# Higgs to Invisible at ATLAS

Elliot Lipeles University of Pennsylvania



### Outline



Physics Motivation





Data Analyses



Vector Boson Fusion (VBF),  $H \rightarrow invisible$  q W, Z W, Z W, Z W, Z W, Z Q W, Z W, ZW, Z

q

Summary: Other measurements, constraints, and interpretation





### **Unique in SM**

 $HH^{\dagger}$  is a dimension two operator with no quantum numbers

It is the only gauge invariant and Lorentz invariant operator than can couple to SU(3)xSU(2)xU(1) singlets at tree level

I.e. coupling to fermions or the gauge bosons would require a larger than dim 4 operator, which not renormalizable and must have a cut-off scale

### Higgs Portal Concept

General Idea: DM only couples to SM via Higgs

- Simplest one DM particle with WIMP miracle and no other particles already excluded
- Higgs would have been mostly invisible
  - Still order 50 papers with "Higgs Portal" in the title since the Higgs discovery with many variations



Production: Collider Searches



Early Universe





Early Universe





4









#### UNIVERSITY of PENNSYLVANIA





#### UNIVERSITY of PENNSYLVANIA

## Relation to Direct Searches





Variety of Underground Experiments

We will be able to put a line on this plot under the assumptions that the DM couples to the nucleon via Higgs (and some other caveats)

### Direct Dark Matter "Signals"





Shaded Areas at "Signals"

Obviously the signals are hotly debated

Higgs to Invisible will limit the potential coupling of candidate models with masses below m<sub>H</sub>/2



### Indirect Dark Matter "Signals"



Indirect searches = looking for particles from DM annihilation in Galaxy or Galaxy Halos

Gamma Ray Sky (~300 MeV to 50 GeV)



#### **Elliot Lipeles**

### Indirect Dark Matter "Signals"



Indirect searches = looking for particles from DM annihilation in Galaxy or Galaxy Halos

Gamma Ray Sky (~300 MeV to 50 GeV)



### ATLAS stuff...

pp collisions

Penn UNIVERSITY of PENNSYLVANIA

Results are with Run I Data: 7 Tev (4.5 fb<sup>-1</sup>) and 8 TeV (20.3 fb<sup>-1</sup>)

I won't further describe the ATLAS detector and data set



# Higgs to Invisible





# Higgs to Invisible: Why not ggH?





### The real reason is over here

- Gluons and quarks in the proton don't couple well to the Higgs
- $qq \rightarrow Z \rightarrow vv$  background is much larger than ggH production

$$\frac{\sigma(ggH)}{\sigma(Z) \times BR(Z \to \nu\nu)} = \frac{\approx 19 \text{ pb}}{\approx 6000 \text{ pb}}$$

- Need to focus on processes where signal is on a more equal footing with background
- I.e. things that already have a W or Z in them (top also works ...see later...)

$$\frac{\sigma(VBFH)}{\sigma(VBF-like\ Z)\times BR(Z\to\nu\nu)} = \frac{\approx 1.6\ \mathrm{pb}}{\approx 0.6\ \mathrm{pb}}$$



Signal and Background Summary

Basic Selection: Exactly two charged leptons (e or  $\mu$ , only same-flavor combinations) "Missing Transverse Energy" ( $E_T^{miss}$ ) (actually momentum)



11



Selection and Resulting Composition



Signal here is normalized to a 100% Higgs branching fraction... limits will be a bit below this

## Z + MET Event Topology







### Selection and Resulting Composition



After all cuts 100% BR signal would be comparable to total background (signal is stack on backgrounds)

Slightly better S/B at high  $E_T^{miss}$ 

Signal is extracted from fit to this  $E_T^{miss}$  distribution

| Data period                                                                    | 2011 (7 TeV)                | 2012 (8 TeV)             |
|--------------------------------------------------------------------------------|-----------------------------|--------------------------|
| $ZZ \rightarrow \ell\ell\nu\nu$                                                | $20.0 \pm 0.7 \pm 1.6$      | $91\pm1\pm7$             |
| $WZ \rightarrow \ell \nu \ell \ell$                                            | $4.8\pm0.3\pm0.5$           | $26\pm1\pm3$             |
| Dileptonic $t\bar{t}$ , $Wt$ , $WW$ , $Z \rightarrow \tau\tau$                 | $0.5\pm0.4\pm0.1$           | $20\pm3\pm5$             |
| $Z \rightarrow ee, Z \rightarrow \mu\mu$                                       | $0.13 \pm 0.12 \pm 0.07$    | $0.9\pm0.3\pm0.5$        |
| W + jets, multijet, semileptonic top                                           | $0.020 \pm 0.005 \pm 0.008$ | $0.29 \pm 0.02 \pm 0.06$ |
| Total background                                                               | $25.4 \pm 0.8 \pm 1.7$      | $138\pm4\pm9$            |
| Signal ( $m_H = 125.5$ GeV, $\sigma_{ZH,SM}$ , BR( $H \rightarrow inv.$ ) = 1) | $8.9\pm0.1\pm0.5$           | $44 \pm 1 \pm 3$         |
| Observed                                                                       | 28                          | 152                      |



**Background Modeling and Systematics** 

### Dominant ZZ background is modeled with MC simulation

| Systematics included PDFs and scale (q <sup>2</sup> ) variations                                 | 5% |
|--------------------------------------------------------------------------------------------------|----|
| Specified parton shower model uncertainty for jet-veto                                           | 6% |
| Many detector response systematics (generally small)<br>Largest is jet energy scale for jet-veto | 6% |

WZ background and Signal (ZH) similar to ZZ

WW,  $t\bar{t}$ , Wt, and  $Z \rightarrow \tau \tau$ : Use eµ combinations and extrapolate to ee/µµ

Z+jets with fake  $E_T^{miss}$  is modeled with "ABCD" method using  $\phi(\vec{E}_T^{miss}, \vec{p}_T^{ll})$ and  $|E_T^{miss} - p_T^{ll}|/p_T^{ll}$ 

$$N_A = N_C \times \frac{N_C}{N_D}$$

A 7% correlation between these variables is found in MC





Statistical Interpretation and Results



At  $m_H = 125 \text{ GeV}$ 

Observed BR limit 75% at 95% C.L.

Expected BR limit 62% at 95% C.L.

Scan a variety of Higgs masses

Signal and Background Summary VBF = vector boson fusion

### Signal:VBF, $H \rightarrow$ invisible



Irreducible  $Z \rightarrow vv$  background: VBF,  $Z \rightarrow vv \sim$  "Weak",  $Z \rightarrow vv$ 



Plus "multijet QCD" (i.e. no actual weak bosons)

"Reducible"  $Z \rightarrow vv$  background: "Strong"  $Z \rightarrow vv$ 



"Strong" has 2 ewk vertices

W background: Both Strong and Weak  $W \rightarrow Iv$  (with lost lepton)

![](_page_22_Figure_11.jpeg)

![](_page_22_Picture_12.jpeg)

Penn UNIVERSITY of PENNSYLVANIA

How do you tell VBF from non-VBF?

![](_page_23_Figure_3.jpeg)

**Elliot Lipeles** 

# **VBF Event Display**

![](_page_24_Picture_1.jpeg)

### Actually $H \rightarrow WW \rightarrow IIvv$ but illustrative anyway

![](_page_24_Figure_3.jpeg)

# **VBF** Event Display

![](_page_25_Picture_1.jpeg)

### Actually $H \rightarrow WW \rightarrow IIvv$ but illustrative anyway

![](_page_25_Figure_3.jpeg)

Second handle for VBF: Central Jet Veto

VBF-like topologies: Signal and Weak  $Z \rightarrow vv$  background

![](_page_26_Figure_3.jpeg)

![](_page_26_Picture_4.jpeg)

![](_page_26_Figure_5.jpeg)

![](_page_27_Picture_1.jpeg)

Second handle for VBF: Central Jet Veto

![](_page_27_Figure_3.jpeg)

Selection

![](_page_28_Figure_2.jpeg)

![](_page_28_Picture_6.jpeg)

![](_page_29_Picture_1.jpeg)

Selection

| Paper                                              | actually has three si         | gnal regions                   |                                |  |  |
|----------------------------------------------------|-------------------------------|--------------------------------|--------------------------------|--|--|
| Requirement                                        | SR1                           | SR2a                           | SR2b                           |  |  |
| Leading Jet $p_{\rm T}$                            | >75 GeV                       | >120 GeV                       | >120 GeV                       |  |  |
| Leading Jet Charge Fraction                        | N/A                           | >10%                           | >10%                           |  |  |
| Second Jet $p_{\rm T}$                             | >50 GeV                       | >35 GeV                        | >35 GeV                        |  |  |
| $m_{jj}$                                           | >1 TeV                        | $0.5 < m_{jj} < 1 \text{ TeV}$ | > 1 TeV                        |  |  |
| $\eta_{j1} \times \eta_{j2}$                       |                               | <0                             |                                |  |  |
| $ \Delta \eta_{jj} $                               | >4.8                          | >3                             | $3 <  \Delta \eta_{jj}  < 4.8$ |  |  |
| $ \Delta \phi_{jj} $                               | <2.5                          | N/A                            |                                |  |  |
| Third Jet Veto $p_{\rm T}$ Threshold               | 30 GeV                        |                                |                                |  |  |
| $ \Delta \phi_{j,E_{\mathrm{T}}^{\mathrm{miss}}} $ | >1.6 for $j_1$ , >1 otherwise | >0.:                           | 5                              |  |  |
| $E_{ m T}^{ m miss}$                               | >150 GeV                      | >200 GeV                       |                                |  |  |

Almost all the sensitivity comes from SR1 which is what I described

m<sub>jj</sub> > I TeV

No addition jets, pt > 30 GeV

Normalized to

7 N<sup>gap</sup>

#### **Elliot Lipeles**

### UNIVERSITY of PENNSYLVANIA

# VBF Higgs to Invisible

### **Resulting Selection**

Signal Signal region SR1 for 100% Process Branching  $20 \pm 15$ ggF signal Fraction, VBF signal  $286 \pm 57$ (Yields  $Z(\rightarrow \nu\nu)$ +jets  $339 \pm 37$ from MC)  $W(\rightarrow \ell \nu)$ +jets  $235 \pm 42$ Multijet  $2\pm 2$ Other backgrounds  $1 \pm 0.4$ Total background  $577 \pm 62$ 539 Data W and Z backgrounds are ~50/50 strong and weak production (background estimation next slide...) Small top and diboson backgrounds from MC

Mulitjet from similar procedure to ZH analysis:  $|\Delta \varphi(j,j)|$  and  $|\Delta \varphi(j, E_T^{miss})|$ 

![](_page_30_Figure_6.jpeg)

![](_page_30_Picture_7.jpeg)

![](_page_31_Picture_1.jpeg)

**Background Modeling** 

### MC systematics are just too large to exploit the full statistics!

### W and Z systematics from MC modeling

| Uncertainty           | Z or W                |   |                                                                                                           |
|-----------------------|-----------------------|---|-----------------------------------------------------------------------------------------------------------|
| Jet energy scale S    | RI 17–33<br>R2 0–11   |   | Detector Response to Jets: How well does a                                                                |
| Jet energy resolution | Negligible<br>0.2–7.6 |   | generator level jet energy agree with a reconstructed jet energy. (Forward jets are less well calibrated) |
| Luminosity            | 2.8                   |   |                                                                                                           |
| QCD scale             | 5–36<br>7.5–21        |   | Modeling of Underlying Physics of the<br>Z or W + 2-jet process                                           |
| PDF                   | 3–5<br>0.1-2.6        | < | Structure of Proton                                                                                       |
| Parton shower         | 9–10                  | ← | How partons (gluon or quark) hadronize                                                                    |
| Numb                  | ers at in %           | - |                                                                                                           |

Background yield will have a 1/sqrt(577 events) ~ 4% statistical error Systematic Uncertainty on W and Z MC yield ~50%

![](_page_32_Picture_1.jpeg)

### **Background Modeling**

Solution: Use  $Z \rightarrow II$  and  $W \rightarrow Iv$  data with found leptons to model  $Z \rightarrow vv$  and  $W \rightarrow Iv$  (with a lost lepton)

### Define Control Regions:

- Z CR = 2-leptons, use II-system in place of  $E_T^{miss}$  wherever it occurs
- W CR = I-lepton+MET and use I+MET-system in place of  $E_T^{miss}$  wherever it occurs

# There are two yields to predict in the signal region:

- Z→vv
- $W \rightarrow Iv$  where the lepton is lost

# Naively you would use W to model W and Z to model Z, but there is a problem

- Z→II statistics is really poor b/c small Z→II branching fraction
- BR(Z→ee+µµ) ~0.066
- BR(Z→vv) ~0.2

|                                     | SR1 Z Control Regions     |                               |  |  |  |  |  |
|-------------------------------------|---------------------------|-------------------------------|--|--|--|--|--|
| Background                          | $Z(\rightarrow ee)$ +jets | $Z(\rightarrow \mu\mu)$ +jets |  |  |  |  |  |
| $QCD Z \rightarrow \ell \ell$       | $10.4 \pm 1.5$            | $14.0 \pm 1.5$                |  |  |  |  |  |
| $\operatorname{EW} Z \to \ell \ell$ | $7.4 \pm 0.8$             | $8.2 \pm 0.8$                 |  |  |  |  |  |
| Other Backgrounds                   | $0.3 \pm 0.2$             | $0.2 \pm 0.1$                 |  |  |  |  |  |
| Total                               | $18.1 \pm 1.7$            | $22.4 \pm 1.7$                |  |  |  |  |  |
| Data                                | 22                        | 25                            |  |  |  |  |  |

### We don't want to use $\sim 50 \mathbb{Z} \rightarrow II$ events to model $\sim 340 \mathbb{Z} \rightarrow vv$ events

**Background Modeling** 

### Solution: Allow $W \rightarrow Iv$ to model $Z \rightarrow vv$

• processes are similar enough to account for difference with MC

![](_page_33_Figure_4.jpeg)

![](_page_33_Picture_5.jpeg)

Z

q

![](_page_34_Picture_1.jpeg)

**Background Modeling** 

![](_page_34_Figure_3.jpeg)

![](_page_35_Picture_1.jpeg)

### Systematics Reduction with Ratio Method

|                        |            | *                                                  | = |
|------------------------|------------|----------------------------------------------------|---|
| Uncertainty            | Z or W     | $Z_{\rm SR}/W_{\rm CR}$ or $W_{\rm SR}/W_{\rm CR}$ |   |
| Lat among souls        | 17–33      | 3–5                                                | - |
| Jet energy scale       | 0–11       | 1-4                                                |   |
| Lat anarray resolution | Negligible | Negligible                                         | - |
| Jet energy resolution  | 0.2–7.6    | 0.5–5.8                                            |   |
| Luminosity             | 2.8        | Irrelevant                                         | - |
|                        | 5–36       | 7.8–12                                             |   |
| QCD scale              | 7.5–21     | 1–2                                                |   |
| DDE                    | 3–5        | 1.2                                                | - |
| FDF                    | 0.1-2.6    |                                                    |   |
| Parton shower          | 9–10       | 5                                                  | - |

QCD scale variations are treated as correlated for W and Z processes

Assumption validated using  $Z \rightarrow II/W \rightarrow Iv$  in a sample with loosened VBF selection

### Effect of Systematics Significantly Reduced

- Uncertainty on absolute yields is order 30-50% total
- Uncertainty on ratios is order 10%
  - many uncertainties are actually now MC stat limited :(

Statistical Interpretation and Results

### Global likelihood fit using 1-bin for each SR and CR

- Total 9 bins (SR,W-CR, Z-CR) x (SRI, SR2a, SR2b)
- Free parameters are
  - 3 scale factors for the W and Z in each of (SRI, SR2a, SR2b)
  - I signal yield correlated across all bins
- Systematics implemented as correlated Gaussian constrained nuisance parameters

![](_page_36_Picture_8.jpeg)

### Postfit yields and uncertainties

| SR1          |
|--------------|
|              |
| $20 \pm 15$  |
| $286 \pm 57$ |
| $339 \pm 37$ |
| $235 \pm 42$ |
| 2± 2         |
| 1±0.4        |
| $577 \pm 62$ |
| 539          |
|              |

### Final Results = Limits on Invisible Higgs BR !!!

| Results          | Expected | $+1\sigma$ | $-1\sigma$ | $+2\sigma$ | $-2\sigma$ | Observed |
|------------------|----------|------------|------------|------------|------------|----------|
| SR1              | 0.35     | 0.49       | 0.25       | 0.67       | 0.19       | 0.30     |
| SR2              | 0.60     | 0.85       | 0.43       | 1.18       | 0.32       | 0.83     |
| Combined Results | 0.31     | 0.44       | 0.23       | 0.60       | 0.17       | 0.28     |

### Recall ZH, $Z \rightarrow II$ limit was 75% observed with 65% expected

### Other Higgs to Invisible Limits

![](_page_37_Picture_1.jpeg)

|                   | ΑΤΙ      | LAS      | CI       | 15       |
|-------------------|----------|----------|----------|----------|
|                   | Observed | Expected | Observed | Expected |
| ZH, Z→II          | 75%      | 62%      | 83%      | 86%      |
| VBF H             | 28%      | 31%      | 57%      | 40%      |
| WH+ZH with W/Z→jj | 78%      | 86%      | 53%      | 62%      |
| ZH with W/Z→bb    |          |          | 182%     | 199%     |

These signals will all largely systematics limited, If a signal is observed then it will have to be multiple places to be believed

Interestingly a CMS search for tt+MET can be reinterpreted as a ttH,  $H \rightarrow$  invisible limit giving 40% observed (65% expected) PRL 113, 151801 (2014)

# Limits from Global Fits

There is an entirely different way to constrain Higgs to Invisible

We have a huge array of measurements of visible Higgs decays

**All** of these would be suppressed if the Higgs had an additional decay mode

$$\sigma(ggH) \times BR(H \to WW) = \sigma(ggH) \overbrace{\Gamma_{\text{total}}}^{\Gamma_{WW}}$$

 $\Gamma_{\rm total} = \Gamma_{\rm bb} + \Gamma_{\rm WW} + \Gamma_{\rm ZZ} + \dots + \Gamma_{\rm BSM}$ 

Of course there can be conspiracies where e.g. an extra  $\Gamma_{BSM}$  is hidden by a suppressed  $\Gamma_{bb}$  ... until  $H \rightarrow bb$  is well measured

![](_page_38_Picture_7.jpeg)

| ATLA                                       | S                                                                                                                                                     | Input measurements         |     |                                                |                                       |             |               |
|--------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|-----|------------------------------------------------|---------------------------------------|-------------|---------------|
| Individ                                    | ual analysis                                                                                                                                          | m <sub>H</sub> (Ge         | eV) | ±                                              | 1σ οι                                 | nμ          |               |
| $H  ightarrow \gamma \gamma$               | Overall: $\mu = 1.17^{+0.27}_{-0.27}$<br>ggF: $\mu = 1.32^{+0.38}_{-0.38}$<br>VBF: $\mu = 0.8^{+0.7}_{-0.7}$                                          | 125.4<br>125.4<br>125.4    |     | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- |                                       | •••<br>•••• |               |
|                                            | WH: $\mu = 1.0^{+1.0}_{-1.6}$<br>ZH: $\mu = 0.1^{+3.7}_{-0.1}$                                                                                        | 125.4<br>125.4             |     | F                                              | •                                     |             | → :<br>       |
| $H \rightarrow ZZ^{\star}$                 | Overall: $\mu = 1.44^{+0.40}_{-0.33}$<br>ggF+ttH: $\mu = 1.7^{+0.5}_{-0.4}$<br>VBF+VH: $\mu = 0.3^{+1.6}_{-0.9}$                                      | 125.36<br>125.36<br>125.36 |     | · · · ·                                        |                                       |             |               |
| $H \rightarrow WW^*$                       | Overall: $\mu = 1.16^{+0.24}_{-0.21}$<br>ggF: $\mu = 0.98^{+0.29}_{-0.26}$<br>VBF: $\mu = 1.28^{+0.55}_{-0.47}$                                       | 125.36<br>125.36<br>125.36 |     |                                                |                                       |             |               |
| $\textbf{H} \rightarrow \tau \tau$         | VH: $\mu = 3.0^{+1.6}_{-1.3}$<br>Overall: $\mu = 1.43^{+0.43}_{-0.37}$<br>ggF: $\mu = 2.0^{+1.5}_{-1.2}$                                              | 125.36<br>125.36<br>125.36 |     |                                                | -                                     |             |               |
| $	extsf{VH}  ightarrow 	extsf{Vbk}$        | VBF+VH: $\mu = 1.24^{+0.54}_{-0.54}$<br>Overall: $\mu = 0.52^{+0.40}_{-0.40}$<br>WH: $\mu = 1.11^{+0.65}_{-0.61}$<br>ZH: $\mu = 0.05^{+0.52}_{-0.49}$ | 125.36<br>125.36<br>125    |     |                                                |                                       | •           |               |
| $\textbf{H} \rightarrow \mu \mu$           | Overall: $\mu = -0.7^{+3.7}_{-3.7}$                                                                                                                   | 125.5                      |     | :                                              | :                                     |             |               |
| $\textbf{H} \rightarrow \textbf{Z} \gamma$ | Overall: $\mu = 2.7^{+4.5}_{-4.3}$                                                                                                                    | 125.5                      | :   |                                                | :                                     |             | •             |
| ttH                                        | bb: $\mu = 1.5^{+1.1}_{-1.1}$<br>Multilepton: $\mu = 2.1^{+1.4}_{-1.2}$<br>$\gamma\gamma$ : $\mu = 1.3^{+2.62}_{-1.75}$                               | 125<br>125<br>125.4        |     |                                                | ,                                     |             |               |
|                                            | 1                                                                                                                                                     |                            |     | )<br>                                          | • • • • • • • • • • • • • • • • • • • | 2           |               |
| \s = 7 TeV<br>\s = 8 TeV                   | , 4.5-4.7 fb⁻¹<br>, 20.3 fb⁻¹                                                                                                                         |                            |     | -<br>S                                         | Signa                                 | ے<br>I stre | -<br>ngth (μ) |

### Global Higgs Fits

![](_page_39_Picture_1.jpeg)

General Idea: for each Higgs coupling add a parameter  $\kappa$  which describes it's deviation from the SM (SM is when all  $\kappa_x = 1$ )

![](_page_39_Figure_3.jpeg)

## Limits from Global Fits

Each measurement here can then be described in terms of this model....

$$\mu = \frac{\sigma \times BR}{\sigma_{SM} \times BR_{SM}} = \frac{\kappa_g^2 \cdot \kappa_Z^2}{\kappa_h^2}$$

where

$$\kappa_h^2 = \sum_{jj} \frac{\kappa_j^2 \Gamma_{jj}^{\rm SM}}{\Gamma_h^{\rm SM}}$$

Numerator here is calculation this:

 $\Gamma_{total} = \Gamma_{bb} + \Gamma_{WW} + \Gamma_{ZZ} + ... + \Gamma_{BSM}$ 

Then do a global fit using all the measurements to get limits on the K<sub>x</sub> parameters

![](_page_40_Picture_8.jpeg)

| ATLA                                       | S                                                                                                                                | Input measurements             |     |   |      |      |             |                  |                                                                             |     |
|--------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|--------------------------------|-----|---|------|------|-------------|------------------|-----------------------------------------------------------------------------|-----|
| Individu                                   | ual analysis                                                                                                                     | m <sub>H</sub> (Ge             | eV) |   | ± 10 | 5 OI | nμ          |                  |                                                                             |     |
| $\textbf{H} \rightarrow \gamma \gamma$     | Overall: $\mu = 1.17^{+0.27}_{-0.27}$<br>ggF: $\mu = 1.32^{+0.38}_{-0.38}$                                                       | 125.4<br>125.4                 |     |   |      |      | <b>⊷</b>    |                  |                                                                             |     |
|                                            | VBF: $\mu = 0.8_{-0.7}$<br>WH: $\mu = 1.0^{+1.6}_{-1.6}$<br>ZH: $\mu = 0.1^{+3.7}_{-0.1}$                                        | 125.4<br>125.4<br>125.4        |     |   | -    | •    |             | _                |                                                                             |     |
| $H \rightarrow ZZ^{\star}$                 | Overall: $\mu = 1.44^{+0.40}_{-0.33}$<br>ggF+ttH: $\mu = 1.7^{+0.5}_{-0.4}$<br>VBF+VH: $\mu = 0.3^{+1.6}$                        | 125.36<br>125.36               |     |   |      |      | <b>⊢</b> ⊕– | -                | <br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- |     |
| $H \rightarrow WW^*$                       | Overall: $\mu = 1.16^{+0.24}_{-0.21}$<br>ggF: $\mu = 0.98^{+0.29}_{-0.26}$<br>VBF: $\mu = 1.28^{+0.55}$                          | 125.36<br>125.36<br>125.36     |     |   |      | -    | <b>●</b> -1 |                  | <u> </u>                                                                    |     |
| H  ightarrow 	au 	au                       | $VH: \mu = 3.0^{+1.6}_{-1.3}$ $VH: \mu = 3.0^{+1.6}_{-1.3}$ $Overall: \mu = 1.43^{+0.43}_{-0.37}$ $ggF: \mu = 2.0^{+1.5}_{-1.2}$ | 125.36<br>125.36<br>125.36     |     |   |      |      |             | ·<br>·<br>·<br>· |                                                                             |     |
| VH  ightarrow Vbb                          | Overall: $\mu = 0.52^{+0.40}_{-0.54}$<br>WH: $\mu = 1.11^{+0.65}_{-0.61}$<br>ZH: $\mu = 0.05^{+0.52}_{-0.49}$                    | 125.36<br>125.36<br>125<br>125 |     |   |      |      | •1          |                  |                                                                             |     |
| $\textbf{H} \rightarrow \mu \mu$           | Overall: $\mu = -0.7^{+3.7}_{-3.7}$                                                                                              | 125.5                          |     | : | •    |      |             |                  |                                                                             |     |
| $\textbf{H} \rightarrow \textbf{Z} \gamma$ | Overall: $\mu = 2.7^{+4.5}_{-4.3}$                                                                                               | 125.5                          |     |   |      |      |             |                  | :                                                                           |     |
| ttH                                        | $bb: \mu = 1.5^{+1.1}_{-1.1}$<br>Multilepton: $\mu = 2.1^{+1.4}_{-1.2}$<br>$\gamma\gamma: \mu = 1.3^{+2.62}_{-1.75}$             | 125<br>125<br>125.4            |     |   |      | •    | •           |                  |                                                                             |     |
| vs = 7 TeV,                                | 4.5-4.7 fb <sup>-1</sup>                                                                                                         |                                |     | 2 | (    | )    | 2           | <u>)</u>         |                                                                             | • • |
| vs = 8 TeV,                                | 20.3 fb <sup>-1</sup>                                                                                                            |                                |     |   | Siç  | gna  | l str       | eng              | gth                                                                         | (μ) |

# Global Higgs Fits

![](_page_41_Picture_1.jpeg)

### Invisible Limits

### Here is the set parameters included in the fit

|                                     | KZ             | Z boson coupling s.f.    | $0.99 \pm 0.15$                               |
|-------------------------------------|----------------|--------------------------|-----------------------------------------------|
| Higgs portal                        | $\kappa_W$     | W boson coupling s.f.    | $0.92 \pm 0.14$                               |
| (Baseline config.<br>of vis. & inv. | Kt             | t-quark coupling s.f.    | $1.26^{+0.32}_{-0.34}$                        |
| Higgs boson                         | к <sub>b</sub> | b-quark coupling s.f.    | $0.61 \pm 0.28$                               |
| decay channels:<br>general coupling | κτ             | Tau lepton coupling s.f. | 0.98 <sup>+0.20</sup><br>-0.18                |
| param., no                          | $\kappa_{\mu}$ | Muon coupling s.f.       | < 2.25 at 95% CL                              |
| assumption about $\kappa_{W,Z}$ )   | ĸg             | Gluon coupling s.f.      | 0.92 <sup>+0.18</sup> <sub>-0.15</sub>        |
|                                     | κγ             | Photon coupling s.f.     | <b>0.90</b> <sup>+0.16</sup> <sub>-0.14</sub> |
|                                     | KZV            | $Z\gamma$ coupling s.f.  | < 3.15 at 95% CL                              |

### + BR<sub>inv</sub> which is the key parameter for Higgs to invisible limits!

| Decay channels     | $\kappa_i$ assumption | Upper limit on BR <sub>inv</sub> |      |                                       |
|--------------------|-----------------------|----------------------------------|------|---------------------------------------|
|                    |                       | Obs.                             | Exp. | Combination of direct limits          |
| Invisible decays   | $\kappa_{W,Z,g} = 1$  | 0.25                             | 0.27 |                                       |
| Visible decays     | $\kappa_{W,Z} \leq 1$ | 0.49                             | 0.48 | Indirect limit from visible processes |
| Inv. & vis. decays | None                  | 0.23                             | 0.24 |                                       |
| Inv. & vis. decays | $\kappa_{W,Z} \leq 1$ | 0.23                             | 0.23 | Combination of everything under       |
|                    | <u>.</u>              |                                  |      | <sup>=</sup> two assumptions          |

# Higgs Portal Interpretation

![](_page_42_Picture_1.jpeg)

![](_page_42_Figure_2.jpeg)

### Assuming DM couples to SM via Higgs only and other caveats.... (next slide)

### Caveats on the Portal Models

![](_page_43_Picture_1.jpeg)

### Here are the Lagrangians...

$$\mathcal{L}_{\text{SSDM}} = \frac{1}{2} \partial_{\mu} S \partial^{\mu} S - \frac{1}{2} m_{S}^{2} S^{2} - \frac{\lambda_{S}}{4!} S^{4} - \frac{\lambda_{HS}}{2} S^{2} H^{\dagger} H$$
$$\mathcal{L}_{\text{SFDM}} = \overline{\psi} (i\partial - m_{\psi}) \psi - \frac{\lambda_{\psi H}}{\Lambda} \overline{\psi} \psi H^{\dagger} H$$
$$\mathcal{L}_{\text{VDM}} = -\frac{1}{4} V_{\mu\nu} V^{\mu\nu} + \frac{1}{2} m_{V}^{2} V_{\mu} V^{\mu} - \frac{\lambda_{VH}}{2} V_{\mu} V^{\mu} H^{\dagger} H - \frac{\lambda_{V}}{4} (V_{\mu} V^{\mu})^{2}$$

### Problems

- Masses inserted by hand
- Vector mass given by hand is not renormalizable
- Fermion is an effective field theory and if the mediator that has been integrated out is too light it can effect the relationship between scattering cross-section and BR<sub>inv</sub>

### On going theory work on this topic

• Next slide example impact of fixing these problems in the context of a model

### Caveats on the Portal Models

![](_page_44_Picture_1.jpeg)

Add an additional scalar to generate fermion and vector masses (and couple the fermion to the Higgs) <u>http://arxiv.org/abs/1405.3530</u>

![](_page_44_Figure_3.jpeg)

Dashed line is the simple Higgs Portal model result

# Higgs to Invisible Summary

![](_page_45_Picture_1.jpeg)

Provides strong constraint on Dark Matter model building for  $m_{DM} < m_H/2$ 

Strongly complementary to the direct dark matter searches

- H to invisible not sensitive above  $m_{\text{H}}/2$
- Direct dark matter not sensitive below ~m<sub>DM</sub> 10 GeV
- Overlap in ~10-60 GeV

Various hints in direct and indirect searches are in the overlap range

Getting ready for Run 2 VBF Higgs to Invisible

My other work you can ask me about later...

- H to WW (Run I only)
- SUSY compressed spectra trilepton (Run 2 only)
- ATLAS Phase-1/2 trigger (jets, track trigger, and menus/architecture)
- ATLAS Upgrade strips tracker readout
- Fast timing detectors (just starting)

![](_page_45_Figure_15.jpeg)