Search for WZ + ZZ production with missing transverse energy and *b*-jets at CDF

Stephen Poprocki (Cornell University) for the CDF collaboration

Outline

- o Introduction / Motivation
- o Our b-tagger
- o Backgrounds
- o The fitter
- o Systematic uncertainties
- o Results

Motivation

- Cross section for WW+WZ+ZZ in the E_T + jets final state recently measured at CDF
 - Phys. Rev. Lett. 103, 091803 (2009)
- No one has measured WZ+ZZ with jets
- Use b-tagging to reduce WW contribution
 - W doesn't go to 2 b's like Z
- Associated Higgs production (WH, ZH) is important for low mass Higgs searches at the Tevatron
 - Observation of WZ+ZZ will be a major milestone

Tevatron & CDF

- o p pbar collider operating at 1.96 TeV
- o Tevatron will run until September 2011
- o Currently have ~8 fb⁻¹ data acquired
- Hoping to collect 10 fb⁻¹ or more by end of Run II

Method overview

- Look for events with
 - large missing transverse energy
 - 2 jets consistent with B hadron decays
- Fit the dijet mass distribution from data using 3 templates
 - Electroweak background (mainly from W,Z+jets, from Monte-Carlo)
 - Multijet background (MJB) (QCD jet production, estimated from data)
 - Signal (WZ+ZZ Monte-Carlo)
- \Rightarrow # of signal events
- \Rightarrow cross section

Theoretical cross section: 16.8 ± 0.5 pb

Measured cross section: $18.0 \pm 2.8(stat) \pm 2.4(sys) \pm 1.1(lum)$ pb

Outline

- o Introduction / Motivation
- o Our b-tagger
- o Backgrounds
- o The fitter
- o Systematic uncertainties
- o Results

b-tagger

- B hadrons often travel a measurable distance before decaying
- Typical b-taggers look for tracks forming a secondary vertex
 - Use decay length in transverse plane (L2D)
 - Displaced tracks often have large impact parameter (<u>d0</u>)
- We developed a new b-tagger to further exploit individual track information

• Tune a cut on jet bness to achieve desired b tagging efficiency/mistag rate

b-tagger: Track bness inputs

Inputs to the track bness NN:

- Signed impact parameter (<u>d0</u>), z position, and their significances (value/uncertainty)
- Track momentum in transverse plane (pt)
- Track momentum transverse to jet axis (pperp)
- Rapidity with respect to the jet axis (Y)

Take advantage of high B momentum

Take advantage of track displacement

Track bness

b-tagger: Jet bness inputs

Inputs to the Jet bness NN

- Top 5 track bnesses ("bness 1", etc.)
- # of tracks of bness > 0 & invariant mass of those tracks
- If secondary vertex found, L_{2D} significance
- Muon likelihood
- # of K_s candidates

B jets Non-b jets

-0.7877

0.2298

279484

0.7216

0.4880

Entries

bness 2

Validity / Uncertainty of b-tagger

- Neural networks are trained on Monte Carlo samples
- How do they actually perform in **data**?
- 2 things you need to know to characterize a b-tagger:
 - What fraction of b-jets does it correctly tag? "efficiency" or "tag rate"
 - What fraction of non-b jets does it incorrectly tag? "mistag rate"
- Also need way to quantify differences between data and MC to take as systematic uncertainty on b-tagger
- Compare data and MC jets in two control regions similar to our data sample:
 - **Z+1 jet:** Mostly non-b jets; obtain mistag rate
 - *t-tbar:* Mostly b-jets; obtain tag rate

Jet Bness in Z + 1 jet Selection - Data (Lumi = 4.8 fb⁻¹) All MC MC Matched to b-quarks 0.5 0 1 Bness Jet bness Cut Efficiency in Z + 1 jet - Data **Uncertainties** Monte Carlo

Efficiency (t tbar)

- First application at CDF of this method for obtaining the b-tag efficiency
 - Typically use tag & probe method in generic dijet events, but difficult to get a high purity sample of b jets
- Typical t-tbar→lepton + jets selection
- Data and MC agreement good
- High *b*-jet purity in high bness region
- Subtract the small non-b contribution when calculating efficiency
- For a given bness cut in data, slide the bness cut in MC to match the efficiency in data
 - Similarly use the uncertainties for the b-tagger systematic uncertainty

bness Cut in Data	Equivalent MC Cut		
	-1σ	Central Value	$+1\sigma$
0.0	0.0275	0.1225	0.2675
0.85	0.8465	0.876	0.903

Highest bness jet in t-tbar selection

-0.2

-0.4

0.4

0.2

Outline

- o Introduction / Motivation
- o Our b-tagger
- o Backgrounds
- o The fitter
- o Systematic uncertainties
- o Results

Basic event selection

- 2 or more central jets with $E_T > 20 \text{ GeV}$
- 2 b-jets
 Get dijet mass from 2 highest bness jets
 - Jet 1 bness > 0.85, Jet 2 bness > 0.0
 - Call this the "two-tag" channel
 - Also exploit a "no-tag" channel for events which fail this cut

- neutrinos
- define signal region
- Missing $E_T > 50 \text{ GeV}$
 - 40 GeV < dijet mass < 160 GeV

Multi-jet background

24

- Generic jet production via QCD
- QCD ~9 orders above WW+WZ+ZZ
 - Rare fluctuations × huge rate = large background
 - Difficult to model with Monte Carlo
 - Use a data-driven method instead

- Before selection the diboson signal is swamped by backgrounds
 - Rejecting QCD multijet events is a major challenge

Multi-jet background

Three handles on Multi-jet background:

2) MET-significance > 4

• Uses the jet energy uncertainties to estimate how likely the MET is due to mismeasurement (low significance) or neutrinos (high significance)

3) $\Delta \phi$ (calorimeter MET, tracker MET)

- Two nearly independent ways to detect neutrinos
 - MET: energy imbalance in calorimeter (use towers)
 - Track MET (trkMET): momentum imbalance in tracker (use tracks)
- Small for MET from neutrinos, large for MET from mis-measured jets (MJB)

Data driven Multi-jet background estimate

- There is an excess of data in the region
 Δφ(MET,track MET)>1 which we take to be from MJB.
- MJB = (data MC) *dijet mass distribution* for events in this region.
- o Scale up to account for events in the region $\Delta \phi$ (MET, track MET)<1.
 - Correction factor = 1.66 ± 7%
- o Very few MJB events in the 2-tag channel; poor statistics

 \Rightarrow use shape from no-tag channel

Checking Background Model: Key MJB plots

no-tag

two-tag

Great agreement in no-tag & 2-tag regions; little MJB in 2-tag

t-tbar rejection cuts

- t-tbar a large background in 2tag channel
- t-tbar should give more leptons and jets than signal
- Leptons may be misreconstructed as jets
- $N_{jet(Et>10 \text{ GeV})} + N_{ele} + N_{mu} + N_{crk} < 4$
- $N_{ele} + N_{mu} + N_{crk} < 2$
- N_{muon} < 2
- N_{electron} < 2
- Odd looking combination of cuts, but it works quite well
 - A neural network offered no improvement

- 2 b-jets
 Get dijet mass from 2 highest bness jets
 - Jet 1 bness > 0.85, Jet 2 bness > 0.0
 - Or fail these cuts: no-tag channel
 - Missing $E_T > 50 \text{ GeV}$

neutrinos

Cuts to reduce:

- define signal region 40 GeV < dijet mass < 160 GeV</pre>
 - $N_{jet(Et>10 \text{ GeV})} + N_{ele} + N_{mu} + N_{crk} < 4$ $N_{ele} + N_{mu} + N_{crk} < 2$ $N_{ele} < 2$, $N_{muon} < 2$

• Missing E_T significance > 4 • $\Delta \phi$ (Missing E_T , closest jet) > 0.4

Electroweak backgrounds

Model EWK background shape with Monte-Carlo

Pythia Alpgen MadEvent+Pythia

- In W,Z+jets, can get b's from gluon splitting
- No lepton requirement
- Missing E_T > 50 GeV makes events with a neutrino the dominant EWK backgrounds

Outline

- o Introduction / Motivation
- o Our b-tagger
- o Backgrounds
- o The fitter
- o Systematic uncertainties
- o Results

The Fitter: Channels

- Fit the dijet mass distribution in data using templates for the signal and backgrounds
- Also allow backgrounds to vary in the fit
- Simultaneous fit in 2 channels:
 - Two-tag channel: Events with 2 b-tags
 - No-tag channel: Events without 2 b-tags

Just the dibosons _____

b-tagging indeed reduces WW

The Fitter: Channels

- Fit in both channels simultaneously:
 - Signal (WZ+ZZ)
 - WW
 - Single top + t-tbar
- Allow to float separately in the two channels:
 - EWK (W,Z+jets): don't trust the modeling of the b-quark content
 - MJB: don't know the b-quark content
- Constrain the backgrounds based on their cross sections, but
- Let EWK float in the fit unconstrained (don't trust the overall normalization)
- Let signal float unconstrained; we're measuring it!
- Systematics go into the fitter:
 - B-tagging uncertainty (already explained)
 - Jet energy scale uncertainty
 - EWK shape uncertainty
 - MJB shape uncertainty

will explain soon

The Fitter: Sensitivity

- To optimize the analysis, need an *a priori* estimate of the measurement's sensitivity
- Run many pseudo-experiments and calculate $\Delta \chi^2 = \chi^2_{\rm S+B} \chi^2_{\rm B}$ for pseudo-data generated
 - with signal+background hypothesis, and
 - with background-only hypothesis.
- Obtain the probability of a 3-sigma measurement:
 - Find the Δχ² where only ~0.3% of background-only PEs lie below
 - Prob 3-sigma = fraction of S+B PEs below this.

The Fitter: Optimization

- We can now optimize the cuts, specifically: bness
- Scan over jet bness cuts in MC,
- Get the probability of 2 sigma for each set of cuts (more accurate than 3 sigma for a given number of PEs)
- Choose Jet 1 bness > 0.85, Jet 2 bness > 0.0

Outline

- o Introduction / Motivation
- o Our b-tagger
- o Backgrounds
- o The fitter
- o Systematic uncertainties
- o Results

MJB shape uncertainty

- Need some way of assessing the uncertainty on the MJB estimate
- Look just outside the signal region (3 < MET-significance < 4, whereas the cut is at MET-sig > 4)
- Obtain shape uncertainty by comparing M_{jj} in two different regions:

 $\Delta \phi$ (MET,track MET) > 1 (MJB enhanced region) $\Delta \phi$ (MET,track MET) < 1 (EWK dominated region)

Jet Energy Scale Systematic

- Vary the jet energies according to their uncertainties
- Dijet mass peak in WZ/ZZ and WW will shift

EWK uncertainty via photon+jets

- We use photon+jets data to assess the systematic uncertainty on our W/Z+jets background from Monte-Carlo.
- Idea is that jet kinematics in photon+jets events should be similar to jet kinematics in events with other gauge bosons (W,Z)
 W/Z
 w/Z
 - Z, gamma have same interactions; W slightly different

• Some cuts modified: $MET > 50 \text{ GeV} \rightarrow MET + \text{photon} > 50 \text{ GeV}$

- As photon+jets and W/Z+jets aren't identical (photon is massless), we need a correction
 - Weight photon+jets data by the ratio of the dijet mass distribution of our W/Z+jets MC to photon+jets MC
 - This should compensate for the physical differences, in a MC independent fashion
 - MC uncertainties- PDFs, radiation, etc. should cancel out in the ratio

EWK MC compared to pho+jets

no-tag

two-tag

• Excellent agreement

but still quantify the difference as a systematic

Outline

- o Introduction / Motivation
- o Our b-tagger
- o The fitter
- o Handling the multi-jet background
- o Systematic uncertainties
- o Results

Signal Region Predictions

Sample Description	No-tag channel	Two-tag channel	
Z→ee	13.5	0.3	
$Z \rightarrow \mu \mu$	1108.1	9.0	
$Z \rightarrow \tau \tau$	2538.2	12.1	
$Z \rightarrow \nu \nu$	25097.4	204.0	
$W \rightarrow e\nu$	34889.1	128.6	
$W \rightarrow \mu \nu$	24299.4	143.4	
$W \rightarrow \tau \nu$	61885.9	216.9	
$t\bar{t}$	495.2	154.8	
single top	1337.4	200.0	
WW	2679.8	6.8	
WZ	814.9	23.8	
WZ (bb)	58.0	20.6	
ZZ	332.3	21.2	
ZZ (bb)	50.2	19.6	
WZ+ZZ	1147.1	45.0	
WZ+ZZ (bb)	108.2	40.2	
Non-QCD background	154343.8	1075.8	
QCD estimate	73853.5	58.4	

Table 8: Expected contribution of different processes, for 5.5 fb^{-1} .

QCD tamed even in no-tag channel; W+jets the largest background

Control regions (Signal region blinded)

no-tag

Good agreement between data and MC

Fit results: double fit for WZ/ZZ

Significance of double fit for WZ/ZZ

o Significance of $\sim 1.5\sigma$

Cross section limit for double fit for WZ/ZZ

- Use a modified Feldman-Cousins method for determining an upper limit on the cross section
- Perform pseudo-experiments with signal scaled from 0 to 3 times the SM

Bonus: WZ+ZZ to MET + bb

- Can also try to measure WZ/ZZ to bb
 - One step closer to WH/ZH to MET + bb
- Fit to only the two-tag channel
- Break WZ/ZZ template into bb (signal) and non-bb (background) templates

Cross section limit for single fit for WZ/ZZ→MET+bb

o Still able to set a decent limit though

Conclusions

- We measured the cross section for WZ+ZZ in the MET plus 2 b-jets enhanced channel
- The key: identify b-jets to reduce WW and measure just WZ+ZZ
 - Developed a custom b-tagger
- Using 5.2 fb⁻¹ of data,
 - ♦ WZ+ZZ
 - Measured a cross section of $\sigma = 5.0^{+3.6}_{-2.5} \, \mathrm{pb}$, consistent with the SM (5.1 pb)
 - Set a limit of $\sigma < 13$ pb (2.5 σ_{SM}) at 95% CL
 - ◆ WZ+ZZ→MET+bb
 - Set a limit of σ < 2.3 pb (2.4 σ_{SM}) at 95% CL
- Final states for WZ+ZZ the same as WH+ZH in MET + jets channel
 - Our techniques can be used in a future Higgs search