states.	 The	 Σc	 and	 3-body	 yields	 are	 added	 to	 46501	 ±	 608,	
resulLng	an	excess	of	10387	±	722		NR	yields.								



The Λcπ+π-μν final states 
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Λc	 sideband	 background	 from	 RS	 events.	
The	WS	contribuLon	is	subtracted	from	the	
RS	one	since	its	already	included	in	the	fit.	

Λc	candidates	with	
invariant	mass	within	
±20MeV	of	the	Λc	mass.	
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3.11 Inclusive fit and evidence of ⇤0
b ! ⌃(⇤)

c ⇡±µ�⌫µ

In Fig. 3.32 we perform an inclusive fit to the ⇤+
c µ

�⇡+⇡� spectrum in bins of w.

It looks that the WS background assigned previously does not describe accurately

the total distribution, so we add an additional gaussian to the fit (gray curve). It

is believed that this excess is due to the ⇤+
c sideband backround and in adition to

the phase-space decay of ⇤0
b ! ⌃(⇤)

c ⇡±µ�⌫µ.

The ⇤+
c sideband backround can be estimated by fitting the pK�⇡+ invariant

mass distribution in the ⇤+
c µ

�⇡±⇡± reconstruction for RS and WS pions and in-

tegrate the background within ±20MeV of the ⇤+
c mass. The fitting procedure is

similar to what is done in §3.7.1. The WS contribution is subtracted from the RS

one since its already included in the fit, resulting to an estimate of 11690 poten-

tial ⇤0
b ! ⌃(⇤)

c ⇡±µ�⌫µ yields. The corresponding results are presented in Tab. 3.14.

From Tab. 3.7 we measure about 36104 yields coming from all the ⇤⇤
c excited states.

The ⌃c and 3-body yields from Tab. 3.9 are added to 46554 resulting to an excess

of 10450 yields most probably coming from ⇤0
b ! ⌃(⇤)

c ⇡±µ�⌫µ and also in consistent

with our estimate from the inclusive fit.

Table 3.14: Raw yields in bins of wrec for the final states ⇤c(2595)+µ�⌫µ,
⇤c(2625)+µ�⌫µ, ⇤c(2765)+µ�⌫µ and ⇤c(2880)+µ�⌫µ respectively and the excess of
background in the fit. We also include the ⇤+

c sideband backround.

w ⇤

c

(2595)+ ⇤

c

(2625)+ ⇤

c

(2765)+ ⇤

c

(2880)+ bkg excess ⇤

+
c

sideband
1.000-1.031 16±6 89±13 0±3 0±8 1395±66 999±54
1.031-1.062 143±18 337±23 10±36 26±20 1990±105 1651±67
1.062-1.092 309±28 830±34 114±41 61±23 2103±121 1761±78
1.093-1.123 443±31 1456±52 146±47 112±27 2831±137 1737±76
1.124-1.154 563±43 2073±74 142±49 135±27 2581±143 1836±78
1.154-1.185 817±42 2479±68 177±50 156±28 3050±145 1580±77
1.185-1.216 883±43 3021±73 448±53 198±29 2364±146 1575±75
1.216-1.247 1095±47 3044±75 260±50 185±28 2220±142 1250±66
1.247-1.278 998±45 3085±74 204±48 157±27 2206±136 849±64
1.278-1.309 936±44 2559±70 292±45 104±25 1903±127 532±56
1.309-1.340 818±45 2314±73 172±41 171±24 1345±113 601±54
1.340-1.371 635±38 1569±57 155±35 85±20 989±93 340±49
1.371-1.402 371±30 930±44 31±28 89±17 939±73 87±41
1.402-1.432 128±15 303±22 0±7 0±3 690±47 117±32

Aper	 subtracLng	 Λc
+	 sideband	 background	

from	 “background”	 excess,	 we	 measure	
11690	±	502	Λb⇾Λcπ+π-μν	NR	yields.	
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Efficiency ratios for excited states 

q  Need to scale up the contributions from the excited states. Scale factors obtained 
by estimating reconstruction efficiency in MC with PID correction (π, Κ, p, µ) in 
bins of η, pT derived from calibration samples (PIDCalib). 

q  Uncertainty associated with excited states decaying into neutrals by changing the 
fraction of neutral to charged di-pion final states (RMC  = 0.67): 
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Rmeas =
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0 )+ N(Σc
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= 0.63± 0.14
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HLT2 trigger correction 

q  Effective efficiency for HLT2 muon 
topological triggers (2, 3 and 4 body). 

q  The efficiency is measured using HLT2 
Global TIS ΛcµX events, fitting the 
“accepted” and “rejected” events 
simultaneously.  

data-driven	TISTOS	method	
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Unfolding wtrue 
 
 
 

We need to solve the problem: Âx = b   
between the true (x) and measured (b) distributions with Â being 
the response matrix of the detector. 

q Singular Value Decomposition (SVD): Â=USVT with U and 
V orthogonal matrices and S a diagonal matrix with elements 
called singular values. 

q Regularization: For SVD, the unfolding is something like a 
Fourier expansion. Choosing the regularization parameter k 
effectively, determines up to which frequencies the terms in 
the expansion are kept. 

  
( Aij )

dN
dwtrue, j

=
dN

dwmeas,i
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the	regularizaLon	
parameter	is	k=4	
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Mapping	of	wgen	and	wrec	for	ground	state	Λb⇾Λcμν	

The	fracLonal	
weights	add	up	
to	100%	for	each	

row	of	wgen	
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Efficiency correction after unfolding 

q  Reconstruction efficiency for 
the final state ΛcµνX.  

q Accounts for efficiency losses 
due to detector acceptance, 
stripping and selection criteria. 

10/2/15	 Cornell	University	 25	



genw
1 1.1 1.2 1.3 1.4

K
(w

) / 
dw

co
rr

dN

0

10

20

30

40
610×

w
1 1.1 1.2 1.3 1.4

 / 
dw

co
rr

dN

0

0.5

1

1.5

610×

True distribution
Reconstructed
RooUnfoldInvert
RooUnfoldSvd

MC validation  

q  RooUnfoldSvd: We use the SVD regularization method for the unfolding 
(arXiv:hep-ph/9509307) and k=4 (regularization parameter). 

q  RooUnfoldInvert: This is not accurate for small matrices and produces 
inaccurate unfolded distributions.  

q  We get back the original generated distribution by unfolding. We repeated 
the procedure for different form factor (ρ2 = 1.50) and it works. 

ξB (w) = exp[−ρ
2 (w−1)]

ρ2								=	1.48	±	0.02	
χ2/ndf	=	3.8	/	5.0	

ρ2	=	1.50	
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Table 3.13: Summary of the values for the slope and curvature of the IW function
with di↵erent parameterizations.

Shape ⇢2 �2 �2/dof
Exponential 1.65±0.03 2.72±0.10 5.3/5
Dipole 1.82±0.03 4.22±0.12 5.3/5
Taylor series 1.63±0.07 2.16±0.34 4.5/4

matrix” being the inverse of the non-diagonal covariance matrix. The correlation

coe�cient matrix, associated with this covariance matrix, is shown in Fig. 3.24. In

order to see more clearly the form factor shape, we divide each bin by the average

phase space weight in d�/dw and thus we fit directly for the IW function ⇠B, modulo

an arbitrary normalization parameter.

Figure 3.24: Correlation coe�cient matrix for the unfolded Ncorr vector.

The fit results with the three parameterizations considered are shown in Figs. 3.25,

3.26, and 3.27, which show the unfolded data points and fitted ⇠B. The fit parame-

3.11. Inclusive fit and evidence of ⇤0
b ! ⌃(⇤)

c ⇡±µ�⌫µ 69

Table 3.15: Summary of the values for the slope and curvature of the IW function
with di↵erent parameterizations.

Shape ⇢2 �2 �2/dof
Exponential 1.63±0.03 2.66±0.10 6.7/5
Dipole 1.82±0.03 4.22±0.12 6.4/5
Taylor series 1.62±0.07 2.20±0.38 5.8/4

Figure 3.35: (left) IW function fit for the decay ⇤b ! ⇤cµ⌫ with a polynomial
expansion in (w � 1) up to second order; (right) correlation between normalization
and ⇢2: the three ellipses correspond to the 1�, 2�, and 4� contours.

The fit results with the three parameterizations considered, follwing the same

procedure described previously, are shown in Figs. 3.33, 3.34, and 3.35, which show

the unfolded data points and fitted ⇠B. The fit parameters obtained with the three

methods are summarized in Table 3.15.

Include	contribuLons	from	Λc
*	 Include	contribuLons	from	Λc

*	and	Λb⇾Λcπ+π-μν	NR	



Systematic uncertainties 
Item	 σ(ρ2)	

MC	staLsLcs	 0.02	

MC	modeling	 0.02	

Form	factor	change	in	MC	 0.03	

Λb	kinemaLc	dependencies	 0.02	

AddiLonal	components	of	SL	spectrum	 0.02	

HLT2	trigger	efficiency	 0.02	

w	binning	 0.03	

SVD	unfolding	regularizaLon	 0.03	

Phase	space	averaging		 0.03	

Signal	PDF	for	Λc(2595)	 0.02	

Signal	fit	for	Λc	 0.02	

Sum	 0.08	

MC modeling includes the calculation of the efficiency for the two 
additional excited states Λc(2765) and Λc(2880) and the fraction of 
neutral to charged di-pion final states.  
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Input from lattice 
q Recent lattice predictions (arXiv:1503.01421v2) of the form factors 

of Λb⇾Λcµν are expressed in terms of q2:   

 
 
 
 
 
 
 

q As lattice calculations offer the prospect of extraction of the CKM 
parameter Vcb with increasing accuracy, it is important to check the 
form factor shape predicted by them.   
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VI. PREDICTIONS FOR THE ⇤b ! p `�⌫̄` AND ⇤b ! ⇤c `�⌫̄` DECAY RATES

In this section, we present predictions for the ⇤b ! p `�⌫̄` and ⇤b ! ⇤c `�⌫̄` di↵erential and integrated decay rates
using our form factor results. Including possible right-handed currents with real-valued ✏Rq , the e↵ective Hamiltonian
in Eq. (2) leads to the following expression for the di↵erential decay rate in terms of the helicity form factors,

d�
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, (84)

where, as before, X = p, ⇤c denotes the final-state baryon, and

s± = (m⇤b ± mX)2 � q2. (85)

Expressions for the individual helicity amplitudes and the angular distributions can be found in Refs. [27, 28, 65]. By
combining experimental data with our form factor results, novel constraints in the (V L

qb, ✏Rq ) plane can be obtained.

In the following, we consider the Standard Model with V L
qb = Vqb and ✏Rq = 0. Our predictions of the ⇤b ! p `�⌫̄`

and ⇤b ! ⇤c `�⌫̄` di↵erential decay rates for ` = e, µ, ⌧ are shown in Figs. 14 and 15. The central values, statistical
uncertainties, and systematic uncertainties have been calculated using Eq. (83); all baryon and lepton masses were
taken from Ref. [1]. Our results are most precise in the high-q2 region, where the form factor shapes are most tightly
constrained by the lattice QCD data. We obtain the following partially integrated decay rates

1

|Vub|2
Z q2

max

15 GeV2

d�(⇤b ! p µ�⌫̄µ)

dq2
dq2 = (12.32 ± 0.93 ± 0.80) ps�1, (86)

1

|Vcb|2
Z q2

max

7 GeV2

d�(⇤b ! ⇤c µ�⌫̄µ)

dq2
dq2 = (8.39 ± 0.18 ± 0.32) ps�1, (87)

and their ratio

|Vcb|2
|Vub|2

R q2
max

15 GeV2

d�(⇤b!p µ�⌫̄µ)
dq2 dq2

R q2
max

7 GeV2

d�(⇤b!⇤c µ�⌫̄µ)
dq2 dq2

= 1.470 ± 0.115 ± 0.104, (88)

where the first uncertainty is statistical and the second uncertainty is systematic. Together with experimental data,
Eqs. (86), (87), and (88) will allow determinations of |Vub|, |Vcb|, and |Vub/Vcb| with theory uncertainties of 5.0%,
2.2%, and 5.3%, respectively. The predicted total decay rates for all possible lepton flavors are

�(⇤b ! p e�⌫̄e)/|Vub|2 = (24.8 ± 2.8 ± 4.2) ps�1 (89)

�(⇤b ! p µ�⌫̄µ)/|Vub|2 = (24.8 ± 2.8 ± 4.2) ps�1, (90)

�(⇤b ! p ⌧�⌫̄µ)/|Vub|2 = (17.5 ± 1.5 ± 1.9) ps�1, (91)

�(⇤b ! ⇤c e�⌫̄e)/|Vcb|2 = (21.1 ± 0.8 ± 1.4) ps�1, (92)

�(⇤b ! ⇤c µ�⌫̄µ)/|Vcb|2 = (21.1 ± 0.8 ± 1.4) ps�1, (93)

�(⇤b ! ⇤c ⌧�⌫̄µ)/|Vcb|2 = (7.13 ± 0.17 ± 0.29) ps�1. (94)

Motivated by the R(D(⇤)) puzzle [14], we also provide predictions for the following ratios:

�(⇤b ! ⇤c ⌧�⌫̄µ)

�(⇤b ! ⇤c e�⌫̄µ)
= 0.3378 ± 0.0079 ± 0.0085, (95)

�(⇤b ! ⇤c ⌧�⌫̄µ)

�(⇤b ! ⇤c µ�⌫̄µ)
= 0.3388 ± 0.0078 ± 0.0085. (96)

QED corrections to the decay rates, which may be relevant at this level of precision, have been neglected here.
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where, as before, X = p, ⇤c denotes the final-state baryon, and

s± = (m⇤b ± mX)2 � q2. (85)

Expressions for the individual helicity amplitudes and the angular distributions can be found in Refs. [27, 28, 65]. By
combining experimental data with our form factor results, novel constraints in the (V L

qb, ✏Rq ) plane can be obtained.

In the following, we consider the Standard Model with V L
qb = Vqb and ✏Rq = 0. Our predictions of the ⇤b ! p `�⌫̄`

and ⇤b ! ⇤c `�⌫̄` di↵erential decay rates for ` = e, µ, ⌧ are shown in Figs. 14 and 15. The central values, statistical
uncertainties, and systematic uncertainties have been calculated using Eq. (83); all baryon and lepton masses were
taken from Ref. [1]. Our results are most precise in the high-q2 region, where the form factor shapes are most tightly
constrained by the lattice QCD data. We obtain the following partially integrated decay rates

1
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max
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d�(⇤b ! p µ�⌫̄µ)
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1
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max
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dq2 = (8.39 ± 0.18 ± 0.32) ps�1, (87)

and their ratio
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= 1.470 ± 0.115 ± 0.104, (88)

where the first uncertainty is statistical and the second uncertainty is systematic. Together with experimental data,
Eqs. (86), (87), and (88) will allow determinations of |Vub|, |Vcb|, and |Vub/Vcb| with theory uncertainties of 5.0%,
2.2%, and 5.3%, respectively. The predicted total decay rates for all possible lepton flavors are

�(⇤b ! p e�⌫̄e)/|Vub|2 = (24.8 ± 2.8 ± 4.2) ps�1 (89)

�(⇤b ! p µ�⌫̄µ)/|Vub|2 = (24.8 ± 2.8 ± 4.2) ps�1, (90)

�(⇤b ! p ⌧�⌫̄µ)/|Vub|2 = (17.5 ± 1.5 ± 1.9) ps�1, (91)

�(⇤b ! ⇤c e�⌫̄e)/|Vcb|2 = (21.1 ± 0.8 ± 1.4) ps�1, (92)

�(⇤b ! ⇤c µ�⌫̄µ)/|Vcb|2 = (21.1 ± 0.8 ± 1.4) ps�1, (93)

�(⇤b ! ⇤c ⌧�⌫̄µ)/|Vcb|2 = (7.13 ± 0.17 ± 0.29) ps�1. (94)

Motivated by the R(D(⇤)) puzzle [14], we also provide predictions for the following ratios:

�(⇤b ! ⇤c ⌧�⌫̄µ)

�(⇤b ! ⇤c e�⌫̄µ)
= 0.3378 ± 0.0079 ± 0.0085, (95)

�(⇤b ! ⇤c ⌧�⌫̄µ)

�(⇤b ! ⇤c µ�⌫̄µ)
= 0.3388 ± 0.0078 ± 0.0085. (96)

QED corrections to the decay rates, which may be relevant at this level of precision, have been neglected here.
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Measurement of |Vcb| 
q Absolute normalization and measurement of Vcb. 

Normalization modes: Λb⇾Λcπ and B⇾D*µν. 
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Conclusions 
q We studied the Isgur–Wise function with different 

functional forms and the results are consistent with 
the sum rule bounds. From sum rules, the bound on 
the curvature is ρ2 > 1.5.  

q This FF shape measurement represents a considerable 
improvement with respect to the DELPHI 
collaboration result (hep-ex/0403040): 

q The q2 spectrum is compared with Meinel’s et al. 
prediction from lattice QCD. 
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ρ2 =1.65± 0.03(stat)± 0.08(sys)

ρ2 = 2.03± 0.46(stat)−1.00
+0.72 (sys)



THE END 
Back-up slides follow 
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Decays of the excited states (Λb⇾Λc
*μν) 
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Λc(2595)+	decay	 Branching	fracYon	

Σc++(Λc
+π+)π-	 0.24	

Σc0(Λc
+π-)π+	 0.24	

Λc
+π+π-	 0.18	

Σc+(Λc
+π0)π0	 0.24	

Λc
+π0π0	 0.09	

Λcγ	 0.01	

Λc(2625)+	decay	 Branching	fracYon	

Λc
+π+π-	 0.66	

Λc
+π0	 0.33	

Λc
+γ	 0.01	

Included	in	the	MC	cocktail	

Cornell	University	



Definition of the form factors 
q The form factors are extracted at different lattice 

spacings and quark masses from non-perturbative 
Euclidean correlation functions. 

q Global fits of the helicity form factors are performed 
based on the simplified z-expansion (arXiv:0807.2722). 

q The pole mass in each dataset is evaluated as the sum of 
the Bc mass and the mass splitting between the meson 
with the relevant quantum numbers and Bc. 
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f JP mf
pole

(⇤b ! p) �f (⇤b ! p) mf
pole

(⇤b ! ⇤c) �f (⇤b ! ⇤c)

f
+

, f? 1� 5.325 0.046 6.332 0.056

f
0

0+ 5.656 0.377 6.725 0.449

g
+

, g? 1+ 5.706 0.427 6.768 0.492

g
0

0� 5.279 0 6.276 0

TABLE VII. Masses of the relevant form factor poles in the physical limit, and mass di↵erences relative to the pseudoscalar
mass (all in GeV).

Parameter ⇤b ! p ⇤b ! ⇤c

a
f
+

0

0.4300 ± 0.0300 0.8137 ± 0.0181

a
f
+

1

�1.4578 ± 0.4178 �8.5673 ± 0.8444

af
0

0

0.3981 ± 0.0245 0.7494 ± 0.0132

af
0

1

�1.3575 ± 0.3869 �7.2530 ± 0.8114

a
f?
0

0.5228 ± 0.0433 1.0809 ± 0.0262

a
f?
1

�1.6943 ± 0.6834 �11.6259 ± 1.5343

a
g?,g

+

0

0.3718 ± 0.0194 0.6876 ± 0.0084

a
g
+

1

�1.4561 ± 0.3280 �6.5556 ± 0.4713

ag
0

0

0.4409 ± 0.0278 0.7446 ± 0.0156

ag
0

1

�1.7273 ± 0.3684 �7.7216 ± 0.5437

a
g?
1

�1.6839 ± 0.3882 �6.7870 ± 0.5013

TABLE VIII. Central values and uncertainties of the nominal form factor parameters for ⇤b ! p and ⇤b ! ⇤c. See Table IX
for the correlation matrices.

cross-covariances between the parameters in di↵erent subsets. Such a hybrid approach may lead to small violations of
positive-semidefiniteness of the overall covariance matrix, as was indeed observed here. We therefore multiplied the
cross-covariances between the parameters from di↵erent ⇤b ! ⇤c form factor subsets by a factor of (1��) with � > 0,
chosing the smallest value of � that renders the total covariance matrix positive definite (in this case, � = 0.11). We
stress that this regulating procedure has a negligible e↵ect on the uncertainty of the di↵erential decay rate and was
performed only for mathematical consistency. In particular, all digits shown for the uncertainties in Eqs. (87) and
(88) stay the same when the factor of (1 � �) is removed.

The physical limit is given by a ! 0 and m⇡ ! m⇡,phys, and correspondingly Eq. (75) reduces to the simple form

f(q2) =
1

1 � q2/(mf
pole)

2

⇥
af
0 + af

1 z(q2)
⇤
, (78)

where q2 should be evaluated using the experimental values of the baryon masses, and the pole masses mf
pole should

be set to the values given in Table VII. The central values and uncertainties of the parameters {af
0 , af

1} from the
nominal fit are given in Table VIII, and the correlation matrices are given in Table IX. The parameter covariances

cov(p, q) can be obtained from the correlations corr(p, q) and uncertainties �p, �q using cov(p, q) = �p �q corr(p, q);
the central values and covariance matrices of the fit parameters are also provided as ancillary files with the arXiv
submission of this article. Plots of the lattice data along with the physical-limit fit curves are shown in Figs. 6, 7, 8,
and 9.

To estimate the systematic uncertainties caused by our assumptions on the lattice-spacing, quark-mass, and q2-
dependence, we also perform fits that include additional higher-order terms, employing the form

fHO(q2) =
1

1 � q2/(mf
pole)

2


af
0

✓
1 + cf0

m2
⇡ � m2

⇡,phys

⇤2
�

+ c̃f0
m3

⇡ � m3
⇡,phys

⇤3
�

◆
+ af

1

✓
1 + cf1

m2
⇡ � m2

⇡,phys

⇤2
�

◆
z(q2)

+af
2 z2(q2)

�
1 + bf

|p0|2
(⇡/a)2

+ df
⇤2
QCD

(⇡/a)2
+ b̃f

|p0|3
(⇡/a)3

+ d̃f
⇤3
QCD

(⇡/a)3
+ jf

|p0|2⇤QCD

(⇡/a)3
+ kf

|p0|⇤2
QCD

(⇡/a)3

�
. (79)

This allows for higher-order variation in the lattice spacing, quark masses, and momentum dependence. The data
themselves do not determine this more complex form su�ciently well, so we constrain the higher-order coe�cients
c̃f0 , cf1 , b̃f , d̃f , jf , kf to be natural-sized using Gaussian priors with central value 0 and width 10. We constrain the
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second-order z-expansion coe�cients af
2 using Gaussian priors with central values 0 and widths given by approximately

twice the magnitude of the previous (nominal) fit results for af
1 . Given that this fit is quadratic in z, we now impose

the kinematic constraints (14) and (15) at q2 = 0 up to a width of z(0)3. In the higher-order fit, we use bootstrap
data for the correlator ratios in which the matching- and O(a)-improvement coe�cients were drawn from Gaussian
random distributions with central values and widths according to Table III. Thus, the higher-order fit results also
include the perturbation-theory systematic uncertainty. In the physical limit, the higher-order fit functions reduce to

fHO(q2) =
1

1 � q2/(mf
pole)

2

⇥
af
0 + af

1 z(q2) + af
2 z2(q2)

⇤
. (80)

The systematic uncertainties associated with the finite lattice volume cannot easily be estimated from our fits, because
all of our data sets have approximately the same lattice size, L ⇡ 2.7 fm. Finite-volume e↵ects have been calculated
using chiral perturbation theory for the nucleon magnetic moment [62] and axial charge [63], and, specifically for
the ensembles used herein, for the heavy-baryon axial couplings [60, 64]. Based on this experience, we estimate
that the finite-volume systematic uncertainties in our results are 3% for the ⇤b ! p form factors, and 1.5% for
the ⇤b ! ⇤c form factors. The neglected isospin breaking e↵ects in the form factors are estimated to be of order
O((md � mu)/⇤QCD) ⇡ 0.5% and O(↵e.m.) ⇡ 0.7%. We add the finite-volume and isospin-breaking systematic

uncertainties in quadrature to the uncertainties of the fit parameters af
0 , af

1 , af
2 from the higher-order fit. The values

of these parameters, their total uncertainties, and their correlation matrices are given in Tables X and XI, and are
also included as ancillary files with the arXiv submission.

The recommended procedure for computing the central value, statistical uncertainty, and total systematic uncer-
tainty of a general observable depending on the form factor parameters (for example, a di↵erential decay rate at a
particular value of q2, or an integrated decay rate, or a ratio of decay rates) is the following:

1. Compute the observable and its uncertainty using the nominal form factors given by Eq. (78), with the parameter
values and correlation matrices from Tables VIII and IX. Denote the so-obtained central value and uncertainty
as

O, �O. (81)

2. Compute the same observable and its uncertainty using the higher-order form factors given by Eq. (80), with
the parameter values and correlation matrices from Tables X and XI. Denote the so-obtained central value and
uncertainty as

OHO, �O,HO. (82)

3. The final result for the observable is then given by

O ± �O|{z}
stat.

± max
⇣
|OHO � O|,

q
|�2

O,HO � �2
O|
⌘

| {z }
syst.

. (83)

In other words, the central value and statistical uncertainty are obtained from the nominal fit, and the systematic
uncertainty is given by the larger of the following two quantities: i) the shift in the central value between the nominal
fit and the higher-order fit, and ii) the increase in the uncertainty (computed in quadrature as shown above) from
the nominal fit to the higher-order fit. The statistical and systematic uncertainties in Eq. (83) should be added in
quadrature. By construction, the above procedure gives the combined systematic uncertainty associated with the
continuum extrapolation, chiral extrapolation, z expansion, perturbative matching, finite volume, and missing isospin
symmetry breaking/QED.

Plots of the form factors including the systematic uncertainties, computed as explained above, are shown in Figs. 10
and 12. The relative systematic uncertainties in the form factors are shown in Figs. 11 and 13. In addition to the
combined systematic uncertainty (thick black curves), these figures also show the individual sources of uncertainty.
The individual systematic uncertainties other than those from the finite-volume and missing isospin symmetry breaking
were estimated using additional fits as follows:

• continuum extrapolation uncertainty: only the higher-order terms with coe�cients b̃f , d̃f , jf , kf were added to
Eq. (75).

• chiral extrapolation uncertainty: only the higher-order terms with coe�cients c̃f0 , cf1 were added to Eq. (75).

• z expansion uncertainty: only the higher-order term af
2 z2(q2) was added to Eq. (75).
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