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The LHC Machine



• First collisions at 7 TeV confirmed on March 30, 2010

‣ There was much jubilation, applause, and champagne

• Data-taking of pp collisions continued until October 31, 2010

• In seven months of data-taking, the LHC delivered ~ 50 pb-1

The beginning of the LHC era
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~ 92% data-taking efficiency

Lint ~ 2  1032 cm-2 s-1

Lint ~ 1027 cm-2 s-1



• First 2011 collisions with stable beams on March 13, 2011

• Conservatively anticipate collecting 1 fb-1 by the end of 2011

‣ Realistically, it may be closer 2 – 4 fb-1

‣ Should be able to sustain luminosities of ~ few  1033 cm-2s-1

Future LHC plans
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Lint ~ 2.5  1032 cm-2 s-1



• First 2011 collisions with stable beams on March 13, 2011

• Conservatively anticipate collecting 1 fb-1 by the end of 2011

‣ Realistically, it may be closer 2 – 4 fb-1

‣ Should be able to sustain luminosities of ~ few  1033 cm-2s-1

• Running at 8 TeV center-of-mass in 2012 is still on the table

• Shutdown for ~18 months at the end of November 2012

• Hope is to have 14 TeV collisions around Spring 2014

Future LHC plans
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The CMS Experiment



• Experiment has > 3000 scientists and engineers

‣ 800 graduate students, 182 institutions, 39 countries

Compact Muon Solenoid collaboration
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Tracking Performance

• Tracker > 98% operation, great agreement with simulation
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PV 

resolution



Resonances
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ECAL performance

• ECAL nearly 99% operational, with great data / MC agreement
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Electron-positron invariant mass

12Darren Puigh



MET performance
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The Standard Model
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The Standard Model
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W Theory



Theories with new gauge bosons
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• Heavier versions of the W boson are found in many theories

• General extensions of the SM gauge group

‣ e.g. minimal WL model

• Extra dimensions

‣ Kaluza-Klein (KK) tower of heavy copies of all SM fields

 n = KK excitation mode

 R = size of extra dimension

• Left-right symmetry of electroweak interactions

‣ Extend the SM gauge group to include right-handed interactions
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Search for heavy gauge bosons

• On the experimental side, we are searching for a W that is a 

massive carbon copy of the Standard Model W boson

‣ Useful benchmark to compare between experiments

• Analysis is (relatively) simple and straight-forward

‣ Single, high-pT lepton + nothing else (missing transverse energy)

‣ Very little Standard Model background at high transverse mass

• One of the analyses that could lead to an early CMS discovery

‣ Excess in single lepton events can arise in other models of new 

physics, e.g. contact interactions
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Previous searches and exclusions

• Direct searches for W performed at the CDF and D0 

experiments at the Tevatron:      = 1.96 TeV

‣ W  e : MW > 1.12 TeV, CDF with 5.3 fb-1

‣ W  tb : MW > 863 GeV, D0  with 2.3 fb-1

• Indirect limits are extremely model-dependent, and they are 

often more stringent than direct searches (with assumptions)

‣ Kaon and B-meson mixing limits in the minimal left-right 

symmetric model: MWR
> 1.6 – 2.4 TeV

‣ Big bang nucleosynthesis (BBN) limits based on temperature at 

which the three R’s decouple, Tdec: 

‣ SN 1987A limits on R emission (MR
< 10 MeV): MWR

> 16 TeV
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How will we surpass the Tevatron searches?

• Ratio of parton luminosities for 7 TeV LHC compared to the 

1.96 TeV Tevatron exceeds the inverse ratio of luminosities 

(~100 = 5 fb-1/50 pb-1) for masses above 1150 GeV
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Search Strategy



W analysis

• W  e  signature: single, isolated high-pT electron + large 

missing transverse energy

• Performed counting experiment after cutting on transverse mass

• Main, irreducible background: Standard Model W  e 

‣An off-peak W (W*) is really just a heavy W (same as W)

‣ Cannot differentiate between W* and W on event-by-event basis

‣ However, the two have very different kinematics

• Analysis performed with the full 2010 dataset, corresponding to 

an integrated luminosity of 36.1 pb-1
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The usual suspect signal model

23Darren Puigh

• Neutrino is light and stable

• Coupling of W to fermions is the same as for W

‣ CKM matrix is the same as well

• No mixing between W and other gauge bosons

‣ Excludes mixing between W and either W or Z

• Decay channels W  WW, WZ, and ZZ are suppressed

‣ Occurs in many extended gauge models

• Decay width of W scales with its mass

• Additional generations of fermions (if exist) are too heavy to be 

produced
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Selection cuts

• Pre-selection to remove uninteresting events for this analysis

‣ Good primary vertex

‣  1 reconstructed electron with ET > 25 GeV and H/E < 0.1

• Selection designed to improve signal-to-background ratio while 

keeping signal efficiency high

‣ Passes unprescaled single electron trigger

‣ Only one good quality electron

‣ Kinematic cuts
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Trigger

• Due to rapidly evolving beam conditions, we needed to use a 

collection of single electron triggers with several thresholds

‣ Bulk of data were collected with electron threshold of ET > 22 GeV

• Inefficiency of software trigger (HLT) primarily from online track 

requirement
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single electron efficiency for 

L1 (hardware) trigger

single electron efficiency for 

HLT (software) trigger



Electron selection
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electron id efficiency vs pT electron id efficiency vs 



MET and electron balance

• Energy imbalance due to missing neutrino accounted for using 

particle flow technique

‣ Particle flow reconstructs complete list of particles in event

 e.g. muons, electrons, photons, charged and neutral hadrons

‣ Missing transverse energy (MET) is the negative vector sum of 

the energy of all particles projected on the transverse plane

• Electron and neutrino balanced in transverse plane in both 

direction and magnitude

‣(electron,MET) > 2.5 radians (back-to-back)

‣ 0.4 < ET
ele/MET < 1.5
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Background cutflow (from MC)
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efficiency relative 

to previous cut
total efficiency



Signal cutflow
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* Generated with Pythia, NNLO k-factor (van Neerven)

 64% 

efficient



Transverse mass as test statistic
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• Use transverse mass, calculated from electron and MET, as 

test statistic

• Need to determine both the shape and the normalization of the 

transverse mass distributions for our backgrounds

• We use a data driven estimate for W and QCD (our dominant 

backgrounds) for both shape and normalization

‣ The other backgrounds are from MC

Other MC bkgs: +jets, W, W, Z/*ll, 

WW, WZ, ZZ,    , single top, Z++tt



Calibrating the MC

• The response and the resolution of the calorimeters is different 

between data and simulation

‣ Arises due to detector effects not fully modeled, e.g. pile-up
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Calibrating the MC

• The response and the resolution of the calorimeters is different 

between data and simulation

‣ Arises due to detector effects not fully modeled, e.g. pile-up
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hadronic 

recoil

Z

e+

e-

• Z boson used to calibrate the detector simulation

‣ Presents a clean signature and provides a standard candle

• Hadronic recoil from MET compared with boson pT from leptons

‣ Recoil due to hard radiation (jets), soft radiation (unclustered

energy), and the underlying event



• Estimate the parallel (u1) and transverse (u2) component of the 

hadronic recoil (uT) in MC and DATA using Z  ee events

‣ u1 is dominated by calorimeter response to energy deposits

‣ u2 is dominated by the ambient calorimeter noise

Hadronic recoil
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Z boson events W boson events



• We exploit the similarities between the hadronic recoil of W and Z 

bosons to construct a recoil corrected MET for W boson events

• Transverse momentum of W found using generator level information

‣ We have access to this as we are correcting the MC shape

Recoil correction to MET
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Model components with Gaussians 

in boson pT



Determine Z data/MC scale factors 

to correct W MC response and 

resolution event-by-event

Recoil correction to MET

• We exploit the similarities between the hadronic recoil of W and Z 

bosons to construct a recoil corrected MET for W boson events

• Transverse momentum of W found using generator level information

‣ We have access to this as we are correcting the MC shape
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• We exploit the similarities between the hadronic recoil of W and Z 

bosons to construct a recoil corrected MET for W boson events

• Transverse momentum of W found using generator level information

‣ We have access to this as we are correcting the MC shape

Recoil correction to MET
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W  e transverse mass template

• Method gives recoil-corrected MET on event-by-event basis

‣ Use this MET in our event selections (ET
ele/MET and )

‣ Use this MET to create transverse mass template for W  e 

• Comparing MT distributions with and without correction, 

agreement with data improves most for 100 < MT < 150 GeV

‣ Fairly good agreement in tails  method does not introduce large 

MT events
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MET MT



• Use MT distribution from non-isolated electrons as our template

‣ Sample enriched in multi-jet events

• As a check, we compare this to the template obtained from 

instead inverting the (trk,SC) and (trk,SC) requirements

‣ Decent agreement for orthogonal samples

QCD transverse mass template
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• Use MT distribution from non-isolated electrons as our template

‣ Sample enriched in multi-jet events

• As a check, we compare this to the template obtained from 

instead inverting the (trk,SC) and (trk,SC) requirements

‣ Decent agreement for orthogonal samples

QCD transverse mass template
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• Comparing the number of predicted QCD events in different MT

bins, we again see good agreement (within uncertainty)



Sideband examination

• Use ET
ele/MET distribution (last step of our selection) to normalize 

W and QCD MT templates

‣ Fit data ET
ele/MET distribution with QCD template (non-iso electrons) 

and W template (CB function), other backgrounds from MC
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MT distributions 

normalized to template 

area in the region

ET
ele/MET < 0.4 

or

ET
ele/MET > 1.5



Sideband examination

• Using our background estimation technique, we look at events 

that fail the ET
ele/MET cut  

‣ As expected, QCD dominates in this region

• Although agreement is not perfect, shape and normalization are 

reasonable and covered by the background uncertainty
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• Use ET
ele/MET distribution (last step of our selection) to normalize 

W and QCD MT templates

‣ Fit data ET
ele/MET distribution with QCD template (non-iso electrons) 

and W template (CB function), other backgrounds from MC

W and QCD yield extraction
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MT distributions 

normalized to template 

area in the region 

0.4 < ET
ele/MET < 1.5



Background expectation

• Full data-driven estimate

• Dominant background is W  e

• Backgrounds die off quickly as a function of transverse mass
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* Other MC bkgs: +jets, W, Z/*ll, WW, WZ, ZZ, single top, Z++

** Table includes both statistical and systematic uncertainties added in quadrature 

(does not include luminosity uncertainty)



Results



Background and data comparisons
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• Good agreement in both background prediction observed in the 

MT distribution (left) and the cumulative distribution (right)

Transverse mass distribution results
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Highest transverse mass event: MT = 493 GeV
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Electron

pT = 242 GeV

Missing 

Transverse 

Energy
=  241 GeV



Systematic uncertainty

• Values indicate the percent variation on the number of events 

with MT > 500 GeV

‣ Electron reconstruction efficiency uncertainty from W/Z cross 

section measurement

‣ Electron identification efficiency uncertainty from W and Z

searches
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Data

• Good agreement between data and background prediction

• As we do not see an excess in data, we can set a lower-bound 

on the mass of the W boson for our model
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* Other MC bkgs: +jets, W, Z/*ll, WW, WZ, ZZ, single top, Z++

** Table includes both statistical and systematic uncertainties added in quadrature 

(does not include luminosity uncertainty)



• Using Bayesian 95% CL limit calculator, described elsewhere, 

to determine expected and observed limits

‣ Flat prior assumed for signal cross section

‣ Log-normal distribution for integration over nuisance parameters

• For each W mass point, use MT cut with best expected limit

Cut-and-count statistical method
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http://lss.fnal.gov/archive/test-tm/2000/fermilab-tm-2104.pdf


Exclude W with masses below 1.36 TeV at 95% CL
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Expected Limit = 1.31 TeV

Observed Limit = 1.36 TeV



Combination



Combining with the muon channel

• Need to determine contamination 

from cosmic-ray background

• No excess beyond the Standard 

Model found in W   search

‣ Combine e and  channels

• Straightforward extension of the 

implemented Bayesian upper limit 

given assumptions:

‣ Identical branching ratios to e, 

‣ Uncertainty on lumi fully correlated

‣ Uncertainties on signal efficiency 

and background fully uncorrelated

 Assuming full correlation gives 

same limit
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Combined limit for electron and muon channels
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Muon Observed Limit = 1.40 TeV

Electron Observed Limit = 1.36 TeV

Combined Observed Limit = 1.58 TeV

Currently World’s Most 

Stringent Limit!



Conclusions



Future plans for W

• Focus on discovery

• Include several search channels

‣W  l (l = e, , )

‣ W’  tb

‣ W’  WZ

‣W  l NR  l l j j

• Prepare for the difficulties of the next 

two years of running

‣ Multiple interactions per crossing

‣ High-luminosity triggering

‣ High-pT object reconstruction

‣ Statistical analysis tools
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with ~ 1 fb-1, 

O(MW) > 2 TeV



Summary

• The LHC era has begun!

‣ The CMS and ATLAS detectors are performing exceptionally

• We performed a search for W  e  with 36.1 pb-1 of certified 

CMS 2010 data

• Using a Bayesian technique, we exclude the existence of a W’ 

boson with masses below 1.36 TeV with a confidence of 95% in 

the electron channel

• Combining electron and muon channels: MW > 1.58 TeV

‣ Most stringent direct search limit in the world

• The 2011 – 2012 run will provide a unique discovery possibility 

for LHC experiments
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Backup Slides



ATLAS limit

• Biggest difference between CMS and ATLAS is lepton acceptance

‣ ATLAS: electrons with |e| < 2.4, muons with || < 1.05

‣ CMS:    electrons with |e| < 2.5, muons with || < 2.10
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arXiv:1103.1391v1 [hep-ex]
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Left- and right-handed W constraints

• one

‣ two
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arXiv:1011.5918 [hep-ph]

http://arxiv.org/abs/1011.5918
http://arxiv.org/abs/1011.5918
http://arxiv.org/abs/1011.5918


High energy electrons
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Cosmic ray background in muon channel

• Cut on impact parameter to remove cosmics: d0 < 0.02 cm

• Assuming cosmic background is flat in d0, count the number of 

events, N, with 0.02 < d0 < 2.00 cm

‣ Cosmic ray background = 0.02/(2.00-0.02)  N 
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Systematic uncertainty

• Values indicate the percent variation on the number of events 

with MT > 200 GeV

‣ Electron reconstruction efficiency uncertainty found as part of 

W/Z cross section measurement

‣ Electron identification efficiency uncertainty found as part of the 

W and Z searches
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Bayesian upper limit calculator 

• We use a Bayesian tool to calculate the expected and observed 

95% CL upper limits
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flat signal prior

Poisson
Log-normal distributions to 

describe uncertainties

Expected limit


