The search for $H \rightarrow WW$ at CDF

Ben Carls University of Illinois at Urbana-Champaign CDF Collaboration

Outline

1. Brief introduction to the Higgs

- Production and decays seen at the Tevatron
- Final states and event selection
- 2. Analysis strategy and procedure
 - Improvements
 - Signal and background modeling
- 4. Results and systematics

Higgs introduction

Ben Carls

 ϕ_{γ}

 (ϕ)

Where to look for the Higgs

Indirect constraints from precision electroweak measurements

Top quark and Higgs boson contribute to *W* mass through self-interaction terms

Central value of $m_H = 92 \text{ GeV/c}^2$ and $m_H < 161 \text{ GeV/c}^2$ at the 95% C.L.

LEP excluded masses less than 114.4 GeV/c^2 at the 95% C.L.

Higgs production at the Tevatron

February 3, 2012

Higgs final states

q W/Z W/Z W/Z

We concentrate on low and high mass separately at the Tevatron

At $m_H < 135 \text{ GeV/c}^2$, $H \rightarrow b\bar{b}$ dominates

At $m_H > 135 \text{ GeV/c}^2$, $H \rightarrow WW$ dominates

Higgs final states

Branching ratio of the *W*s

We focus on the decay modes of $W \rightarrow lv$ (about 10% for *e*, μ , and τ each)

The high p_T lepton from the W provides an excellent handle

Our event selection is simple: two high p_T leptons and missing E_T

CDF detector components

Higgs searches incorporate most detector components

 Tracking from silicon detector and drift chamber

- Central and forward muon chambers

- EM calorimeter for electron candidates

- Hadronic calorimeter to find jets

Tracking chamber

Hadronic calorimeter

Challenging search at the Tevatron

Low cross-section at the Tevatron

- Less than 1 pb

Cover as many final states as possible

- Efficient triggers
- Efficient lepton identification

Event signature is background dominated

- Must model each background accurately

Simple counting is not sufficient - Use kinematics to separate signal from background

An example of kinematic separation

The Higgs is a spin 0 boson

- The *W* bosons must have 0 net spin
- The handedness of the weak interaction results in the charged leptons going off in same direction

An example of kinematic separation

The small opening angle becomes one of our most powerful discriminants to separate out signal

In this instance, $\Delta R = \sqrt{(\Delta \phi)^2 + (\Delta \eta)^2}$ between leptons is a measure of spatial separation

 ΔR separates the red Higgs signal from the many backgrounds

The analysis roadmap

Start with high $p_T e$ and μ triggered data, maximize acceptance

Model backgrounds accurately, check in control regions

Multivariate techniques separate signal from background (S/B~0.01) Expect only about 10 events per experiment at 165 GeV/c^2 after trigger, reconstruction, and event selection

The first step is maximizing the $H \rightarrow WW$ acceptance

Identifying electrons and muonsElectron IDMuon ID

Central electrons (cut and likelihood based)

Forward electrons (cut and likelihood based)

Isolated tracks

Standard muons (red and blue)

Minimum ionizing tracks (central and forward)

Isolated tracks

February 3, 2012

Improvements from CDF

Maximizing acceptance is the goal, motivates the improvements

Largest improvement from changing isolation calculation to prevent mutual spoilage from nearby candidates

CDF also adds in likelihood based forward electrons and an improved isolated track cone of $\sqrt{(\Delta \varphi)^2 + (\Delta \eta)^2} = \Delta R < 0.4$

The new isolation

When the leptons are close enough in ΔR , they can spoil each others isolation requirements

CDF re-evaluates the isolation criteria, removing likely electron or muons from the cone

cone of $\sqrt{(\Delta \varphi)^2 + (\Delta \eta)^2} = \Delta R < 0.4$

The new isolation's impact

This improved our sensitivity in our low M_{ll} channel by a factor of 3!

February 3, 2012

New IsoCrkTrk category

Already take lepton tracks incident in calorimeter cracks without energy deposition or muon stubs

Electrons can radiate a photon, leaving EM energy in nearby towers

Accepted these candidates by relaxing EM isolation requirement

- The track entering the calorimeter
- K_T deposited, amount relative to size

Challenges of adding new leptons

Lepton ID efficiencies are different between data and MC

We use $Z \rightarrow ll$ decays to measure efficiencies and correct for it

 $SF = \epsilon_{\rm data} / \epsilon_{\rm MC}$

To determine *Z* signal events, normally use sideband subtraction

Challenges of adding new leptons

Sideband subtraction inadequate for IsoCrkTrk

February 3, 2012

Likelihood based forward electrons

Forward electron

Aimed to recover candidates that failed our normal forward electron criteria

Signal templates created from $Z \rightarrow ee$ events; background events from dijet data

Used variables such as E_{had}/E_{em} , E_T/p_T , and track η

The Standard Model backgrounds in the $H \rightarrow WW$ channel

Standard Model backgrounds

Our backgrounds are *WW*, *WZ*, *ZZ*, Drell-Yan, $W+\gamma$, *W*+jets, and top

We need to separate out a small signal from a large background

Remember, even in CDF's most sensitive channel, we still only have S/B~0.01 after preselection cuts

February 3, 2012

Cross-checking the background modeling

For each background, we preferably have a control region to validate our modeling of it

For *WW*, *WZ*, and *ZZ* though, we are not able to define a region, rely on cross-section measurement, will come back to this later

For *W*+jets, use samesign dileptons

For W+ γ , use same-sign dileptons for $M_{\eta} < 16 \text{ GeV/c}^2$

For top, use opposite-sign dileptons, 2+jets and a b-tag

February 3, 2012

What else does CDF do to maximize our sensitivity to $H \rightarrow WW$?

Know your signals and backgrounds

 \overline{q} g g \overline{t} W \overline{b}

With no jets at LO, the *WW* background dominates in no jets bin

With two jets, the *tt* background dominates

February 3, 2012

Know your signals and backgrounds

No jets at LO for $gg \rightarrow H$

Two jets at LO for $qq \rightarrow ZH$

Our signals and backgrounds vary by the number of jets!

We divide the data up into subsamples to capitalize

Not exclusively opposite-sign

We use a same-sign channel to take advantage of associated production

February 3, 2012

The channels used by CDF

Channel	Main Signal	Main Background	Most Important kinematic variables
OS dileptons, 0 Jets	gg→H	WW	LR _{HWW} , ΔR _{II} , H _T
OS dileptons, 1 Jet	gg→H	DY	$\Delta R_{\parallel}, m_{T}(II,E_{T}), E_{T}$
OS dileptons, 2+ Jets	Mixture	t-tbar	$H_{T}, \Delta R_{\parallel}, M_{\parallel}$
OS dileptons, low M_{μ} , 0 or 1 Jet	gg→H	W+y	p _T (l2), p _T (l1), E(l1)
SS dileptons, 1+ Jet	WH→WWW	W+Jets	E_{T} , $\sum \mathrm{E}_{T}^{jets}$, M_{ll}
Tri-leptons, no Z candidate	WH→WWW	WZ	E_{T} , ΔR_{II}^{close} , Type(III)
Tri-leptons, Z candidate, 1 Jet	ZH→ZWW	WZ	Jet E_{T} , ΔR_{IJ} , E_{T}
Tri-leptons, Z candidate, 2+ Jets	ZH→ZWW	Z+Jets	$M_{jj}, M_T^H, \Delta R_{WW}$
OS dilepton, electron + hadronic tau	gg→H	W+Jets	ΔR_{IT} , T id variables
OS dilepton, muon + hadronic tau	gg→H	W+Jets	ΔR_{IT} , T id variables

What I'm focusing on today

February 3, 2012

Neural network discriminant

Allows roughly a 10-20% improvement over a traditional cut based analysis

Produces final discriminant that we fit for final limits

The red Higgs signal gets separated from backgrounds

Diboson cross-sections

Measuring diboson crosssection in same final states provides a powerful crosscheck of analysis techniques

Same analysis techniques are used as in the $H \rightarrow WW \rightarrow lvlv$ search

 $\sigma(pp \to WW) = 12.1 \pm 0.9 \text{ (stat.)}^{+1.6}_{-1.4} \text{ (syst.)}[pb]$

Both measurements agree very well with theory

 $\sigma(pp \rightarrow ZZ) = 1.45 \pm {}^{+0.45}_{-0.42} \text{ (stat.) } {}^{+0.41}_{-0.30} \text{ (syst.) [pb]}$

February 3, 2012

Systematic uncertainties

Largest systematics are

- Theoretical cross sections
- Missing E_T modeling in DY
- JES corrections

There are two categories of systematics impacting the final discriminant, shape and rate (normalization)

The uncertainties get accounted for as nuisance parameters in the final fit and limit calculations

The analysis result

Combine information from final discriminant from all channels

Discriminant bins sorted by *S*/*B*

Data has background subtracted, fitted uncertainty appears in blue

We see no evidence of a Higgs signal

The Final $H \rightarrow WW$ limit from CDF

Dotted line is median expected limit, predicted exclusions 1σ/2σ (green/yellow bands) from background only pseudo-experiments

Repeat the analysis at 19 Higgs masses between 110 and 200 GeV/c² in 5 GeV/c² steps

The Final $H \rightarrow WW$ exclusion from CDF

CDF sets a 95% CL exclusion from 156-175 GeV/ c^2

What if we chose cut based?

Cut based versus NN limits in 0 jets bin

What if we chose cut based?

Cut based versus NN limits in 1 jet bin

The combined limits

CDF and DØ exclude the masses between 156-177 GeV/ c^2 at the 95% confidence level

February 3, 2012

What about the LHC?

Search at the LHC very similar to search at the Tevatron

LHC has a much larger production cross-section and higher S/B

The $H \rightarrow WW$ result from CMS

Cut based analysis, cut on the NN variables used at Tevatron

Cuts used depend on Higgs mass

Result here based on 4.6 fb^{-1}

CMS sets a 95% CL exclusion from $129-270 \text{ GeV/c}^2$

Conclusions and Outlook

Continuing improvements in Tevatron $H \rightarrow WW$ searches have led to first new Higgs mass exclusions since LEP

We now have welcome competition from ATLAS and CMS

With final datasets, Tevatron expects to have sensitivity to exclude Higgs at 95% C.L. 100-185 GeV/c²

Cataloging improvements

We continue to add analysis improvements which increase sensitivity faster than what would be obtained with data alone

The $H \rightarrow WW$ exclusion from ATLAS

ATLAS sets a 95% CL exclusion from 145-206 GeV/ c^2