Search for a heavy gauge boson $W' \rightarrow e v$

Darren Puigh Cornell University

LEPP Journal Club Seminar April 1, 2011

The LHC Machine

The beginning of the LHC era

- First collisions at 7 TeV confirmed on March 30, 2010
 - There was much jubilation, applause, and champagne
- Data-taking of pp collisions continued until October 31, 2010
- In seven months of data-taking, the LHC delivered ~ 50 pb⁻¹

Future LHC plans

- First 2011 collisions with stable beams on March 13, 2011
- Conservatively anticipate collecting 1 fb⁻¹ by the end of 2011
 - Realistically, it may be closer 2 4 fb⁻¹
 - Should be able to sustain luminosities of ~ few × 10³³ cm⁻²s⁻¹

Future LHC plans

- First 2011 collisions with stable beams on March 13, 2011
- Conservatively anticipate collecting 1 fb⁻¹ by the end of 2011
 - Realistically, it may be closer 2 4 fb⁻¹
 - Should be able to sustain luminosities of ~ few \times 10³³ cm⁻²s⁻¹
- Running at 8 TeV center-of-mass in 2012 is still on the table
- Shutdown for ~18 months at the end of November 2012
- Hope is to have 14 TeV collisions around Spring 2014

JLG LIFTLUX 153-12 The CMS Experiment

Compact Muon Solenoid collaboration

- Experiment has > 3000 scientists and engineers
 - 800 graduate students, 182 institutions, 39 countries

Tracking Performance

Tracker > 98% operation, great agreement with simulation

Darren Puigh

Resonances

ECAL performance

• ECAL nearly 99% operational, with great data / MC agreement

Electron-positron invariant mass

MET performance

The Standard Model

The Standard Model

Theories with new gauge bosons

- Heavier versions of the W boson are found in many theories
- General extensions of the SM gauge group
 - e.g. minimal W'_L model

 $SU(2)_L \times U(1)_Y \longrightarrow SU(2)_1 \times SU(2)_2 \times U(1)_Y$

- Extra dimensions
 - Kaluza-Klein (KK) tower of heavy copies of all SM fields
 - n = KK excitation mode
 - R = size of extra dimension

$$M_{W_n}^2 \sim \frac{n^2}{R^2} + M_{W_0}^2$$

- Left-right symmetry of electroweak interactions
 - Extend the SM gauge group to include right-handed interactions

$$SU(2)_L \times U(1)_Y \longrightarrow SU(2)_R \times SU(2)_L \times U(1)_{B-L}$$

Search for heavy gauge bosons

- On the experimental side, we are searching for a W' that is a massive carbon copy of the Standard Model W boson
 - Useful benchmark to compare between experiments
- Analysis is (relatively) simple and straight-forward
 - Single, high-p_T lepton + nothing else (missing transverse energy)
 - Very little Standard Model background at high transverse mass
- One of the analyses that could lead to an early CMS discovery
 - Excess in single lepton events can arise in other models of new physics, e.g. contact interactions

Previous searches and exclusions

 Direct searches for W' performed at the CDF and D0 experiments at the Tevatron: $\sqrt{S} = 1.96$ TeV

• W' $\rightarrow e_{V}$: M_{W'} > 1.12 TeV, CDF with 5.3 fb⁻¹ doi:10.1103/PhysRevD.83.031102

- W' \rightarrow tb : M_{W'} > 863 GeV, D0 with 2.3 fb⁻¹ arXiv:1101.0806 [hep-ex]
- Indirect limits are extremely model-dependent, and they are often more stringent than direct searches (with assumptions)
 - Kaon and B-meson mixing limits in the minimal left-right symmetric model: $M_{W_R} > 1.6 - 2.4 \text{ TeV}$ doi:10.1103/PhysRevD.76.091301
 - Big bang nucleosynthesis (BBN) limits based on temperature at which the three $v_{\rm R}$'s decouple, $T_{\rm dec}$: $M_{W_R} > 3.3 \,\text{TeV} \left(\frac{T_{\text{dec}}}{140 \,\text{MeV}}\right)^{3/4}$

doi:10.1016/j.astropartphys.2005.01.005

• SN 1987A limits on v_R emission (M_{vR} < 10 MeV): M_{WR} > 16 TeV

doi:10.1103/PhysRevD.39.1229

How will we surpass the Tevatron searches?

 Ratio of parton luminosities for 7 TeV LHC compared to the 1.96 TeV Tevatron exceeds the inverse ratio of luminosities $(\sim 100 = 5 \text{ fb}^{-1}/50 \text{ pb}^{-1})$ for masses above 1150 GeV

Search Strategy

x

JA

UX 1

W' analysis

- W' \rightarrow e v signature: single, isolated high-p_T electron + large missing transverse energy
- Performed counting experiment after cutting on transverse mass
- Main, irreducible background: Standard Model W \rightarrow e ν
 - An off-peak W (W*) is really just a heavy W (same as W')
 - Cannot differentiate between W* and W' on event-by-event basis
 - However, the two have very different kinematics
- Analysis performed with the full 2010 dataset, corresponding to an integrated luminosity of 36.1 pb⁻¹

The usual suspect signal model

- Neutrino is light and stable
- Coupling of W' to fermions is the same as for W
 CKM matrix is the same as well
- No mixing between W' and other gauge bosons
 - Excludes mixing between W' and either W or Z'
- Decay channels $W^\prime \rightarrow WW,\,WZ,\,and\,ZZ$ are suppressed
 - Occurs in many extended gauge models
- Decay width of W' scales with its mass

$$\Gamma_{W'} = \frac{4}{3} \frac{M_{W'}}{M_W} \Gamma_W$$

 Additional generations of fermions (if exist) are too heavy to be produced

Selection cuts

- Pre-selection to remove uninteresting events for this analysis
 - Good primary vertex
 - $\flat \geq 1$ reconstructed electron with $E_T > 25$ GeV and H/E < 0.1
- Selection designed to improve signal-to-background ratio while keeping signal efficiency high
 - Passes unprescaled single electron trigger
 - Only one good quality electron
 - Kinematic cuts

Trigger

- Due to rapidly evolving beam conditions, we needed to use a collection of single electron triggers with several thresholds
 - Bulk of data were collected with electron threshold of $E_T > 22$ GeV
- Inefficiency of software trigger (HLT) primarily from online track requirement

Electron selection

Variable	Barrel	Endcap
E _T	> 30 GeV	> 30 GeV
η_{SC}	$ \eta < 1.442$	$1.560 < \eta < 2.5$
isEcalDriven	true	true
$\Delta \eta_{in}$	$ \Delta\eta_{in} < 0.005$	$ \Delta\eta_{in} < 0.007$
$\Delta \phi_{in}$	$ \Delta\phi_{in} < 0.09$	$ \Delta\phi_{in} < 0.09$
H/E	< 0.05	< 0.05
$\sigma_{i\eta i\eta}$	n/a	< 0.03
$E^{2\times5}/E^{5\times5}$	$> 0.94 \text{ OR } \mathrm{E}^{1 \times 5} / \mathrm{E}^{5 \times 5} > 0.83$	n/a
EM + Had Depth 1 Isolation	$< 2 + 0.03 \times E_T$	< 2.5 for $E_T < 50$ else
		$< 2.5 + 0.03 \times (E_T - 50)$
Had Depth 2 Isolation	n/a	< 0.5
Track Isol: Track p_T	< 7.5	< 15

MET and electron balance

- Energy imbalance due to missing neutrino accounted for using particle flow technique
 - Particle flow reconstructs complete list of particles in event
 - e.g. muons, electrons, photons, charged and neutral hadrons
 - Missing transverse energy (MET) is the negative vector sum of the energy of all particles projected on the transverse plane
- Electron and neutrino balanced in transverse plane in both direction and magnitude
 - $\Delta\phi$ (electron,MET) > 2.5 radians (back-to-back)
 - $0.4 < E_T^{ele}/MET < 1.5$

Background cutflow (from MC)

Sample	Preselection	1 Good Ele	$\Delta \phi_{eE_T^{miss}} > 2.5$	$0.4 < \mathcal{E}_{\mathcal{T}}^{ele}/\mathcal{E}_{\mathcal{T}}^{miss} < 1.5$
$W \to e\nu$	- , 47%	64%, 30%	85%, 26%	87%, 23%
				84846.78
Multi-jet	- , $1 \cdot 10^{-3}\%$	$1 \%, 2 \cdot 10^{-5}\%$	$38\%, 8 \cdot 10^{-6}\%$	$3\%, 2 \cdot 10^{-7}\%$
				3282.35
$t\overline{t}$	- , 27%	37%,10%	19%, 2%	54%, 1%
				59.62
$DY \rightarrow e, \mu, \tau$	- , 15%	47%, 7%	32%, 2%	4%, 0%
				150.94
WW, WZ, ZZ	- , 15%	49%, 8%	41%, 3%	59%, 2%
				44.24
$W \to \tau \nu$	- , 2%	27%, 0.6%	60%, 0.4%	77%,0.3%
				1082.89
$W \rightarrow \mu \nu$	- , 0.3%	$5\%, 2 \cdot 10^{-2}\%$	$54\%, 9 \cdot 10^{-3}\%$	$81\%, 7 \cdot 10^{-3}\%$
				27.29
γ +jets	- , $6 \cdot 10^{-3}\%$	$19\%, 1 \cdot 10^{-3}\%$	$41\%, 5 \cdot 10^{-4}\%$	$1\%, 5 \cdot 10^{-6}\%$
		7		136.60
	officior	nov rolativo		
	encier		total efficie	ency
	to pre	evious cut		^
		Darren Pui	gh	ZC

Signal cutflow

 \geq 64% efficient

_	$0.4 < \mathcal{E}_{\mathcal{T}}^{ele}/\mathcal{E}_{\mathcal{T}}^{miss} < 1.5$	$\Delta \phi_{eE_T^{miss}} > 2.5$	1 Good Ele	Preselection	$M_{W'}({ m TeV}/c^2)$
_	97%, 64%	94%,66%	80%, 70%	- , 88%	0.6
	191.30				
_	97%, 64%	95%,66%	80%, 70%	- , 88%	0.7
	99.1 5				
_	97%, 64%	95%,66%	79%, 70%	- , 89%	0.8
	56.46				
_	98%,66%	96%,67%	79%, 70%	- , 90%	0.9
	32.92				
_	98%,66%	95%,67%	79%, 71%	- , 90%	1.0
	19.96				
_	98%,66%	96%,67%	79%, 70%	- , 89%	1.1
	12.21				
_	98%,67%	96%, 69%	79%, 71%	- , 90%	1.2
	8.13				
_	98%, 66%	96%, 68%	79%, 70%	- , 89%	1.3
	5.16				
_	98%,66%	96%,67%	79%, 70%	- , 89%	1.4
	3.24				
_	98%,67%	96%,68%	79%, 71%	- , 89%	1.5
	2.39				
_	98%,65%	96%,66%	78%,69%	- , 88%	2.0
	0.34				

* Generated with Pythia, NNLO k-factor (van Neerven)

Darren Puigh

Transverse mass as test statistic

 Use transverse mass, calculated from electron and MET, as test statistic

$$M_T = \sqrt{2 \cdot E_T^{ele} \cdot E_T^{miss} \cdot (1 - \cos \Delta \phi_{eE_T^{miss}})}$$

- Need to determine both the shape and the normalization of the transverse mass distributions for our backgrounds
- We use a data driven estimate for W and QCD (our dominant backgrounds) for both shape and normalization
 - The other backgrounds are from MC

Background	Shape	Normalization
$W \to e\nu$	MC with hadronic recoil correction	fit of E_T^{ele}/E_T^{miss}
multi-jet	non-isolated electrons from data	fit of E_T^{ele}/E_T^{miss}
Other backgrounds	MC	MC
	$\pi \Lambda Q$ block is to ΛQ ΛQ ΛQ	A A

Other MC bkgs: γ +jets, W $\rightarrow \tau \nu$, W $\rightarrow \mu \nu$, Z/ $\gamma^* \rightarrow \ell \ell$, WW, WZ, ZZ, $t\bar{t}$, single top, Z+ $\gamma \rightarrow \nu \nu + \gamma$

Darren Puigh

Calibrating the MC

- The response and the resolution of the calorimeters is different between data and simulation
 - Arises due to detector effects not fully modeled, e.g. pile-up

Calibrating the MC

- The response and the resolution of the calorimeters is different between data and simulation
 - Arises due to detector effects not fully modeled, e.g. pile-up
- Z boson used to calibrate the detector simulation
 - Presents a clean signature and provides a standard candle
- Hadronic recoil from MET compared with boson p_T from leptons
 - Recoil due to hard radiation (jets), soft radiation (unclustered energy), and the underlying event

Hadronic recoil

- Estimate the parallel (u₁) and transverse (u₂) component of the hadronic recoil (u_T) in MC and DATA using $Z \rightarrow$ ee events
 - u₁ is dominated by calorimeter response to energy deposits
 - u₂ is dominated by the ambient calorimeter noise

Recoil correction to MET

• We exploit the similarities between the hadronic recoil of W and Z bosons to construct a recoil corrected MET for W boson events

$$u_i = Gauss(f_{u_i}(p_T^W), \sigma_{u_i}(p_T^W))$$

Model components with Gaussians in boson p_T

Transverse momentum of W found using generator level information
 We have access to this as we are correcting the MC change

We have access to this as we are correcting the MC shape

Recoil correction to MET

 We exploit the similarities between the hadronic recoil of W and Z bosons to construct a recoil corrected MET for W boson events

$$u_{i} = Gauss(f_{u_{i}}(p_{T}^{W}), \sigma_{u_{i}}(p_{T}^{W}))$$

$$\sigma_{u_{i}}(p_{T}^{W}) = \sigma_{u_{i}}^{Zdata}(p_{T}^{W}) \cdot \sigma_{u_{i}}^{Wmc}(p_{T}^{W})$$

$$\sigma_{u_{i}}^{Zmc}(p_{T}^{W}) \cdot \sigma_{u_{i}}^{Wmc}(p_{T}^{W})$$
Determine Z data/MC scale factors to correct W MC response and resolution event-by-event

Transverse momentum of W found using generator level information

We have access to this as we are correcting the MC shape

Recoil correction to MET

 We exploit the similarities between the hadronic recoil of W and Z bosons to construct a recoil corrected MET for W boson events

$$\begin{split} u_{i} &= Gauss(f_{u_{i}}(p_{T}^{W}), \sigma_{u_{i}}(p_{T}^{W})) \\ \sigma_{u_{i}}(p_{T}^{W}) &= \frac{\sigma_{u_{i}}^{Zdata}(p_{T}^{W})}{\sigma_{u_{i}}^{Zmc}(p_{T}^{W})} \cdot \sigma_{u_{i}}^{Wmc}(p_{T}^{W}) \\ \vec{u}_{T} &= \vec{u}_{1} + \vec{u}_{2} \\ \vec{E}_{T}^{miss,corr} &= -\vec{u}_{T} - \vec{E}_{T}^{ele} \end{split}$$

Transverse momentum of W found using generator level information
 We have access to this as we are correcting the MC shape

$W \rightarrow e_V$ transverse mass template

- Method gives recoil-corrected MET on event-by-event basis
 - Use this MET in our event selections (E_T^{ele}/MET and $\Delta \phi$)
 - Use this MET to create transverse mass template for W \rightarrow e ν
- Comparing $M_{\rm T}$ distributions with and without correction, agreement with data improves most for 100 < $M_{\rm T}$ < 150 GeV
 - Fairly good agreement in tails \rightarrow method does not introduce large M_T events

QCD transverse mass template

- Use M_T distribution from non-isolated electrons as our template
 Sample enriched in multi-jet events
- As a check, we compare this to the template obtained from instead inverting the $\Delta\eta$ (trk,SC) and $\Delta\phi$ (trk,SC) requirements
 - Decent agreement for orthogonal samples

QCD transverse mass template

- Use M_T distribution from non-isolated electrons as our template
 Sample enriched in multi-jet events
- As a check, we compare this to the template obtained from instead inverting the $\Delta\eta$ (trk,SC) and $\Delta\phi$ (trk,SC) requirements
 - Decent agreement for orthogonal samples
- Comparing the number of predicted QCD events in different $M_{\rm T}$ bins, we again see good agreement (within uncertainty)

M _T range	inverted isolation prediction	inverted track/SC matching prediction
(25, 50)	79 ± 40	76 ± 38
(50,75)	2900 ± 1500	1800 ± 890
(75, 100)	440 ± 220	300 ± 150
(100, 125)	55 ± 28	15.8 ± 7.9
(125, 150)	13.4 ± 6.8	0.0 ± 0.0

Sideband examination

- Use E_{T}^{ele}/MET distribution (last step of our selection) to normalize W and QCD M_T templates
 - Fit data E_{τ}^{ele}/MET distribution with QCD template (non-iso electrons) and W template (CB function), other backgrounds from MC

Sideband examination

- Using our background estimation technique, we look at events that fail the $E_{\rm T}{}^{\rm ele}/\rm MET$ cut
 - As expected, QCD dominates in this region
- Although agreement is not perfect, shape and normalization are reasonable and covered by the background uncertainty

W and QCD yield extraction

- Use E_T^{ele}/MET distribution (last step of our selection) to normalize W and QCD M_T templates
 - Fit data E_T^{ele}/MET distribution with QCD template (non-iso electrons) and W template (CB function), other backgrounds from MC

Background expectation

- Full data-driven estimate
- Dominant background is $W \to e \nu$
- Backgrounds die off quickly as a function of transverse mass

Sample	> 45	> 200	> 300	> 400	> 500	> 600
$W \rightarrow e \nu$	75609± 319	33.7 ± 2.7	$7.19 {\pm} 0.91$	2.52 ± 0.48	0.88 ± 0.28	0.57 ± 0.21
Multi-jet	7083 ± 3546	6.3 ± 3.3	$1.64{\pm}0.93$	$0.47 {\pm} 0.33$	0.23 ± 0.20	0.23 ± 0.20
$W \rightarrow \tau \nu$	1083 ± 80	1.1 ± 0.3	0.21 ± 0.19	< 0.13	< 0.08	< 0.08
tī	$60\pm$ 23	4.1 ± 1.7	$0.64 {\pm} 0.29$	$0.15 {\pm} 0.09$	0.03 ± 0.03	$0.01\!\pm0.02$
Other bkg	$359\pm$ 73	2.0 ± 0.4	$0.56 {\pm} 0.14$	$0.15 {\pm} 0.05$	0.06 ± 0.03	$0.04\!\pm 0.03$
Total bkg	84194 ± 3563	47.2 ± 4.7	10.24 ± 1.35	3.29 ± 0.61	1.21 ± 0.35	$0.85 {\pm} 0.30$

* Other MC bkgs: γ +jets, W $\rightarrow \mu\nu$, Z/ $\gamma^* \rightarrow \ell\ell$, WW, WZ, ZZ, single top, Z+ $\gamma \rightarrow \nu\nu + \gamma$

** Table includes both statistical and systematic uncertainties added in quadrature (does not include luminosity uncertainty)

Results

MB/+2/x/01

Background and data comparisons

φ

45

Transverse mass distribution results

• Good agreement in both background prediction observed in the M_T distribution (left) and the cumulative distribution (right)

Highest transverse mass event: $M_T = 493$ GeV

Systematic uncertainty

- Values indicate the percent variation on the number of events with $M_{\rm T}$ > 500 GeV
 - Electron reconstruction efficiency uncertainty from W/Z cross section measurement
 - Electron identification efficiency uncertainty from W' and Z' searches

Source of systematic error	Uncertainty	Signal	Total Bkg
Integrated luminosity	11%	11%	0.84%
Electron reco efficiency	1.9%	1.9%	0.14%
Electron ID efficiency	1.5%	1.5%	0.11%
Electron energy scale	1%(EB), 3%(EE)	0.4%	9.9%
E ^{miss} scale	5%	1.6%	1.4%
$E_{\rm T}^{\rm miss}$ resolution	10%	0.9%	0.5%
Cross section		10%	1.1%
Total (lumi not included)		10.5%	10.1%

Data

- Good agreement between data and background prediction
- As we do not see an excess in data, we can set a lower-bound on the mass of the W' boson for our model

Sample	> 45	> 200	> 300	> 400	> 500	> 600
$W \rightarrow e\nu$	75609 ± 319	33.7 ± 2.7	7.19 ± 0.91	2.52 ± 0.48	0.88 ± 0.28	$0.57 {\pm} 0.21$
Multi-jet	7083 ± 3546	6.3 ± 3.3	$1.64{\pm}0.93$	$0.47\!\pm0.33$	0.23 ± 0.20	0.23 ± 0.20
$W \rightarrow \tau \nu$	1083 ± 80	1.1 ± 0.3	$0.21 {\pm} 0.19$	< 0.13	$<\!0.08$	< 0.08
tī	$60\pm$ 23	4.1 ± 1.7	$0.64 {\pm} 0.29$	$0.15\!\pm0.09$	0.03 ± 0.03	$0.01\!\pm 0.02$
Other bkg	$359\pm$ 73	2.0 ± 0.4	$0.56 {\pm} 0.14$	$0.15 {\pm} 0.05$	0.06 ± 0.03	0.04 ± 0.03
Total bkg	84194 ± 3563	47.2 ± 4.7	10.24 ± 1.35	3.29 ± 0.61	1.21 ± 0.35	0.85 ± 0.30
Data	84468	38	8	2	0	0

* Other MC bkgs: γ +jets, W $\rightarrow \mu\nu$, Z/ $\gamma^* \rightarrow \ell\ell$, WW, WZ, ZZ, single top, Z+ $\gamma \rightarrow \nu\nu + \gamma$

** Table includes both statistical and systematic uncertainties added in quadrature (does not include luminosity uncertainty)

Cut-and-count statistical method

- Using Bayesian 95% CL limit calculator, described <u>elsewhere</u>, to determine expected and observed limits
 - Flat prior assumed for signal cross section
 - Log-normal distribution for integration over nuisance parameters
- For each W' mass point, use M_T cut with best expected limit

$M_{\mathrm{W}'}$	min $M_{\rm T}$	ns	n _b	n _d	σ_t	σ_{e}	σ_{o}
(TeV/c^2)	(TeV/c^2)				(pb)	(pb)	(pb)
0.6	0.400	129.38 ± 20.16	3.29 ± 0.61	2	8.290	0.379	0.289
0.7	0.500	60.77 ± 9.61	1.21 ± 0.35	0	4.264	0.314	0.215
0.8	0.500	39.54 ± 6.08	1.21 ± 0.35	0	2.426	0.274	0.188
0.9	0.500	25.24 ± 3.85	1.21 ± 0.35	0	1.389	0.246	0.168
1.0	0.500	16.10 ± 2.45	1.21 ± 0.35	0	0.838	0.232	0.159
1.1	0.500	10.06 ± 1.53	1.21 ± 0.35	0	0.516	0.229	0.157
1.2	0.650	6.02 ± 0.92	0.60 ± 0.24	0	0.334	0.215	0.170
1.3	0.675	3.92 ± 0.60	0.51 ± 0.21	0	0.215	0.207	0.168
1.4	0.675	2.52 ± 0.38	0.51 ± 0.21	0	0.136	0.203	0.164
1.5	0.675	1.89 ± 0.29	0.51 ± 0.21	0	0.099	0.196	0.159
2.0	0.675	0.27 ± 0.04	0.51 ± 0.21	0	0.014	0.206	0.167

Exclude W' with masses below 1.36 TeV at 95% CL

Combination

Combining with the muon channel

- Need to determine contamination from cosmic-ray background
- No excess beyond the Standard Model found in W' $\rightarrow \mu \nu$ search
 - \bullet Combine e and μ channels
- Straightforward extension of the implemented Bayesian upper limit given assumptions:
 - Identical branching ratios to e, μ
 - Uncertainty on lumi fully correlated
 - Uncertainties on signal efficiency and background fully uncorrelated
 - Assuming full correlation gives same limit

Combined limit for electron and muon channels

Conclusions

Future plans for W'

- Focus on *discovery*
- Include several search channels
 - W' $\rightarrow \ell \nu$ (I = e, μ , τ)
 - W' \rightarrow tb
 - W' \rightarrow WZ
 - $\bullet W' \to \ell \, \mathsf{N}_\mathsf{R} \to \ell \, \ell \, j \, j$
- Prepare for the difficulties of the next two years of running
 - Multiple interactions per crossing
 - High-luminosity triggering
 - High-p_T object reconstruction
 - Statistical analysis tools

with ~ 1 fb⁻¹, O(M_{W'}) > 2 TeV

Summary

- The LHC era has begun!
 - The CMS and ATLAS detectors are performing exceptionally
- We performed a search for W' \rightarrow e v with 36.1 pb⁻¹ of certified CMS 2010 data
- Using a Bayesian technique, we exclude the existence of a W' boson with masses below 1.36 TeV with a confidence of 95% in the electron channel
- Combining electron and muon channels: M_{W'} > 1.58 TeV
 Most stringent direct search limit in the world
- The 2011 2012 run will provide a unique discovery possibility for LHC experiments

Backup Slides

ATLAS limit

- Biggest difference between CMS and ATLAS is lepton acceptance
 - ATLAS: electrons with $|\eta_e| < 2.4$, muons with $|\eta_u| < 1.05$
 - CMS: electrons with $|\eta_e| < 2.5$, muons with $|\eta_{\mu}| < 2.10$

Left- and right-handed W' constraints

Figure 1: Experimental constraints and LHC reach for the left-handed (left) and right-handed (right) W prime as functions of the simplified model parameters $M_{W'}$ and $g_{W'}$. The plots show limits from direct searches at the Tevatron (hashed contours), the region favored by electroweak precision fits at 95 % C.L. (green/gray region), and the LHC reach at $\sqrt{s} = 7$ TeV for 50 pb⁻¹ and 1 fb⁻¹ of integrated luminosity.

arXiv:1011.5918 [hep-ph]

High energy electrons

		$ 1.56 < \eta < 1.80$	$ 1.80 < \eta < 2.20$	$ 2.20 < \eta < 2.50$
Data	nb. el.	493	2011	1520
	Δ	0.01 ± 0.02	-0.02 ± 0.01	0.01 ± 0.01
Drell-Yan MC	nb. el.	620	1981	1422
	Δ	0.01 ± 0.00	0.03 ± 0.00	0.01 ± 0.00

Table 8: For three $|\eta|$ bins in the ECAL endcap, number of electrons with $p_t > 25 \text{ GeV}/c$ and E > 100 GeV with mass $M_{ee} > 40 \text{ GeV}/c^2$, selected using the HEEP criteria, and value of the Δ variable, both for data (luminosity of 35 pb⁻¹), and for Drell-Yan Monte Carlo simulation.

Figure 20: Distribution of the fractional difference between the measured energy (E_1^{meas}) and the energy reconstructed with the method described in this section (E_1^{rec}), for E > 100 GeV in the ECAL endcap.

Cosmic ray background in muon channel

- Cut on impact parameter to remove cosmics: $d_0 < 0.02$ cm
- Assuming cosmic background is flat in d_0 , count the number of events, N, with 0.02 < d_0 < 2.00 cm

Cosmic ray background = 0.02/(2.00-0.02) × N

Systematic uncertainty

- Values indicate the percent variation on the number of events with $M_{\rm T}$ > 200 GeV
 - Electron reconstruction efficiency uncertainty found as part of W/Z cross section measurement
 - Electron identification efficiency uncertainty found as part of the W' and Z' searches

Source of systematic error	Uncertainty	Signal	MC Bkg	W ightarrow e u	Multi-jet
Integrated luminosity	11%	11%	11%	-	-
Electron reco efficiency	1.9%	1.9%	1.9%	-	-
Electron ID efficiency	1.5%	1.5%	1.5%	-	-
Electron energy scale	1%(EB), 3%(EE)	0.0%	0.7%	20%	50%
$E_{\rm T}^{\rm miss}$ scale	5%	2.0%	5.7%		conser-
$E_{\rm T}^{\rm miss}$ resolution	10%	0.3%	2.2%	11%	vative
Cross section		10%	29%	-	-
Total (lumi not included)		10.5%	29.7%	22%	50%

Bayesian upper limit calculator

 We use a Bayesian tool to calculate the expected and observed 95% CL upper limits

$$p(\sigma|n,\epsilon,\mathcal{L},b) = \frac{p(n|\sigma,\epsilon,\mathcal{L},b)\pi(\sigma)}{\int p(n|\sigma,\epsilon,\mathcal{L},b)\pi(\sigma)d\sigma}$$

$$p(n|\sigma,\epsilon,\mathcal{L},b) = \int \int \int P(n|\sigma,\epsilon',\mathcal{L}',b')g(\epsilon')h(\mathcal{L}')f(b')d\epsilon'd\mathcal{L}'db'$$
Poisson

$$P(n|\sigma,\epsilon,\mathcal{L},b) = \frac{(b+\mathcal{L}\epsilon\sigma)^n}{n!} e^{-(b+\mathcal{L}\epsilon\sigma)}$$

Log-normal distributions to describe uncertainties

$$\int_0^{\sigma^{95}(n)} p(\sigma|n,\epsilon,\mathcal{L},b) d\sigma = 0.95$$

Expected limit $< \sigma^{95} > = \sum_{k=0}^{\infty} \sigma^{95}(k) \cdot P(k|\sigma = 0, \epsilon, \mathcal{L}, b)$

- n = Number of observed events
- b = Expected number of background
- \mathcal{C} = Integrated luminosity

$$\epsilon = \text{Acceptance} \times \text{efficiency}$$

