Current Status of the MINOS and NOv_eA Experiments

Daniel Cronin-Hennessy Journal Club Cornell April 17th 2009

Outline

- Introduction
- Soudan Lab/NuMI
- MINOS detector and results
- NOv_eA Status
- Summary

MINOS

ΝΟνΑ

Argonne • Arkansas Tech • Athens • Benedictine • Brookhaven • Caltech • Cambridge • Campinas • Fermilab • Harvard • IIT • Indiana • Minnesota-Twin Cities • Minnesota-Duluth • Oxford • Pittsburgh • Rutherford • Sao Paulo • South Carolina • Stanford • Sussex • Texas A&M • Texas-Austin • Tufts • UCL • Warsaw • William & Mary

Argonne • Athens • Caltech • Fermilab • College de France • Harvard • Indiana • Michigan State • Minnesota-Twin Cities • Minnesota-Duluth • Rio de Janeiro • South Carolina • Stanford • Texas A&M • Texas-Austin • Tufts • Virginia • William & Mary

Neutrinos Have Mass

- Neutrino Oscillations: Basic quantum mechanical description of free propagation of a mixed state.
- This is the most simple interpretation of the observations:
 - Solar oscillations ($v_e \rightarrow v_{\mu}, v_{\tau}$)
 - Atmospheric ($v_{\mu} \rightarrow v_{\tau}$)
 - − Reactor Neutrinos $(v_e \rightarrow v_{other})$
 - Accelerator Neutrinos ($v_{\mu} \rightarrow v_{other}$)
- Neutrinos have mass but the masses are not of the same scale as the other fermions.
- We can't help but to ask: Does a different dynamical mechanism govern neutrino mass values?

Conceptually Simple

 $P(v_{\mu} \rightarrow v_{\mu}) = 1 - \sin^2 2\theta \sin^2(1.267\Delta m^2 L/E)$

Current Knowledge and Questions

- Two scales of mass-squared differences (~10⁻³ eV² and 10⁻⁵ eV²)
- $\sin^2 2\theta_{23} \approx 1 \sin^2 2\theta_{12} \approx .8$
- $m_2^2 > m_1^2$
- Is m₃²>m₂²? (What is the hierarchy?)
- How large $\sin^2\theta_{13}$? (How much v_e in v_3 ?)
- Is θ_{23} > or < $\pi/4$? (Is v_3 mostly v_{τ} or v_{μ} ?)
- Is δ non-zero? (Do v and anti-v oscillate identically? CP violation)
- Are other types of neutrinos involved? $(v_{sterile})$
- Are other mechanisms at work? (v decay)

Soudan Underground Laboratory

- Oldest Iron Mine in Minnesota
- Current occupants: MINOS far detector and CDMS II

NuMI perfromance

Current results on data through Run II

Results based on Runs I and II: 3.14 x 10²⁰ POT

MINOS Detectors

Near Detector

0.98 kton

1.04 km from target (FNAL)

100 m underground

 $3.8 \times 4.8 \times 15 \text{ m}^3$

282 steel planes

153 scintillator planes

Iron and Scintillator tracking calorimeters (functionally identical detectors) magnetized steel planes B ≈ 1.2T Multi-anode PMT readout GPS time-stamping to synchronize FD data to ND/Beam Main Injector spill times sent to the FD for a beam trigger

Far Detector 5.4 kton 735.3 km from target (Soudan) 705 m underground $8 \times 8 \times 30 \text{ m}^3$ 486 steel planes 484 scintillator planes

MINOS Technology

1×4.1 cm² scintillator strips
Multi-anode PMT readout
M64 for the ND, M16 for the FD

Two-detector v disappearance

Produce a high intensity beam of neutrinos at Fermilab

Measure the energy spectrum at both the near detector & the far detector

Near spectrum tells you what the far spectrum looks like without oscillation

 $P(v_{\mu} \rightarrow v_{\mu}) = 1 - \sin^2 2\theta \sin^2(1.267 \Delta m^2 L/E)$

Given L = 735km, oscillation parameters Δm_{23}^2 & sin²2 θ_{23} may be extracted from differences in measured vs. unoscillated energy spectra

Near Detector Events

- On average there are 16 interactions per spill in the near detector.
- Events are separated by space and time("slices").

Far detector events

- In the far detector there is 1 event in 10⁴ spills.
- Cosmic ray backgrounds are suppressed by direction, rock, and timing.
- Trigger from NuMI (10 μ s window every 2.2 sec)

Neutrino Event Topologies

Far Detector ν_{μ} CC Spectra

- Significant energy-dependent suppression of ν_{μ} CC events observed
- Neutrino oscillation favored by 3.7 σ over pure decay & 5.7 σ over pure decoherence

81.5% eff, NC contamination is 0.6%, (730 events in oscillation region compared to 936 expected) Systematics: abs had. energy scale (10.3%), 3.3% unc on N-F extrap.

Result of v_{μ} CC Oscillation Fit

 $P(v_{\mu} \rightarrow v_{\tau}) = sin^2 2\theta sin^2 (1.27 \Delta m_{23}^2 L/E)$

|∆m²| = (2.43±0.13)×10⁻³ eV² (68% c.l.)

sin²20 > 0.90 (90% c.l.)

 $\chi^2/ndf = 90/97$ (constrained to physical region)

Without constraint $sin^2 2\theta$ value is 1.07 and χ^2 changes by 0.6.

Physical Review Letters 101 131802 (arXiv:hep-ex/0806.2237)

• Independent analysis of data through March 2007 (2.46×10²⁰ POTs)

ν_{sterile} NC Analysis Results

- Fit FD spectrum to a 4-neutrino model (3 + 1 sterile) with mixing occurring at one Δm^2
- Oscillation and survival probabilities become: $P(\nu_{\mu} \rightarrow \nu_{\mu}) = 1 - \alpha_{\mu} \sin^{2}(1.27 \text{ }\Delta\text{m}^{2} \text{ }L/\text{E})$ $P(\nu_{\mu} \rightarrow \nu_{s}) = \alpha_{s} \sin^{2}(1.27 \text{ }\Delta\text{m}^{2} \text{ }L/\text{E})$
- Simultaneous fit to CC & NC energy spectra performed: $f_s = \mathbf{P}(\mathbf{v}_{\mu} \rightarrow \mathbf{v}_s) / [1 - \mathbf{P}(\mathbf{v}_{\mu} \rightarrow \mathbf{v}_{\mu})] = \mathbf{0.28} \stackrel{+0.25}{_{-0.28}} (\text{stat+sys})$ $f_s < \mathbf{0.68} \ (90\% \ c.l.)$

Physical Review Letters 101 221804 (arXiv:hep-ex/0807.2424)

ve Appearance in MINOS

- For an appearance measurement there is no signal to extrapolate to the Far Detector.
- However MINOS, dominated by non-active material, is not ideal for electron identification. Backgrounds are substantial. Our background is measured in the near detector and extrapolated to the far detector.
- NC and μ -CC are significant backgrounds. There is also an intrinsic v_e component to the beam. The energy distribution for the intrinsic v_e is quite different.
- This is a challenging measurement but simulation suggested that we could expect a limit a little below the existing Chooz limit (on average).
- So we looked.

ve Appearance in MINOS

- When selecting v_e event candidates in the Near Detector we will have a mix of components that do not extrapolate in the same way to the Far Detector.
- Simply extrapolate NC
- v_{μ} CC must be oscillated out of the far detector spectrum
- v_{τ} CC must be oscillated into the far detector spectrum.
- Then look for the v_e excess arising from v_{μ} to v_e oscillations in the Far Detector.

Basic Data Quality Cuts

- Beam quality and detector quality cuts.
- Fiducial volume cuts:
 - Near Detector: 1m < z < 5m , r < 0.8m
 - Far Detector:
 0.5 m < z < 14.3 or 16.3m < z < 28m,
 0.5m < r < 3.7m
- Cosmic rejection cuts based on steepness.

ve Preselection Cuts

signal at CHOOZ limit

- Preselection requirements:
 - Track length < 25 planes.
 - Reconstructed energy 1-8 GeV.
 - At least one shower and 4 contiguous planes with > 0.5 MIP energy units.

Input to Artificial Neural Network (ANN)

Candidates must contain a compact shower and exhibit characteristic EM profile.

Run: 32687 Snarl: 90343 Reco Energy: 4.6 GeV

longitudinal:

$$\frac{dE}{dt} = E_0 b \frac{(bt)^{a-1} e^{-bt}}{\Gamma(a)}$$

fraction of energy deposited
 within 2,4,6 planes

- longitudinal energy projection

transverse:

- 90% containment radius
- lateral shower spread (RMS)
- fraction of energy deposited within 3 strips along shower axis

Selecting Ve events with ANN

event characterization in length, width and shower shape

- 11 variables chosen describing length, width and shower shape.
- ANN algorithm achieves:
 - signal efficiency 41%
 - NC rejection >92.3%
 - CC rejection >99.4%
 - signal/background 1:4

Ve selected Near Detector data

- MC tuned to external bubble chamber data for hadronization models.
 - External data sparse in our kinematic range.
- It is not surprising that the data/MC shows disagreement with the model.
- Discrepancy is within the large uncertainties of the model.
- We have developed **two data-driven methods** to correct the model to match the data.

- The $\underline{\text{MRCC}\ \text{method}}$ uses muon removed v_{μ} CC to study the hadronic showers and correct MC.
- The <u>Horn on/off method</u> uses the difference in background composition of the two horn configurations.

27

Muon Removal Technique

- Remove the muon track in a selected v_{μ} CC event and use the rest as a hadronic shower only event.
- We use events that pass our v_{μ} Charged Current event selection, i.e. that have a well defined track.

• Well understood v_{μ} CC spectra, with well known efficiency and purity from the v_{μ} disappearance analysis.

Horn-Off Data

• When beam horns are turned off, the parent pions do not get focused, resulting in the disappearance of the low energy peak in the neutrino energy spectrum.

• The consequence is a spectrum dominated by NC arising from the long tail in true neutrino energy that gets measured in our region of interest in visible energy.

Horn-Off Data

- The beam v_e flux is obtained from the v_{μ} CC flux which is constrained by data in the different beam configurations.
- The two main background components can be estimated using the number of data events in the horn on and horn off configurations: N^{on} and N^{off} .

$$\mathbf{N^{on}} = \mathbf{N_{NC}} + \mathbf{N_{CC}} + \mathbf{N_e}$$
(1)
$$\mathbf{N^{off}} = \mathbf{r_{NC}}^* \mathbf{N_{NC}} + \mathbf{r_{CC}}^* \mathbf{N_{CC}} + \mathbf{r_e}^* \mathbf{N_e}$$
(2)
from MC:
$$\mathbf{r_{NC(CC,e)}} = \mathbf{N_{NC(CC,e)}}^{off} / \mathbf{N_{NC(CC,e)}}$$

The key is to use the **Horn off/on ratios** for each component to solve:

- Producing data-driven predictions for NC and v_{μ} CC background for the horn on configuration.

30

Horn-Off Data

- Horn off/on ratios for v_{μ} CC and NC selected events match well between data and MC after fiducial volume cuts.
- Similar ratios are used to solve the horn on/off equations.

MC error statistical plus systematic.

Horn-Off Resuts (ND)

• The NC and v_{μ} CC components for the the standard beam configuration are simultaneously solved in the horn on/off method and are by definition equal to the data after beam v_e subtraction.

FD Background

Data-driven Methods		Total	NC	ν _µ CC	ν _τ CC	v_e beam
	Horn on/ off	27	18.2	5.1	1 1	
	MRCC	28	21.1	3.6	1.1	2.2

scaled to 3.14×10^{20} POT

- The two data-driven methods, Horn on/off and MRCC, are in excellent agreement in the Far Detector.
- ~1 event difference is well within errors.

The background prediction at 3.14 x10²⁰ POT is: 27±5(stat)±2(sys)

Ve Selected Far Detector Data

- We observe a total of 35 events in this sample.
- We expect 27±5(stat)±2(sys) background events.

• If we fit the oscillation hypothesis to data, we can obtain the signal prediction for the best fit point.

MINOS 90% CL in $sin^2 2\theta_{13}$

- Plot shows 90% limits in δ_{CP} vs. $sin^2 2\theta_{13}$
 - shown at the MINOS best fit value for Δm_{32}^2 and $\sin^2 2\theta_{23}$.
 - for both mass hierarchies
- A Feldman-Cousins method was used.

Future 90% CL contours 7.0 x10²⁰ POT

If data excess persists.

If excess cancels with more data.

ΝΟνΑ

- NuMI Off-Axis electron-Neutrino Appearance Experiment
- NOvA is a second-generation experiment on the NuMI beamline, which is optimized for the detection of $v_{\mu} \rightarrow v_{e}$ oscillations.
- Low-Z Detector allows for electron shower development and detection.
 - It will give an order of magnitude improvement over MINOS in measurements of ν_e appearance and ν_μ disappearance.
- NOvA is a "totally active" (73%) tracking liquid scintillator calorimeter
- It is sited off-axis(14 mrad) to take advantage of a narrow-band beam.
- The NOvA project also includes accelerator upgrades to bring the beam power to 700 kW.
- NOvA's unique feature is its long baseline (810 km), which gives it sensitivity to the neutrino mass ordering.
- NOvA is complementary to both T2K and Daya Bay.

NuMI Beam for NOvA

- Intensity will be improved from
- 275 kW to 700+ kW for NOvA
- Beam energy is higher (ME)
 detectors are *off-axis* @810 km
- Higher flux & lower background.

NOvA Site

The Ash River site is the furthest available site from Fermilab along the NuMI beamline. This maximizes NOvA's sensitivity to the mass ordering.

Site and Building

Detector is on the surface.

NOvA Detectors

NOvA Basic Detector Element

Liquid scintillator in a 4 cm wide, 6 cm deep, 15.7 m long, highly reflective PVC cell.

Light is collected in a U-shaped 0.7 mm wavelength-shifting fiber, both ends of which terminate in a pixel of a 32-pixel avalanche photodiode (APD).

The APD has peak quantum efficiency of 85%. It will be run at a gain of 100. It must be cooled to -15°C and requires a very low noise amplifier.

Sensitivity to $sin^2 2\theta_{13}$

• Assume 3 years neutrino + 3 years anti-neutrino beam

Sensitivity to $sin^2 2\theta_{23}$

- Assume 3 years neutrino + 3 years anti-neutrino beam
- NOvA can improve the precision of the $\nu_{\mu} \not \rightarrow \nu_t$ mixing angle by over an order-of-magnitude over MINOS

Schedule Highlights

- Ash River ground breaking May 1, 2009
- EVMS review May 11-15, 2009
- DOE CD 3b review July 21-23, 2009
- IPND operational March 2010
- Beneficial occupancy far detector building May 2011
- 10-12 month accelerator shutdown July 2011
 - Installation of NOvA Recycler components
 - Near detector cavern excavation
- First 2.5 kT operational August 2012
- Full Far Detector operational

December 2013

Summary

- MINOS:
 - World's most precise measurement of Δm_{23}^2 & constraints on sterile neutrinos.
 - 1^{st} results on sin^2q_{13} from n_e appearance presented.
 - Factor of 2 increase in statistics coming.
 - Anti-neutrino beam following current run (likely)
 - Many analyses not covered: (Near Detector Physics, anti-neutrino, Rock Interactions, Atmospheric, neutrino Velocity, Global Analysis)

• NOvA:

- Next generation long-baseline experiment that will yield significantly more precise Δm_{23}^2 and $\sin^2 2\theta_{23}$ as well as an order-of-magnitude improvement in sensitivity for $\sin^2 2\theta_{13}$
- Physics sensitivity is complementary to T2K & reactor experiments

Example event topologies

Monte Carlo

$oldsymbol{ u}_{\mu}$ CC Event

long μ track+ hadronic activity at vertex

NC Event

short event, often diffuse

v_e CC Event

short, with typical EM shower profile

v_e appearance result:

Observation 35 eventsExpected Background 27±5(stat)±2(sys)for 3.14 x 10²⁰ POT

MINOS PRELIMINARY

ve Selectedsfandetector Data

• Preselected data in the FD as a function of PID compared to the corrected MC.

- We observe a total of 35 events.
- We expect 27±5(stat)±2(sys) background events.

Results are 1.5 σ above expected background.

v_e Appearance

- Measurement of $\sin^2 2\theta_{13}$ $P(\nu_{\mu} \rightarrow \nu_{e}) = \sin^2 2\theta_{13} \sin^2 2\theta_{23} \sin^2(1.27 \Delta m_{23}^2 L/E)$
- Expect signal/background = 0.3 at the CHOOZ limit for current MINOS exposure
- Data-driven systematic uncertainty: ~10%
- Hope to improve to 5% systematic uncertainty in the future
- 1st results expected later this year with sensitivity below the CHOOZ limit

Signal Collection Based on MINOS Active Detector

- Plastic Scintillator -> Liquid Scintillator
- 8 m length → 15.7 m length
- 1 cm thick -> 6 cm thick
- 1.2 mm wavelength shifting fiber -> 0.7 mm wls fiber
- Straight fiber read out each side -> Looped fiber read out one side
- Hamamatsu multi-anode PMTs -> Hamamatsu multi-pixel Avalanche Photodiodes
- 8 cells/pixel multiplexing -> 1 cell/ pixel

Kregg Arms (U. Minnesota)

Candidate v_e in the FD data

FD background systematic errors

Preliminary Uncertainties	Horn On/Off
(1) Extrapolation	6.4%
(2) Systematic (separation method)	2.7%
(3) Statistical (separation method)	2.3%
Total (sum in quadrature)	7.3%
Statistical error (data)	19%

Systematic uncertainties are dominated by error in the extrapolation. Statistical uncertainties dominate.

- Liquid scintillator (3 million gallons)
 - Contained in 3.9cm x 6.6 cm cells of length 15.6 meters
 - 3.9 cm as seen by the beam
- Cell walls are rigid PVC (5 kilotons)
 - Loaded with 15% anatase form of titanium dioxide
 - Diffuse reflection at walls keeps light near (within ~ 1 m) particle path
- Looped wavelength-shifting fiber collects light (13,000 km)
 - Fiber diameter 0.7 mm
 - Fiber shifts wavelength to \sim 520-550 nm along the fiber
- Avalanche photodiode (APD) converts light to electrical signal (13,000 devices, ea. 32 pixels)
 - 85% quantum efficiency

Avalanche Photodiodes

- Silicon solid-state device
- APDs have 85% quantum efficiency @ 520nm
- Operated at gain = 100 biased ~ 400 V
- Low noise (< 2 p.e./channel @ -15 °C)

Funding: Bust and Boom

- Dec 2007: FY08 Omnibus Funding Bill zeros NOvA funding.
- July 2008: FY08 Supplemental Bill gives NOvA \$9M.
- September 2008: CD-2 approved.
- October 2008: CD-3a approved for \$24M.
- October 2008: Continuing Resolution gives NOvA \$11M.
- February 2009: ARRA (Stimulus) gives NOvA \$xxM.
- March 2009: FY09 Omnibus Funding Bill gives NOvA an additional \$17M.
- However, no apparent change in schedule.

Gary Feldman MINOS in Cambridge 24 March 2009 58

NOvA Timeline

- May 2002: 1st Workshop
- April 2005: Fermilab PAC Approval
- April 2006: DOE CD1 Recommendation "Approve Preliminary Baseline Range"
- May 2007: DOE CD1 Approved
- November 2007: DOE CD2 Review (Cost, Schedule, & Scope Baseline)
 - Complete Technical Design Report
- December 17, 2007: US Congress Cuts Most Science Funding including FY08 NOvA
- April 2008: DOE CD2 Review (again) Approval Recommended
- July 1, 2008: US Congress Passes Emergency Spending Bill
 - M\$9.23 Restored to NOnA Funding On-Budget Project Activities Can Resume
- September 15, 2008: DOE CD2 Approved
- CD3b this summer
- Detector Construction & Running:
 - Expect IPND Data-taking in 2010
 - Far Detector Construction late 2011 through 2013
 - Data can start after first few kT