Search for narrow resonances in dimuons and dielectrons with CMS

Jordan Tucker, UCLA Cornell LEPP Journal Club February 10, 2012

New Physics?

- Standard Model (SM):
 SU(3) x SU(2) x U(1)
- Grand unification: larger gauge group(s) broken at low energy into SM group times extra U(1) groups
- New U(1) ↔ new massive gauge boson Z' (à la Z⁰)
- Especially clean signature: resonant l⁺l⁻ peak ("bump")
- Similar diagrams replacing Z' with other new physics (e.g. massive gravitons in theories of extra dimensions)

2/10/2012

Z' at the LHC

- Higher √s at the LHC

 → much more parton luminosity available to make high mass objects!
- ~5 fb⁻¹ of usable data delivered to CMS and ATLAS so far.
 - Analysis described in this talk: 1.1 fb⁻¹ taken by mid-summer 2011.

The Compact Muon Solenoid (CMS)

Onion-like structure for particle id and measurement:

- Inner tracker
- Electromagnetic and hadronic calorimeters
- Superconducting magnet

Beautiful confirmation of SM predictions! A few examples:

Dimuons in data:

Measuring muons and electrons with CMS

Fine-grained ECAL for precise measurement of EM energies – currently, $\Delta E/E < 2\%$ for E > 100 GeV.

→ Excellent m_{ee} resolution, challenge on id of electrons vs. jets! Inner tracker in 3.8 T magnetic field, plus muon system for triggering, id, and to improve high- p_T measurement – $\Delta p_T/p_T < 10\%$ at $p_T \sim 1$ TeV.

 \rightarrow Muon id much easier than electron id, m_{uu} resolution is the challenge!

Dielectron energy scale/resolution

- Linearity of ECAL response at high energy checked with test beam and in data
 - Use surrounding 5x5 crystals to predict central crystal measurement and compare: good agreement
- Take resolution at high mass from simulation with additional smearing derived using Z⁰ peak events in data/MC

Muon reconstruction in CMS

- Muon system's role in measurement:
 - Low-to-intermediate-p_T: inner tracker dominates
 - High-p_T: ~straight track over tracker extent → "lever arm" out to first muon chamber hits helps
- Energetic muons can "shower" in the steel (extra particles from radiative processes): extra hits can confuse reconstruction
- Selectively pick muon chamber hits for the fit, e.g.:
 - Only first station with hits
 - Be "picky" and drop incompatible hits in busy chambers
- Best from "cocktail": for each muon, choose based on e.g. goodness-of-fit criteria

Confirming performance in data

- Cosmic-ray muons that pass through the center of CMS give handle: independent reconstruction of upper and lower legs
- For different algorithms, examine distributions of relative residuals

$$R(q/p_{\rm T}) = \frac{(q/p_{\rm T})^{\rm upper} - (q/p_{\rm T})^{\rm lower}}{\sqrt{2}(q/p_{\rm T})^{\rm lower}}$$

and pulls

$$P(q/p_{\rm T}) = \frac{(q/p_{\rm T})^{\rm upper} - (q/p_{\rm T})^{\rm lower}}{\sqrt{\sigma_{(q/p_{\rm T})^{\rm upper}}^2 + \sigma_{(q/p_{\rm T})^{\rm lower}}^2}}$$

 Limitation: cosmic-ray muons mainly in barrel

Resolution using cosmic-ray muons

- q/p_T relative resolution (left) results from cosmics in good agreement with that from particle gun simulation.
- Pulls (right) show effect of missing alignment position errors in muon track reconstruction: work in progress implementing them.

Look for a bump!

- Narrow resonant signal in histogram of reconstructed dilepton masses
- Drell-Yan dilepton production → steeply falling background
- No prediction for Z' mass
- Shape-based search

Sim. studies done for CMS Physics TDR (2006): bump from Z' on SM background

Dilepton selection

- As Z^0 cross section measurement, adapted for high- E_T/p_T leptons.
 - Differences → small extra systematic uncertainties.
- Record events with double EM or single muon trigger, then offline require two isolated leptons.
- Selection highly efficient: > 85% for masses above 1 TeV.
 - Inefficiency due mostly to geometrical acceptance.

Dielectron/dimuon differences

- Looser muon selection: smaller background from jets for muons.
- Smaller dielectron acceptance: no endcapendcap electron pairs allowed, gap between ECAL barrel and endcap.
- Opposite charges required for dimuons, but not for dielectrons.
- Cosmic-ray muons used to aid in understanding high- p_T collision muons.

Backgrounds

1-

- Dominant: Drell-Yan (DY)
 - Use shape from simulation in search
- Next biggest: tt

 , other sources of "prompt" leptons
 - Total ~10% of DY rate above 120 GeV
 - "e μ method" to check in data
- Dileptons from misidentified jets:
 - Negligible for dimuons (<1% of DY rate above 120 GeV).
 - Dielectrons suffer more: about 5% of the DY rate above 120 GeV.
 - Estimate in data by loosening cuts (e.g. isolation).
- Cosmic-ray muons: using sidebands, estimate less than 0.1 event above 120 GeV.

$e\mu$ method to check $t\overline{t}$

- Lepton universality: two eµ events for every ee/µµ event
- Scale by different e, μ efficiencies.
 - N(ee, μμ)/N(eμ) taken from simulation in bins of dilepton mass
- Currently just a crosscheck, good agreement between data and simulation
 - Final search result insensitive to tt

Dielectron mass spectrum

Other prompt leptons: VV, tW, $Z \rightarrow \tau \tau$. Jets: QCD dijets, W+jets.

Sim. distributions normalized to NLO cross sections, then overall to the data at Z peak (60-120 GeV).

Uncertainties in table: statistical \oplus systematic.

Source	Number of events	
	(120 - 200) GeV	>200 GeV
CMS data	3410	809
Total background	3375 ± 161	787 ± 67
Z/γ^*	2992 ± 149	622 ± 62
tt + other prompt leptons	275 ± 41	118 ± 17
Multi-jet events	107 ± 43	46 ± 18

Dimuon mass spectrum

Other prompt leptons: VV, tW, $Z \rightarrow \tau\tau$. Jets: QCD dijets, W+jets.

Sim. distributions normalized to NLO cross sections, then overall to the data at Z peak (60-120 GeV).

Uncertainties in table: statistical \oplus systematic.

Source	Number of events	
	(120 - 200) GeV	>200 GeV
CMS data	5216	1095
Total background	5537 ± 250	1100 ± 48
Z/γ^*	5131 ± 246	922 ± 44
$t\bar{t}$ + other prompt leptons	404 ± 46	178 ± 20
Multi-jet events	3 ± 3	0

High-mass event displays

 $\mu^+\mu^-$

Search formalism

- Unbinned maximum likelihood fit for both the bump hunt and limit setting
- The pdf is a simple sum of signal and background shapes
- Parameters (slopes, widths) from theory/simulation
- Fit on data explores difference in shapes, insensitive to absolute background level

 $\mathcal{L} \sim \prod_{i} f_{\text{signal}} + f_{\text{background}}$ $f_{\text{signal}} \sim \text{Breit-Wigner}(m|M,\Gamma)$ $\otimes \text{Gaussian}(m|M,w)$ $f_{\text{background}} \sim \exp(-am)/m^{b}$

Quantifying a discovery

- Statistical hypothesis testing with two hypotheses:
 - Background-only null hypothesis with max likelihood (ML) fit L_b;
 - Alternative signal-plusbackground hypothesis, with ML fit L_{s+b}
- Test statistic: likelihood ratio $\lambda = L_{s+b} / L_b$
- With all parameters except signal fraction fixed: Wilks's theorem says $S_L = \sqrt{-2\log \lambda}$ distributed normally \rightarrow use error function to get p-value.

The bump hunt

- Calculate local significance as a function of Z' mass.
- Mass not predicted by the theory, so look "everywhere".
- Then: correct for probability of getting at least as extreme of a fluctuation as observed, but anywhere from just background-only ("lookelsewhere effect", LEE).
 - "Elsewhere" definition is arbitrary: here, defined as masses above 600 GeV.

Channel	Most sig. bump at M (GeV)	Local Ζ (σ)	LEE- corrected Ζ (σ)
ee	950	2.2	0.2
μμ	1080	1.7	0.3
Combined	970	2.0	0.2

Setting limits + normalizing to Z⁰

• Set limit on cross section ratio (R_{σ}) , Z' to Z⁰:

 $R_{\sigma} = \frac{\sigma(\mathrm{pp} \to \mathrm{Z}') \cdot \mathrm{Br}(\mathrm{Z}' \to \mu^{+}\mu^{-})}{\sigma(\mathrm{pp} \to \mathrm{Z}^{0}) \cdot \mathrm{Br}(\mathrm{Z}^{0} \to \mu^{+}\mu^{-})} = \frac{N(\mathrm{Z}')}{N(\mathrm{Z}^{0})} \times \frac{A(\mathrm{Z}^{0})}{A(\mathrm{Z}')} \times \frac{\epsilon(\mathrm{Z}^{0})}{\epsilon(\mathrm{Z}')}$

- Benefits of normalizing to the Z⁰ peak:
 - Avoid uncertainty from luminosity estimate (4-6%)
 - Known and unknown systematic effects can cancel
- Limits computed using a Bayesian technique with uniform prior for Poisson mean (leading to mild overcoverage).
- Take ratio of acceptances (A) and efficiencies (E) from simulation.
- Estimate $N(Z^0)$ by counting events with 60 < m < 120 GeV.

Systematic effects/uncertainties

- Main: 3% (muons) and 8% (electrons) on the acceptance times efficiency ratio (included in posterior pdf via log-normal prior); includes:
 - Parton distribution function uncertainties (relevant to acceptance)
 - Mass dependence of K-factors
- For dimuons, alignment effects folded into estimate of Gaussian width for signal pdf.
- Negligible impact of mass scale on limits (only affects region with events)
- Shape systematics studies producing no effect:
 - Using different background pdf form
 - Varying background shape parameters
 - Varying ttbar component

Exclusion limits

Limits robust against statistical technique: cross-checked with frequentist method. 95% CL limits:

Channel	μμ	ee	μμ+ее
Z _{SSM}	1780 GeV	1730 GeV	1940 GeV
Ζ _ψ	1440 GeV	1440 GeV	1620 GeV
G _{KK} , c = 0.05	1240 GeV	1300 GeV	1450 GeV
G _{KK} , c = 0.1	1640 GeV	1590 GeV	1780 GeV

OK – no new physics for now. But what to do when (!) it shows up?

Which New Physics?

- Powerful discriminating variable: angle θ between incoming quark and outgoing negative lepton
- Decays into two spin-1/2 leptons of spin-1 Z' versus spin-2 graviton result in quite different angular distributions

Distinguishing models

- Simple hypothesis testing: no free parameters since pdfs are completely specified by conservation of angular momentum
- Construct test statistic λ taking hypothesis H_A for spin 1 and the alternative H_B for spin 2
- With data, reject H_A (accept H_B) if the value of λ lies in a critical region (and vice versa)

Picking the critical region

- Critical region defined by significance level of the test (the type I error rate α)
- Probability of accepting H_A when it is false (the type II error rate β) is probability of λ being outside critical region
- Power to accept H_B if it is true is 1 - β
- Neyman and Pearson: for fixed α , the test statistic that maximizes the power is the likelihood ratio

$$\lambda = \frac{\mathcal{L}(H_A)}{\mathcal{L}(H_B)}$$

- No reason to prefer either spin 1 or 2: choose $\alpha = \beta$
- For a 1-2 TeV resonance, need about N=31 events to distinguish spins 1 and 2 at 68% CL (i.e. 1σ , scaling with VN). 2/10/2012

Conclusions

- Data/simulation agreement looks good: no Z' bump jumping out to the eye yet. ☺
- Cross-checks/systematic studies show non-DY backgrounds and other issues are under control.
- Once we find new physics, the analysis technique is in place to start determining what it is.
- I am deeply grateful to all of my collaborators on CMS and the LHC for making this exciting work possible, and especially to those I borrowed pictures from for this talk.
- Thanks to you for listening!

Backup information

Electron selection

variable	barrel	endcap
E _T	> 35 GeV	> 40 GeV
η _{sc}	< 1.442	$1.56 < \eta < 2.5$
seed	ECAL seeded	ECAL seeded
missing hits	=0	=0
$\Delta \eta_{in}$	< 0.005	< 0.007
$\Delta \phi_{in}$	< 0.09	< 0.09
H/E	< 0.05	< 0.05
E^{2x5}/E^{5x5}	> 0.94 OR	_
	$E^{1x5}/E^{5x5} > 0.83$	_
$\sigma_{i\eta i\eta}$	-	< 0.03
isol Em + Had Depth 1	$< 2 + 0.03 \times E_T \text{ GeV}$	$< 2.5 \text{ GeV}$ for $E_T < 50 \text{ GeV}$
		$< 2.5 + 0.03 \times (E_T - 50) \text{ GeV}$
isol Had Depth 2	-	< 0.5 GeV
isol Pt Tracks	< 7.5 GeV/c	< 15 GeV/c

Muon selection

Both "loose" muons must pass these criteria:

- identified as global muons,
- $p_{T} > 20 \text{ GeV},$
- relative tracker isolation (Σp_T in cone of dR=0.3) / (p_T of the muon) < 10%,
- and has at least 10 silicon tracker hits.
- The "tight" muon must pass these criteria:
 - $|d_{xy}|$ wrt beamspot < 0.2 cm;
 - $-\chi^2/ndf < 10;$
 - identified as a tracker-muon;
 - at least one pixel hit;
 - two muon stations with segments on the global fit, of which at least one hit survives the fit;
 - and was matched ($\Delta R < 0.2$, $\Delta p_T/p_T < 1$) to a HLT muon that triggered.

$$\mathcal{L}(\boldsymbol{m}|\boldsymbol{R}_{\sigma},\boldsymbol{M},\boldsymbol{\Gamma},\boldsymbol{w},\boldsymbol{\alpha},\boldsymbol{\kappa},\boldsymbol{\mu}_{\mathrm{B}}) = \frac{\mu^{N}e^{-\mu}}{N!}\prod_{i=1}^{N}\left(\frac{\mu_{\mathrm{S}}(\boldsymbol{R}_{\sigma})}{\mu}f_{\mathrm{S}}(\boldsymbol{m}_{i}|\boldsymbol{M},\boldsymbol{\Gamma},\boldsymbol{w}) + \frac{\mu_{\mathrm{B}}}{\mu}f_{\mathrm{B}}(\boldsymbol{m}_{i}|\boldsymbol{\alpha},\boldsymbol{\kappa})\right)$$

with:

- m_i = observed mass spectrum;
- $f_{s}(m_{i}|M,\Gamma,w)$ = signal pdf, Breit-Wigner of width Γ and mass M, convoluted with Gaussian with width w;
- $f_{\rm B}(m_i|\alpha,\kappa) \sim \exp(-\alpha m)m^{-\kappa}$ = background pdf;
- $R_{\sigma} = \frac{\sigma(pp \rightarrow Z' + X \rightarrow \ell\ell + X)}{\sigma(pp \rightarrow Z + X \rightarrow \ell\ell + X)}$ = the cross section ratio, which goes into the likelihood function as part of the signal Poisson mean $\mu_{\rm S} = R_{\sigma} \cdot \mu_Z \cdot R_{\epsilon}$, where μ_Z is the Poisson

mean number of $Z^0 \rightarrow ee$ or $\mu\mu$ events, and R_e is the ratio

of total efficiency for Z' and Z⁰ decays;

• μ_B is the Poisson mean of the total background yield, $\mu = \mu_S + \mu_B$, and N is the total number of events with mass above 600 GeV.

