CMS SUSY Searches Yesterday and Tomorrow Cornell University - 1 February 2012

Steven Lowette University of California, Santa Barbara

CMS

2010: Rediscovery of the Standard Model

- CMS delivered excellent results in very short time
 - → years of preparations paid off
 - → very prompt commissioning with collisions
 - → SM validation deep into new phase space
 - all measurements coincided with SM prediction

+ in addition many searches were done, all validating many corners of the SM

- the SM has shortcomings though
 - notorious one: the hierarchy problem

need extreme fine-tuning to keep standard model valid all the way up to the Planck scale
 phrased differently: why is gravity so much weaker than the other forces?

- over the years many solutions to the hierarchy problem have been proposed
 - → supersymmetry, extra dimensions, little Higgs models, technicolor, ...
- supersymmetry (SUSY)
 - solution to the hierarchy problem:
 SUSY partners cancel the quadratic dependence on the cut-off scale
 - > whole spectrum of new particles to be discovered
 - to avoid rapid proton decay an extra symmetry is commonly imposed: R parity
 - implies that SUSY particles are always produced in pairs
 - → hence, the lightest supersymmetric particle (LSP) is stable!
 - eg. the neutralino
 - SUSY harbors an excellent dark-matter candidate

- with the early LHC data the first target was to search for SUSY produced with a high cross section
 - rare processes not yet accessible
 - → and backgrounds sometimes huge
- strong production dominates
 - squarks and gluinos carry QCD color charge
 and LHC collides colored quarks and gluons
- squarks and gluinos decay directly or through lighter SUSY particles into jets, leptons, and LSPs
 - → always with jets, due to colored production
- the decay chains are very diverse, and determined by the SUSY particle spectrum
 - \rightarrow we don't know the spectrum
 - → this is just one example: "LMO"

- * searching in this new energy regime, we need to keep our eyes wide open
 - commonality is missing energy (MET)
 from the dark matter particle
 - > inclusive selections at first: use all the signal you can
- generic signatures rather than specific models
 - → search for MET + X
 - X = jets, single lepton, opposite-sign dileptons sams-sign dileptons, multileptons, photons, b's, taus
 - \rightarrow and combinations of those

• think discovery!

- → need to convince that you know your data
 - new detector, new phase space
- → to claim an excess, you need to prove you control your backgrounds
 - CMS has very successful simulation tools, but we're probing unexplored territory
 - estimate backgrounds as much as possible from the data itself
- need to show robustness of the results
 - many analyses and methods to cross check each other

- searching in this new energy regime, we need to keep our eyes wide open
 - commonality is missing energy (MET)
 from the dark matter particle
 - inclusive selections at first: use all the signal you can
- generic signatures rather than specific models
 - → search for MET + jets + no leptons
 - →X = jets,
- → most sensitivity early on
- → and comb

sams-sigr

- think discovery!
 - → need to convince that you know your data
 - new detector, new phase space
 - → to claim an excess, you need to prove you control your backgrounds
 - CMS has very successful simulation tools, but we're probing unexplored territory
 - estimate backgrounds as much as possible from the data itself
 - need to show robustness of the results
 - many analyses and methods to cross check each other

New Physics Search with MET + Jets

Jet pT: 468 Ge

JHEP 08 (2011) 155 - arXiv:1106.4503

- search observables: invisible and visible energy
 - → MHT → MET from jets
 - \rightarrow HT \rightarrow scalar sum of jet transverse momenta
- aim for generic inclusive selection
 - \rightarrow MHT > 150 GeV, HT > 300 GeV
 - → 3 central jets
 - these jets not aligned with the MHT
 - \Rightarrow isolated electron and muon veto
- 2 search regions
 - → high HT: HT > 500 GeV
 → high MHT: MHT > 250 GeV

- \rightarrow central "massive" production
- \rightarrow suppress QCD multijet background
- \rightarrow reduce W and top with real MHT
- \rightarrow sensitive to decays with mostly visible energy

Jet pT: 393 GeV

Jet pT: 57 Ge

MHT: 693 GeV

Jet pT: 34 GeV

- \rightarrow yields high background rejection
- peculiarity: in this search we predict the full kinematics of all background events
 - → makes the analysis extra ready for discovery
 - → flexibility to change selections to focus the search
 - * excellent starting point for the characterization of just-discovered new physics

Backgrounds to the MET + Jets Search

QCD multijet background

- multijet events with large jet mismeasurement, or with neutrino from b-quark
- > predicted with novel method, using jet resolutions to smear "rebalanced" seed events

W boson and top quark background

- → leptonic decays with real missing energy
- → W → electron or muon, where the lepton is 'lost' (eg. overlapping a jet)
- → W → tau, where the tau decays hadronically and looks like a jet
- Predict from 1 muon events by substituting the muon with MET or a tau-jet

• $Z \rightarrow$ neutrino background (invisible Z)

- → looks just like signal: irreducible
- most precise prediction from photon+jets
 - using well-controlled theory correction

no excess observed, unfortunately...

- * excellent match between background predictions and the observed data
- strong limits on new physics as a result
 - in the CMSSM this analysis reached among the strongest limits, in particular in parameter space with residual QCD background
- in the summer of 2011 the search was re-loaded with 30 times more data (PAS-SUS-11-004)

new challenges and improvements

- high luminosity requires stringent online selectivity
 - at the forefront of Particle-Flow and PU-subtraction trigger improvements
 - indispensable to preserve hadronic physics reach in 2012
- → evolving to a shape analysis in HT-MHT

CMS Preliminary

- the search was also interpreted in so-called simplified models with only generic heavy colored particles and a dark matter candidate particle
 - results presented as cross section upper limit
 - allows theorists to more easily interpret our results in other models
 - → allows us experimentalists to learn about the analysis' behavior in corners of phase space

- multitude of generic searches in final states with missing energy
- no sign of new physics yet
- overall status for the CMSSM in summer 2011:

• all analyses currently being updated using the full 2011 dataset

- to further improve the analyses which search on the kinematic tails, we need:
 - → an increase of the collider's energy
 - → or a big jump in amount of collected data
- but the speed at which we collect new data at the LHC is not exponential anymore
 - → projections foresee 15/fb for 2012, maybe a bit more
 - these tail-searches eventually become long-term projects
- one way forward is to expand our field of view
- optimize searches towards uncovered areas in phase space
 - → compressed spectra
 - tough to trigger on, but innovative ideas are being worked on
 - ISR dependence requires solid modeling in signal
 - → long decay chains
 - high jet multiplicity, with important QCD background component
 - ATLAS has already a generic multijet search (see backup)
- add more "dimensions" to the existing searches
 - \Rightarrow eg. adding b-quarks or taus

3rd generation is special

- expected light, stabilizing the Higgs
 mixing because of large top Yukawa
 couples strongest to Higgs/Higgsino
- final states with b's and MET arise from direct stop/sbottom production, or from gluino decays
- a hadronic search with b-jets with 2010 data
 JHEP 07 (2011) 113 arXiv:1106.3272
- also in 2011 searches have been inclusive so far
 Juse b-enriched models (eg. "LM9" in CMSSM) as a guideline
- two all-hadronic analyses available with 1.1 fb⁻¹
 - → MT2+b (PAS-SUS-11-005)
 - → MET+b (PAS-SUS-11-006)
- single-lepton and same-sign dilepton search with b's also in the works
- also signatures with taus actively being searched for

- MET used as search variable
- search both with loose and tight HT and MET
- search both with >=1 and >=2 b-tags
- further selections are similar to the previous all-hadronic search
 - → at least 3 jets pT>50GeV
 - → MET not aligned to jets
 - uses novel resolution-normalized $\Delta \phi$ (jet,MET) variable
 - → lepton veto

top (and W) background dominant

- → use MET shape in 1-lepton control sample as template for 0-lepton case
- Cross check like in MET+jets search (hadronic taus) and with W polarization (lost leptons)

Z→neutrinos background: irreducible

- → use Z→l+l- control sample
- → treating leptons as MET
- \rightarrow extrapolation into the search region

• QCD background negligible

→ estimated exploiting absence of correlation between novel resolution-normalized $\Delta \phi$ (jet,MET) variable and MET

challenge with high-pT b-tagging

- → up to recently very large uncertainty at high jet pT
- \rightarrow but new measurements are underway, using the large datasamples collected
- > based on samples with high b-jet purity from top decays
 - top quark as a calibration tool

background predictions in all search regions agree with data

MET + b Results

- interpretation in CMSSM (at $tan\beta$ =40)
- also interpreted in simplified model
 → in this case we used pp → gg → bbbbχ⁰χ⁰
 → put cross section upper limits
 - for this production mode

Gluino and Squark Search Summary

CMS Preliminary

Ranges of exclusion limits for gluinos and squarks, varying $m(ilde{\chi}^0)$

For limits on $m(\tilde{g}), m(\tilde{q}) > >m(\tilde{g})$ (and vice versa). $\sigma^{\text{prod}} = \sigma^{\text{NLO-QCD}}$. $m(\tilde{\chi}^{\pm}), m(\tilde{\chi}_2^0) \equiv \frac{m(\tilde{g}) + m(\tilde{\chi}^0)}{2}$. $m(\tilde{\chi}^0)$ is varied from 0 GeV/ c^2 (dark blue) to $m(\tilde{g}) - 200 \text{ GeV}/c^2$ (light blue).

- another way forward with SUSY searches is to optimize for other than squark/gluino production modes
 - → this does not necessarily introduce more model dependence
- with the large data samples available, rarer SUSY processes become accessible
 - → leads to softer signatures
 - reeds new, dedicated, exclusive strategies

direct stop production

→ with ~5fb⁻¹ of data on tape we're in the game
→ m(stop) = 200 / 400 / 600 GeV
→ # stop pairs: ~60000 / ~1000 / ~60

stop decay

- → depends on mass splittings with other particles
- → 2 decay modes as starting points
 - the final state is actually the same: WWbb+MET
 - difference in presence of top

- intermediate particles can also be off-shell: 3-body and 4-body decays
- → if not much is kinematically allowed, then loop-induced decay: stop \rightarrow c χ°
 - these decays can be very hard to dig out of the background...

the lighter the stop, the more the events look like ttbar

- \Rightarrow and if it's light, there is not much MET to play with
- in the extreme of a stop nearly degenerate with top, and a light LSP, the only thing observable is a deviation from the top cross section
- highly-efficient trigger not straightforward
 - especially hadronic, but also single-lepton
- the heavier the stop, the less selection inefficiency one can afford
 - → every inefficiency needs to be well-thought through
 - → just a question of cross section
 - → eg. top reconstruction comes with substantial inefficiency
 - and not useful in decays without on-shell tops
- in general, the stop search is systematically limited
 - \rightarrow S/N is typically well below 1
 - → need excellent control of the backgrounds
 - systematics can hurt in case background is large: significance ~ $S/sqrt(S+B+\Delta B^2)$

signal contamination could be an issue

> depending on the background estimation methods

→ trigger: lepton+jets

- not very efficient actually
- → 1 isolated lepton
- → 4 or more jets
- → 1 or more b-tagged jets

• but how to suppress top? use the MET vector!

- require high |MET|
 require high MT, above the W peak
 eg. MET > 100 GeV
 eg. MT > 150 GeV
- signal becomes accessible on MT tail
- ttbar \rightarrow dilepton is the main background
- two components, both reducible
 - → hadronically decaying tau
 - → 1 lepton lost
- key issue for this analysis: suppress the remaining background, while keeping the systematics small

All-Hadronic Stop Search

typical stop selection

- → at least 6 jets
- → at least 1 b-tagged jet
- → MET > 250 GeV
- → MET and leading jets not aligned
- → lepton veto
- all-hadronic search is potentially more sensitive
 - Iarger branching ratio than single lepton
 no MT cut (though must go to higher MET)
- but harder in terms of backgrounds
- similar to the inclusive MET + jets search
 - → top is dominant, also here
 - → but QCD is non-negligible at MET ~ 150 GeV
 - and is very sensitive to pileup
 - \rightarrow also Z \rightarrow neutrinos plays a subdominant role
 - → ttZ, Z → neutrinos is at the few percent level
- but high jet multiplicity and presence of b-jet pose problems

All-Hadronic Stop Search

- main backgrounds are from single-lepton ttbar
 also here hadronic tau and lost lepton
- effort to further reduce these backgrounds
 - \Rightarrow innovative directional isolation
 - → indirect tau veto (using MT)
- also here systematics limited
 - → goal of 10% (or less)
 - > developed for taus MC-in-data embedding of hadronically decaying tau
- analysis in full swing, full updates expected soon

The Fate of SUSY?

- so far we were just pushing the limits up
- now we plan to expand into different production and uncovered phase space
- but the question many people ask: isn't SUSY ruled out already?
- rephrasing it: has SUSY already lost its power of solving the hierarchy problem?
 - The higher the SUSY scale gets pushed, the larger the corrections to the Higgs mass
 - Juntil a new hierarchy problem arises
 - can minimal SUSY still be a natural theory?
- starting from the naturalness a few very general requirements can be imposed on standard SUSY models to avoid fine-tuning
 - ⇒ gluino below ~ 1.5 TeV
 - → stop mass < 400 GeV
 - Higgs around and about 120 GeV

things seem to look good for a low-mass Higgs...

→ this is the major LHC target for 2012

what about a gluino below ~ 1.5 TeV

- → still perfectly possible
- → current inclusive analyses will keep pushing the limits
- \rightarrow eventually need high energy and lumi to constrain further
- → there will always be corners of phase space where a lighter gluino can keep hiding

what about a stop mass < 400 GeV

we have currently no direct production constraints from LHC whatsoever
we will get a first look soon with the 2011 dataset of 5/fb
with the 2012 dataset we should be able to exclude a natural-SUSY stop

or start seeing first evidence of it

unless nature chose a very peculiar compressed-type of spectrum?

• in such a case, we need:

- → more luminosity (and energy)
- rew avenues, like looking for hard ISR jets recoiling against the sparticles
- → new analysis techniques
- → good triggers
- → time

Conclusions

- 2010 was an exciting year for SUSY at the LHC
 - Iarge phase space opening up from jump in energy
 ready for discovery very early on

2011 was another great year for SUSY

analyses updated with factor 30 more data, and another time with another factor 4
 extensions with b's, taus, new analyses, new methods, etc.

• 2012 to become a superb SUSY millesime?

- → start targeting compressed spectra and long decay chains
- \rightarrow 3rd generation searches ramping up
- → direct chargino/neutralino production
- → direct probing of naturalness

ATLAS Multijet Search

- MET + 6 or 8 jets
- expected to increase the sensitivity to long cascade decays of gluinos, including multi-top final states
- expected limit curves show better or equal sensitivity at higher m0 compared to >= 2 or 4 jet search

