

Pixel Detector For ATLAS Phase-2 Upgrade: Tracking In Very Forward Rapidity Region

Sasha Pranko (LBNL)

Higgs Boson Discovery: Triumph Of LHC Run-1 Program

Main Run-1 results: discovery of Higgs boson; no signs of New Physics

Physics Program For High Luminosity LHC

ATLAS Simulation Preliminary

- Precision measurements of Higgs boson production and decay rates
- Observation of rare Higgs boson decays
- Search for HH production
- Search for new physics

11/30/15

Tracking Is Crucial For Success Of HL-LHC Program

- ATLAS tracking detector during HL-LHC run will have to provide efficient and precise track reconstruction in a very challenging environment with ~200 pile-up interactions per bunch crossing
- New detector must cope with high radiation field (up to 7.7 MGy and 1.4x10¹⁶n_{eq} cm⁻²)
- All silicon tracking detector: pixel detector + strip detector
- Extension of the tracking coverage into the very forward region (up to |η|
 <4) will significantly enhance the potential of the HL-LHC physics program

11/30/15

Extensive R&D Program Is Well Underway

- Technical Design Report (TDR) for Strip detector is due in 2016
- TDR for Pixel detector is due in Q4 of 2017
 - Pixel sensors (planar, 3D, CMOS,...)
 - New FE chip (RD53)
 - Module design, module electronics
 - Services
 - Local supports
 - Off-detector electronics
 - Global mechanics
 - Layout optimization
 - Software development

Two Concepts Of Pixel Detector For Phase-2 Upgrade

- Tracking in the forward region ($|\eta| > 2.7$) will rely solely on Pixel detector
- Two concepts of the Pixel detector are under study
 - Concept-1 ("Extended") utilizes long clusters from extended inner barrel layers
 - Concept-2 ("Inclined") utilizes inclined modules in two inner barrel layers
- Two layouts under study have the same Pixel end-cap
- Both layouts are optimized to have at least 9 space points for all η
- Choose final layout based on the comparison of performance (March 2016)
- Further optimize the chosen layout to achieve most optimal performance

Pixel Detector For Phase-2 Upgrade

• Sensors

- Planar sensors n-in-p (for now, R&D is ongoing)
- Barrel Layer-0,1 and inner end-cap ring: 50μm × 50μm × 100μm
 - Also consider option of $25\mu m \times 100\mu m \times 100\mu m$
- Barrel Layer-2,3,4 & end-cap: 50μm × 50μm × 150μm
- Aim at operating with 600e threshold(s)
- Electronics noise hit occupancy: 10⁻⁶
- Modules: "quad" modules everywhere (except for Layer-0, "double")
 - About 10,000 modules
- Barrel: 5 layers
 - R=3.9, 6.5, 16, 20, 30 cm
 - room for 6th layer, study of potential benefits are underway
- End-cap: 4 layers of rings, number of rings vary depending in η and R
 - R=15-19, 21-25, 27.5-31.5, 33.5-37.5 cm
- Total surface is ~14 m²
 - depends on layout, roughly 50/50 between barrel and end-cap
 - approximate cost is 38.5MCHF

Amount Of Material For Phase-2 ITK Detector

- Preliminary estimates for the "Extended" layout
 - This will change with more refined knowledge of services and after layout is finalized

- Highlights of design
 - Highly flexible design: individual rings can be placed where they are needed
 - Services can be routed in between rings: greatly simplifies the build
 - Use 4-chip "quad" modules: common development with barrel staves
 - Highly modular design: same elements everywhere, just scale is different
 - Intergration into ITK can be "monolithic" (in one piece) or "modular" (in sections)
 Seminar at Cornell

Ring Position Optimization For End-Cap

- For a given η range, each ring layer contributes a given number of hits
 - Allowing for some overlap between consecutive modules
 - Respecting a minimum distance of 8 cm between rings
- A similar principle is used for positioning the inclined barrel sensors

Ring Design For End-Cap

- Mechanical design is quite mature
 - Carbon fibre/foam sandwich
 - Embedded bus tape and cooling pipe
 - "Eos" card on surface for power and DCS
 - Currently assuming no GBTx-twinax routed directly from modules
- Each ring layer is attached to a support cylinder at the outer edge

"Inclined" Layout For Pixel Barrel Detector

- Modules inclined at 34° with respect to vertical line
- Helps to reduce amount of material traversed by a track
 - Reduces effect of multiple scattering and silicon area
- Provides (≥ 1 for given η) hits very close to interaction point
- Two technologies: "Alpine" and SLIM

"Extended" Layout For Pixel Barrel Detector

I-beams: low-mass carbon composite support structure

- Long clusters = "tracklets", providing initial precise estimates of θ and z₀
 - Seed pattern recognition
 - Potential to reduce fake rate
 - Potential to reduce CPU time
- Simple and easy to build design

Cornell

R&D Program For "Extended" Pixel Barrel Detector

- Institutions involved: LBNL, U. Louisville, U. Wisconsin
- Test beam to study clusters at very small incidence angles (this talk)
- Comparison of simulation with test beam results
- Development of pattern recognition based on cluster size (this talk)
- Tests of pattern recognition based on cluster size with simulation (this talk)
- Optimization of the layout
- Study of tracking performance and benefits to physics program with the optimized layout
- Test beam studies of the proto-type detector at very small incidence angles

SLAC ESA Test Beam

- Four un-irradiated Insertable B-Layer (IBL) modules
 - Two double-chip planar modules; two single-chip 3D modules
 - Most modules have FEI4B chips (one module with FEI4A chip)
 - Planar sensors: $50\mu m \times 250\mu m \times 200\mu m$
 - 3D sensors: 50μm × 250μm × 230μm
 - Modules tuned to 10 ToT at 16K electrons
- Beam: 10 GeV electrons, a few particles per bunch at 5 Hz
 - Studies with beam in "short" (50 μ m) and "long" (250 μ m) directions
 - 5 incidence angles: ~2°, ~4°, ~6°, ~10°, ~15°

CERN SPS Test Beam

- Single-chip 3D module with FEI4A chip
 - 5 incidence angles: ~2°, ~4°, ~6°, ~10°, ~15°
- Beam: charged pions (π^+) with 180 GeV
- Tracks measured with FEI4 telescope with 14µm and 8.5µm resolution in X and Y

Long Pixel Clusters Observed

- Example of typical clusters at ~2.5° (η~3.8)
- Planar module biased at -180V and with 1000e threshold
- Beam is in "short" (50µm) direction
 - "On-peak" cluster size is 93 pixels

Pixel Hit Efficiency In Test Beam Data

- Efficiency for "long" direction is >99.5% for all modules at all angles, thresholds and reverse bias voltages
- Efficiency for "short" direction has strong dependence on threshold
 - Efficiency in 3D modules also shows some dependence on incidence angle and reverse bias voltage

Cluster Length And Measurements Of Incidence Angle

Measurements Of Charge Sharing And Charge Collection

- Measurements performed using CERN data for 3D module as a function of reversed bias voltage
- Charge collection is smaller closer to pixel edges, effect is more pronounced at smaller bias voltages
- Charge sharing is larger at pixel edges and lower bias voltage

Small Angle Test Beam: Summary

- Long pixel clusters observed: confirmed the concept
- Precise measurement of the incidence angle based on cluster length
 - Essentially the same precision is achieved for 1000e and 2000e thresholds
- Pixel hit efficiency for 50µm pitch along the beam direction is >94%
 - Observed dependence on incidence angle
 - Efficiency strongly degrades with increasing threshold
 - As low as 70% efficiency at 2° incidence angle and 2000e threshold
 - Low thresholds are needed to ensure high pixel hit efficiency
- Charge collection and charge sharing show dependence on reverse bias voltage
- Next steps
 - Compare test beam results with simulation
 - Understand dependence of pixel hit efficiency dependence on incidence angle
 - Test beam studies with irradiated modules

Extended Inner Barrel Layers In Simulation

- Simulated layout is used to prove the concept of forward tracking based on the cluster size, to develop software tools and to gain understanding of potential benefits and issues
 - Pixel detector: 4 barrel layers and up to 12 disks on each side
 - (Inner most) Layer-0 coverage up to $|\eta| < 4$
 - Pixel pitch: $50 \times 50 \times 150 \ \mu m^3$ (Width×Length×Thickness)
 - Electronics threshold at 700e
 - Ttbar sample without pile-up ($\langle \mu \rangle = 0$) and with pile-up ($\langle \mu \rangle = 50$, 100, 200)

Long Pixel Clusters In Simulation

- Example of typical clusters at $|\eta|^{4}$
- Almost every long cluster is broken into several fragments
 - Pixel hit efficiency in simulation to be compared with test beam data
 - Unlike test beam, charge is integrated inside 25ns time window
 - Need clustering algorithm to merge broken clusters
- Efficiency for long clusters is essentially 100% ٠

Size Of Pixel Clusters From Prompt And Fake Tracks

- Pixel clusters from prompt tracks follow N_{col}=thickness/(pitch*tanθ) dependence very well
 - Tracks originating from pile-up and secondary interactions follow the same trend
- Most pixel clusters from fake tracks tend to have clusters size incompatible with N_{col}=thickness/(pitch*tanθ) dependence
 - Fake tracks are often made of random combination of pixel clusters

Pattern Recognition At ATLAS

- Track seed= 3 space points
 - Space point provides 3D measurement
 - 1 pixel cluster = 1 space point
 - 2 strip clusters = 1 space point
 - All possible combinations of space points are considered
 - Multiple seeds per track are created
 - Quality cuts applied to reduce number of fake seeds
 - Large number of fake seeds at 200 pile-up interactions
- Seeds provide initial estimates of track parameters
- Search for additional hits along road extrapolated from a seed
- Resolve combinatorial ambiguities due to large number of candidates per track
- Seed creation is most CPU extensive stage of track reconstruction

Pattern Recognition Based On Cluster Size: Concept

- Strategy-1: reject seeds with pixel clusters whose size is incompatible with θ_{seed}
 - This strategy is currently used in pattern recognition studies
- Strategy-2: search for clusters in small cone determined by cluster size in inner layers
 - This strategy potentially offers more advantages (like speed and lower fake rate), but it requires very good understanding and modeling of pixel cluster size
 - To be implemented in the future

Pattern Recognition Based On Cluster Size: Performance

- About 70% of track seeds in ttbar events with 200 pile-up collisions are in the forward region (|η|>2.7)
 - Seed creation is responsible for ~55% of total CPU time per event
- Cluster size information helps to reduce the number of central (|η|<2.7) and forward (|η|>2.7) seeds by ~30% and ~50%, respectively
 - Reduction in the number of seeds will lead to reduction in CPU time per event

Performance in ttbar events with 200 pile-up collisions at $\sqrt{s}=14$ TeV

Efficiency For Prompt Tracks

- Large reduction in the number of seeds does not have a significant impact on the number of reconstructed prompt tracks
 - Preliminary results; optimization studies are still in progress
 - N_{tracks}(new): number of tracks reconstructed with pattern recognition exploiting cluster size information
 - N_{tracks}(default): number of tracks reconstructed with default pattern recognition

Reduction In The Number Of Fake Tracks

- Default pattern recognition: most of the reconstructed tracks in the very forward region (|η|>3.5) are fakes
- New pattern recognition: large reduction in the number of fake tracks in the forward region with minimal impact on tracks from hard scattering and pile-up interactions
 - Preliminary results; optimization studies are still in progress

Pattern Recognition With Long Clusters: Summary

- Long clusters can be used to improve pattern recognition
- Cluster size in simulation follows predicted pattern
 - Cluster segments can be efficiently merged to restore the original cluster
- Large difference between size of clusters attached to prompt and fake tracks
- Use of cluster size information in pattern recognition allows for significant reduction in the number of seeds and will potentially lead to significant reduction in CPU time
- Reduction in the number of seeds is achieved at a minimal impact on the reconstruction efficiency for prompt tracks
- Use of cluster size information in pattern recognition allows for significant reduction in the number of fake tracks

Conclusions

- ATLAS R&D program for Phase-2 all-silicon tracker upgrade is well underway
 - Strip TDR is due in 2016
 - Pixel TDR is due in 2017
- Extensive studies are in progress for the layout of the tracking detector with coverage up to |η|<4
- Two competing concepts for the Pixel detector layout
 - "Extended" barrel layers
 - "Inclined" barrel modules
- "Extended" barrel layout utilizes cluster size information for improvements in pattern recognition
 - Concept is proven in test beam studies
 - Simulation studies indicate significant benefits for track reconstruction

Backup

End-Cap Pixel Detector

