Into the Muck: Results from SNO's Low Energy Threshold Analysis

- Solar Neutrinos and the MSW Effect
- Motivations for a Low Threshold Measurement
- Analysis Details
- Results

Josh Klein, for the SNO Collaboration University of Pennsylvania

Three Phases of SNO

- ✓ Phase I: Just D₂O
 - Simple detector configuration, clean measurement
 - · Low neutron sensitivity
 - Poor discrimination between neutrons and electrons • Phase II: D_2O + NaCl
 - · Very good neutron sensitivity
 - Better neutron electron separation
 - Phase III: D₂O + ³He Proportional Counters
 - Good neutron sensitivity
 - Great neutron/electron separation

SNO End-of-Run → Draining

What We've Learned in Past ~ 10 years

Three known flavors of vs are massive and mixed like quark sector:

$$\begin{pmatrix} \nu_{eL} \\ \nu_{\mu L} \\ \nu_{\tau L} \end{pmatrix} = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix} \begin{pmatrix} \nu_{1L} \\ \nu_{2L} \\ \nu_{3L} \end{pmatrix} \quad U = \begin{pmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta} \\ -s_{12}c_{23} - c_{12}s_{23}s_{13}e^{i\delta} & c_{12}c_{23} - s_{12}s_{23}s_{13}e^{i\delta} & s_{23}c_{13} \\ s_{12}s_{23} - c_{12}c_{23}s_{13}e^{i\delta} & -c_{12}s_{23} - s_{12}c_{23}s_{13}e^{i\delta} & c_{23}c_{13} \end{pmatrix}$$

$$\mathbf{c_{ij}} = \mathbf{cos}\theta_{ij}, \mathbf{s_{ij}} = \mathbf{sin}\theta_{ij}$$
As in quark sector δ leads to differences in processes for

As in quark sector, δ leads to differences in processes for matter and antimatter: $P(v_{\mu} \rightarrow v_{e}) \neq P(\overline{v}_{\mu} \rightarrow \overline{v}_{e})$

We thus have a model with at least 7 new independent parameters: 3 masses + 3 angles + 1 phase

Need only 4 parameters ≠ 0 to describe all existing data!

$$P_{v_1 \to v_1} = 1 - \sin^2 2\theta \sin^2 \left(\frac{1.27\Delta n}{E}\right)$$

Neutrinos and Flavor Transformation

Oscillations in Matter (MSW Effect)

All neutrino flavors Only electron neutrinos

$$< \nu_e |H_W| \nu_e > = \sqrt{2} G_F N_e$$

 $\tilde{H} = \tilde{H}_f + \tilde{H}_W$

Bulk matter just treated as a potential term!

Neutrinos and Flavor Transformation

Oscillations in Matter (MSW Effect)

Hamiltonian matrix now has new `matter' eigenvalues and -vectors:

$$i\frac{\partial}{\partial t} \begin{pmatrix} \nu_e \\ \nu_\mu \end{pmatrix} = \begin{pmatrix} \sqrt{2}G_f N_e - \frac{\Delta m^2}{2p}\cos^2\theta & \frac{\Delta m^2}{4p}\sin 2\theta \\ \frac{\Delta m^2}{4p}\sin 2\theta & -\frac{\Delta m^2}{2p}\sin^2\theta \end{pmatrix} \begin{pmatrix} \nu_e \\ \nu_\mu \end{pmatrix}$$
$$\nu_{1m} > = \cos\theta_m |\nu_e > -\sin\theta_m |\nu_\mu >$$
$$\nu_{2m} > = \sin\theta_m |\nu_e > +\cos\theta_m |\nu_\mu >$$

Which evolve again as $P(E_{\nu_e}, x, \theta, \Delta m^2) = 1 - \sin^2 \theta_m \sin^2 \frac{\pi x}{L_m}$

Anything that distinguishes flavors (or mass states) alters the pattern

Testing the New Neutrino Model

Given KamLAND measurements, model *predicts* solar parameters

Only(?) Standard Model predicts these 2 experimental regimes see the same effect

Neutrinos and Flavor Transformation

> MSW (Matter Effect) Phenomenology

Day/Night v_e Asymmetry

— Rise of survival probability at low T_ν as we approach vacuum-average value of 1-(1/2)sin²2θ

E₁, hep-ph/0305159

Unlucky Parameters

So far, it seems that Nature has picked out one of the few regions where we'd miss a direct MSW signature—

`unlucky' parameters

So What?

o But oscillations provide a sensitive interferometer o And ν 's are cleanly sensitive to any sub-weak phenomena

But is there any New Physics to Find Here?

Some possibilities:

- $\cdot v$ +Gravity
- New interactions
- v+Dark Energy
- · `Sterile' neutrinos

Other Motivations for Low Threshold

> Example: Non-standard interactions

Other Motivations for Low Threshold Analysis

Nonstandard effects can be enhanced by MSW-like resonance

Advantages of Low Threshold Analysis $\succ v_{x}$ (NC) Statistics

Advantages of (2-Phase) Low Threshold Analysis

> Breaking NC/CC Covariance

All events (before background reduction); ~5000 vs

Challenges of a Low Threshold Measurement > Low Energy Backgrounds

How to Go Lower?

To make a meaningful measurement, we need:

- Lower backgrounds
- More signal statistics (D₂O+Salt~700 days)
- Smaller uncertainties

This is a `war of attrition'.

Our attitude was, `If we can improve it, we should, even if we think it is a small effect.'

Low Energy Threshold Analysis > Signal Extraction Fit (Signal PDFs)

Low Energy Threshold Analysis > Signal Extraction Fit (Some Background PDFs)

Low Energy Threshold Analysis

>The Basic Approach

Ability to *resolve* signals from each other and from backgrounds depends on:

- 1. Differences in pdfs shapes (in 3D or 4D)
- 2. Knowledge of the pdf shapes (in 3D or 4D)
- 3. The level of backgrounds.

Needed to rework SNO's entire analysis chain and simulation, from measurement of charge pedestals to final fit methods.

Focus today on just:

- Energy resolution (1 and 3 above)
- Some improvements to Monte Carlo simulation (2 above)
- Uncertainties on energy, position, and `isotropy' (2 above)
- Some new cuts (3 above)
- Special case of PMT β - γ events (1 and 2 above)

Energy Resolution

Energy Resolution

In a Cherenkov detector:

Number of hit PMTs ~ num. photons ~ path length ~ energy

Depends on PMT efficiencies, optical attentuation lengths, scattering, reflection coefficients...

$\sigma(E) \propto \sigma(N_{\text{Hit}}) \propto \sqrt{N_{\text{Hit}}}$ Big win if we can increase hit statistics... ...But data has already been taken.

Monte Carlo Upgrades Detector is *intentionally* simple to model:

Response depends only on:

- Particle propagation and Cherenkov light (EGS)
- Optics (Jackson, etc.)
- Photomultiplier response: charge, time, and efficiency

Monte Carlo Upgrades > Calibrations

Parameters for simulation measured and tested with sources

- Laser source (optics/timing)
- ${}^{16}N \rightarrow 6.13 \text{ MeV} \gamma's$
- Radon `spikes'
- Neutrons \rightarrow 6.25 MeV y's
- · pT \rightarrow 19.8 MeV y's
- ⁸Li $\rightarrow \beta$'s, E<14 MeV
- Encapsulated U and Th sources

Monte Carlo Upgrades > PMT Response

-20

-40

 $\Delta t (ns)$

-20

Charge (ADC Counts)

Systematic Uncertainties > Position

Fiducial volume uncertainties: Old: Phase I ~ ±3% Phase II ~ ±3% New: Phase I ~ ±1% Phase II ~ ±0.6%

 \longrightarrow Tested with: neutron captures, ⁸Li, outside-signal-box vs

Systematic Uncertainties \succ Isotropy (β_{14})

MC simulation upgrades provide biggest source of improvement Tests with muon `followers', Am-Be source, Rn spike

β_{14} Scale uncertainties:

Old: Phase I --- , Phase II = ±0.85% electrons, ±0.48% neutrons New: Phase I ±0.42%, Phase II =±0.24% electrons, ^{+0.38%}-0.22% neutrons

Systematic Uncertainties > Tests of PDF shapes

New Cuts

Only information is PMT charges, times, and hit patterns

- 4 KS tests of PMT pattern against single Cherenkov e-
- 1 KS test of PMT times against Cherenkov e⁻
- 3 cuts on various isotropy parameters
- 2 cuts on energy reconstruction uncertainty
- In-time ratio vs. N_{hit}

New Cuts

Note: This would have been impossible if we hadn't fixed `little' things like charge pedestals

~80% reduction in external bkds

PMT β-γ PDFs ≻Special Case

Not enough CPUs to simulate sample of events \rightarrow Use data instead

Signal Extraction Fit Techniques >`Floating' Systematics

Binned histogram method: Manually scan likelihood space

Signal Extraction Fit Techniques >`Floating' Systematics

Kernel Estimation: Allows direct parametric variation in pdfs

Signal Extraction Fit Techniques >`Floating' Systematics

WVIDIA

Low Energy Threshold Analysis > Analysis Summary

- Fits are maximum likelihood in multiple dimensions (two methods)
- Most PDFs generated with simulation
- Systematics from data-MC comparisons
- In some cases, corrections applied to MC PDFS based on comps.
- Tested on multiple independent data sets

- PMT pdf generated from bifurcated analysis of data
- Tested on MC and with independent analysis using direction vs. R³
- Dominant systematics (6/20) allowed to vary in fit
- Constrained by calibrations
- Note: many backgrounds look alike! But very few look like signal
- Some backgrounds have ex-situ constraints from radiochm. assays

Fit Result

Fit Result

Salt CosThSun fit

⁸B Flux Result

J.L. Raaf, Boston University

	Docail Lloc				Systematic		Effect on rate /%		
				- "			NC CC1	CC12	ES0
Systematic	Phase	Effect on rate	e /%	•	E-dep fid vol (+)	Ι	0.397 - 0.277	-1.735	0.378
-		NC CC1 CC	212 ES0		E-dep fid vol (-)	Ι	-0.230 0.119	1.027	-0.233
$T_{-\sigma}$ scale (+)	ГП	-0.293 -2.037 -2.1	144 -0.156		E-dep fid vol (+) E-dep fid vol (-)	п	-0.698 0.794 0.825 -0.994	-1.144	0.322
Ton scale (1)	1, 11	0.195 0.455 0.0	010 0.005		Cut acceptance (+)	ГП	-0.357 -0.519	-0.434	-0.451
$I_{\rm eff}$ scale (-)	1, 11	0.137 0.475 0.9	913 0.035		Cut acceptance (-)	І. П	1.039 1.299	1.136	1.171
T_{eff} scale (+)	I	0.030 - 0.956 - 0.3	337 - 0.148		Photodisint.n (+)	Í, П	-0.180 0.134	-0.002	0.026
T_{eff} scale $(-)$	I	-0.084 1.659 0.6	652 0.236		Photodisint.n (-)	Ι, Π	0.183 - 0.100	0.004	-0.023
T_{eff} scale (+)	II	-0.307 0.317 -1.0	094 0.105		neut cap $(+)$	Ι	-0.049 - 0.797	0.003	-0.074
$T_{-\pi}$ scale (-)	П	0.177 - 0.493 - 0.177	584 -0.133		neut cap $(-)$	I	0.044 0.829	-0.001	0.084
$T_{\rm eff}$ scale () $T_{\rm eff}$ rosp (oloc) (\pm)	T	0.008 -3.000 -0.0	019 _0 490	_	neut cap (+)	п	-1.306 0.616	-0.001	0.062
T_{off} result (elec) (\mp)	1	0.000 7.000 0.000	017 1 200		neut cap $(-)$	п	-0.759 0.040	-0.003	-0.000
$I_{\rm eff}$ resn (elec) (-)	1	-0.030 7.030 0.0	017 1.399		neut cap $(-)$	I, П	0.770 -0.053	0.001	-0.011
T_{eff} resn (elec) (+)	II	0.653 - 5.005 - 0.0	006 - 0.531		24 Na model (+)	п	0.028 -0.751	0.008	-0.056
T_{eff} resn (elec) (-)	II	-0.716 6.597 0.0	027 0.480	1	²⁴ Na model (-)	Π	0.067 - 0.463	0.003	-0.182
T_{eff} resn (neut) (+)	I, II	0.065 - 0.054 - 0.0	023 - 0.006		PMT T_{eff} exponent (+)	Ι	0.009 - 6.482	-0.003	-1.469
T_{eff} resp (neut) (-)	ĹП	-0.041 - 0.058 - 0.000	046 0.013	2.	PMT T_{eff} exponent (-)	Ι	0.002 3.217	0.004	0.821
T_{π} linearity (+)	T II	0.130 -0.160 0.5	370 -0 195	6	PMT T_{eff} exponent (+)	П	0.046 -0.814	0.001	-0.196
Tett linearity (+)	1, 11	0.100 0.000 0.0	0.120		PMT T_{eff} exponent (-)	11	0.011 -0.328	0.003	0.010
$T_{\rm eff}$ linearity (-)	1, 11	-0.132 0.287 -0.3	372 0.301		PMT R^3 exponent (+)	T	-0.048 -2.875	0.003	-0.402
β_{14} elec scale (+)	I, II	0.634 - 5.064 - 0.0	082 - 0.648		PMT R^3 exponent (+)	π.	0.023 -2.371	0.002	-0.185
β_{14} elec scale (-)	I, II	-0.622 5.559 0.0	086 0.607		PMT R^3 exponent (-)	п	0.004 0.870	-0.000	0.440
β_{14} neut scale (+)	I, II	0.719 - 1.962 - 0.0	040 - 0.068		PMT R^3 offset (+)	Ι	0.053 5.674	-0.004	0.774
β_{ij} neut scale (-)	ĹП	-0.411 1.204 0.0	029 0.048		PMT \mathbb{R}^3 offset $(-)$	Ι	-0.016 -2.113	0.003	-0.203
β_{14} near real $()$	1 11	0.900 1.009 0.0	070 0.007		PMT R^3 offset (+)	П	-0.005 0.735	-0.000	0.370
p_{14} elec width (+)	1, 11	0.306 -1.263 -0.0	079 -0.027		PMT R^3 offset (-)	П	0.001 - 1.014	0.003	-0.111
β_{14} elec width (-)	1, 11	-0.286 2.342 0.0	058 0.099		PMT β_{14} mean (+)	I	-0.042 -2.271	0.002	-0.714
β_{14} neut width (+)	I, II	0.067 - 0.240 - 0.0	002 - 0.014		PMT β_{14} mean (-)	1	0.062 0.559	0.000	0.509
β_{14} neut width (-)	I, II	-0.054 0.217 0.0	012 0.017		PMT β_{14} mean (+) PMT β_{14} mean (-)	п	-0.516 4.456 0.524 -4.102	-0.029	-0.802
β_{14} E-dep (+)	ĹП	0.227 1.661 -0.0	054 0.299		PMT β_{14} mean (-) PMT β_{14} width (+)	ī	0.024 - 4.102 0.075 - 1.388	-0.001	-0.008
$\beta_{i,i} = dop(-)$	1 11	-0.946 -0.000 0.0	068 _0.908		PMT β_{14} width (-)	ī	-0.070 0.192	0.005	0.060
p14 in-dep (-)	1, 11	-0.240 -0.999 0.0	000 -0.220	:	PMT β_{14} width (+)	п	0.357 - 1.054	-0.006	0.257
					PMT β_{14} width (-)	Π	-0.365 1.394	0.009	-0.459

_

=

Flat: $\chi^2 = 17.05/15 \text{ d.o.f.}$

Direct Fit for Energy-Dependent Survival Probability

Parameterize distortion to v_e spectrum with quadratic Naturally imposes continuity of spectrum and unitarity of mixing matrix

Comparison to Other Experiments

Oscillation Analyses: LETA

Oscillation Analyses: LETA

Oscillation Analyses: Global Solar

Oscillation Analyses: Solar + KamLAND

Solar + KamLAND 2-flavor Overlay

Solar + KamLAND 2-flavor Overlay

Solar + KamLAND 3-flavor Overlay

Summary

- 1. Lowest threshold yet achieved with water Cherenkov data
- 2. Spectrum consistent with `shallow' LMA but also just flat
- 3. Reduction in uncertainties on model-independent total ⁸B flux by $\times 2$

$$\Phi_{\rm NC}$$
 = 5.140 ^{+4.0} _{-3.8} %

- 4. First direct fit for v_e survival probability
- 5. Best fit global MSW parameters (2-flavor): $\tan^2\theta_{12} = 0.457^{+0.040}_{-0.029}$ $\Delta m^2 = 7.59 \times 10^{-5} \text{ eV}^2 + 0.20_{-0.21}$ $\Phi_{8B} \text{ uncert } = +2.38_{-2.95} \%$
- 6. 3-flavor analysis shows non-zero θ_{13} but consistent with θ_{13} =0: $\sin^2\theta_{13}$ =2.00 $^{+2.09}_{-1.63}$ ×10⁻² $\sin^2\theta_{13}$ < 0.057 (95% C.L.)