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Pillars of Modern Cosmology

All three imply new physics (and all three 
raise fundamental questions!)

1. Dark Energy
2. Dark Matter

3. Inflation
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Big Questions Remain!

1. Dark Energy
- What drives cosmic acceleration? Vacuum energy?  Do its 
properties evolve with redshift?  Is General Relativity correct on 
large scales?  

2. Dark Matter
- Particle-based explanation for dark matter?  What are they: 
WIMPs, axions, etc.?  Remaining questions for neutrinos:  How 
massive? and how many species?  

3. Inflation
- Can we observationally confirm Inflation?  What physics was 
responsible for it?  What other paradigm can replace it?  
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Cosmic Microwave 
Background (CMB) 

Radiation

(image modified from
NASA/WMAP)

The CMB as a Backlight to the Universe
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Structure Formation in the Universe

Cosmic Microwave Background

Structure Formation

Galaxies and Clusters of 
Galaxies

~400,000 years

~3 billion years

~13.7 billion years

Credit: Kravtsov
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The CMB Measures Structure Formation

Cosmic Microwave 
Background (CMB) 

Radiation

(image modified from
NASA/WMAP)

CMB, kSZ, CMB Lensing, Clusters
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Cosmological Parameters

1. Dark Energy
-, dark energy density

-w, dark energy equation of state
-wa, evolution of dark energy

2. Dark Matter
-m, dark matter density

-m, sum of neutrino masses

-Neff, number of relativistic species

3. Inflation
-ns, scalar tilt

- r, tensor-to-scalar ratio

- fNL, non-gaussianity
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Funded by 
NSF

The South Pole Telescope (SPT)
Millimeter-Wavelength Telescope  

•10 meter primary mirror
•1 deg2 field of view

SPT-SZ Receiver Camera
•~960 bolometers
•3-colors: 100, 150, 220 GHz
•Resolution of 1.6, 1.2, 1.0 
arcmin (well-matched to high-z 
clusters, r500 (z=1.0) ~ 2 arcmin)
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SPT

South Pole Environment
• Extremely Dry 

• Percipitable Water Vapor in Winter 
is ~4x < than Chile, ~6x < than Hawaii 

• High Altitude (~10,000 ft)
• Stable (no diurnal variations)
• Low peak wind-speed

Why Observe the CMB from the South Pole?
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SPT

South Pole Funding
• NSF Spends $200 million / year on infrastructure
• $10 million / year on science
• CMB gets a large fraction of this!

Why Observe the CMB from the South Pole?
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The South Pole has led ground-based measurements 
of the CMB for the past decade  

DASI (1999-2003)
QUAD (2004-2007)
KECK (2011-2014)

ACBAR (2001-2005)

BICEP (2006-2008)
BICEP2 (2010-2012)
POLAR-1 (2014-?)

SPT (2007-2011)
SPTpol (2012-2014)
SPTpol2 (?)
SPT-submm (?)
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- Status: 5-year 
survey finished (!!!) 
Nov. 2011

South Celestial
Pole

IRAS Dust Map

Final survey depths of:
-   90 GHz:  42 uKCMB-arcmin 
- 150 GHz:  18 uKCMB-arcmin
- 220 GHz:  85 uKCMB-arcmin

(In these units, tSZ is 1.7 times brighter
 at 90 GHz than at 150 GHz.)

- 2500 deg2 at high 
galactic latitude in 
Southern Sky.

The 2500 deg2 SPT-SZ Survey
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WMAP 

Saturday, March 3, 2012



230 deg2 
(9% of SPT survey)WMAP 
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WMAP
230 
deg2
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SPT
230 
deg2

13x smaller beam (13’ vs 1’)
17x deeper (300 uK-arcmin vs 18 uK-arcmin)
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2001: ACBAR
16 detectors

2005: BICEP
~100 detectors

2007: SPT
960 detectors

ACBAR was the first experiment to 
make a “background limited” detector, 
since then weʼve just been trying to 
make more of them

Evolution of Detector Focal Planes
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• Built at UC-Berkeley
- an effort that I lead from 
2004-2008

• Required development of 
several key technologies:

1) Pulse Tube Coolers
2) Superconducting (TES) 
bolometers
3) Large format bolometer 
arrays
4) Multiplexed low-noise 
SQUID readout electronics

SPT Receiver
SPT Receiver

SPT Focal 
Plane

Saturday, March 3, 2012



• Fabricated at UC-Berkeley 
• 160 bolometers per wafer
• Al-Ti bi-layer (TES) with Tc = 0.55 K 
• Optical time constant of ~10 ms
• Electrical time constant of ~1 ms
• Wafer thickness tuned to observing 
frequency/wavelength

12
0	
  
μm

SPT Detector Wafer
SPT 
Detector 
Wafer

10
0 

m
m

3 
m

m

Spider Web Absorber TES

Gold 
Thermal 
Mass
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Horn flare 
section 
θ=12.7 deg

Wave guide 
section

100 GHz

Band 
Defining 
Filters

Integrating 
Cavity and 
Bolometer

Invar 
Backshort

0.
87

5”
SPT Focal Plane Optics

• Light coupled to the detectors 
thru a conical horn, waveguide, 
and integrating cavity
• Bands set by waveguide diameter 
on the low frequency edge and 
metal-mesh filters on the high-edge

150 GHz

SPT
220 

SPT
150 

SPT
100 
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Frequency Domain Multiplexing (fMUX)

• Developed current summing fMUX at Berkeley and Lawerence 
Berkeley Labs (LBL)
• AC Bias a row of detectors with comb of frequencies between 
300-950 kHz
• Crosstalk determined by Q of LC resonance (designed to be < 1%)
• Null current thru SQUID to improve its dynamic range and linearity

0.25 K

4 K

300 K

300 K
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2001: ACBAR
16 detectors

2005: BICEP
~100 detectors

2007: SPT
960 detectors

ACBAR was the first experiment to 
make a “background limited” detector, 
since then weʼve just been trying to 
make more of them

Evolution of Detector Focal Planes
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2001: ACBAR
16 detectors

2005: BICEP
~100 detectors

2007: SPT
~800 detectors

NET 
(noise equivalent 

temperature)

(µK CMB s0.5)

SZ Mapping
Speed

ACBAR 90 1

BICEP 57 5

ACT 30 9

SPT 18 30

SPTpol tbd tbd

Evolution of Detector Focal Planes
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1. CMB Anisotropy
2. Clusters

3. CMB Lensing

Cosmology from the CMB
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1. CMB Anisotropy
2. Clusters

3. CMB Lensing

Cosmology from the CMB
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χ2/dof = 35.5/38,pte = 0.58
χ2/dof = 35.5/44,pte = 0.82

WMAP & SPT are 
consistent with each 
other, and CDM 
provides great fit to 
joint dataset

CMB+foregrounds
CMB

Best-fit CDM CMB Model

Keisler et al 2011

“damping
tail”
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50%

25%

25%

SPT data provides modest improvement 
on 6 “vanilla” cosmological parameters

:   ns = 0.966 +/- 0.011

100 bh2 ch2



100 s

ns

(3.1σ preference for ns <1
inflation-like)

109 R
2
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- Normally, we fix 
  Neff =3.046

- Instead, measure 
Neff using CMB.

- 2σ higher than standard 
prediction.(SPT result with 
3X more data will help).

- No neutrinos 
rejected at 8σ.

Standard
Model, 3 vʼs.

- Neff = 3.86 ± 0.42
(SPT+WMAP
+H0+BAO)

Beyond CDM:
The Number of Relativistic Particle Species
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1. CMB Anisotropy
2. Clusters

3. CMB Lensing

Cosmology from the CMB
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Clusters of Galaxies

Txt

• They are the most 
massive objects in the 
Universe (and also the 
most rare) 
• The biggest clusters 
contain thousands of 
galaxies 
• Take billions of years to 
form
• One of the few tracers of 
structure big enough to 
“feel” dark energy

Hubble Image of 
A1689
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Baryons Are Mostly in the Form of Hot Gas

(Purple - 
Chandra X-ray 
image overlaid)

A Massive Cluster collects a lot of gas, and 
as this gas collapses in the cluster it heats 

up to ~100,000,000 degrees
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•Towards a massive cluster, 
~1% of CMB photons scatter 
off of intra-cluster gas
• SZ Surface Brightness is 
redshift independent

CMB Spectrum

SZ Spectrum

The Sunyaev Zel’dovich (SZ) Effect
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dN

dΩdz
= n(z)

dV

dΩdz

Cluster Abundance: dN/dz

Growth Effect

Volume Effect

Depends on:
Matter Power Spectrum, 8
Growth Rate of Structure, D(z)

Depends on:
Rate of Expansion, H(z)

• Abundance of clusters is 
sensitive to the dark energy 
equation of state, w = p / 

• If dark energy was due to a 
cosmological constant then w = -1

Dark Energy and Cluster Cosmology
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Dark Energy: Distance vs Growth
Distance-Redshift Relation:
 - dL(z) = Luminosity Distance     
(e.g., Supernovae, ...)

- dA(z) = Angular Diameter Distance 
(e.g., Baryon Acoustic Oscillations, 
...)

Growth of Structure:
 -D(z) = Growth factor - (z)/0 
(e.g., Clusters of Galaxies, CMB 
Lensing, Weak Lensing, ...)

Saturday, March 3, 2012



Dark Energy: Distance vs Growth
Distance-Redshift Relation:
 - dL(z) = Luminosity Distance     
(e.g., Supernovae, ...)

- dA(z) = Angular Diameter Distance 
(e.g., Baryon Acoustic Oscillations, 
...)

Distance vs Growth: 
Dark energy affects each in a 
fundamentally different way - 
Tests standard dark energy paradigm vs. 
modifications of General Relativity

Growth of Structure:
 -D(z) = Growth factor - (z)/0 
(e.g., Clusters of Galaxies, CMB 
Lensing, Weak Lensing, ...)

Saturday, March 3, 2012



SNR=5

Using ~1/3 of SPT data,

>124 Clusters.

SNR=22
Many more...SPT Discovered Clusters from first 750 deg2
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Some Massive SPT Clusters
0658-5358 (z=0.30)
(Bullet)

2344-4243 (z=0.62)
(Perseus-like cooling 
core at z > 0.6)

2106-5844 (z=1.13)
(the most massive
cluster at z > 1)

2337-5942 (z=0.78)

SZ

IR-Optical

12’ 5’

39
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SPT Cluster Sample Properties

• Over 325 clusters optically 
confirmed, ~80% new 
discoveries  
• Expect ~500 clusters in full 
catalog
• High redshift: <z> ~0.55 
(20% of clusters at z > 0.8)
• SPT has found more 
massive clusters at           
z > 0.4 than previously 
known!
• Mass threshold falls with 
redshift: 
• M500(z=0.6) > 3x1014 Msol/h70

Cluster Mass vs Redshift
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SPT Significance as a Mass Proxy

From Simulations by Laurie Shaw

S
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)

• For any cluster survey, 
challenge is to link cluster 
“observable” to cluster 
mass
• SZ measures cluster 
pressure (~neTe), which is 
expected to have low 
scatter with mass (~10%)
• SZ Signal-to-noise (S/N) 
in spatial filtered map is a 
relatively good mass proxy 
(Vanderlinde et al 2010)
• Need to calibrate SZ 
significance to cluster 
mass!  

16% scatter in 
ln M|(S/N)
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• Multi-wavelength mass 
calibration campaign, 
including:
1.X-ray with Chandra and 

XMM (PI: Benson)
2.Weak lensing from 

Magellan (0.3 < z < 0.6) 
and HST (z > 0.6) (PI: 
High, Hoekstra)

3.Dynamical masses from 
NOAO 3-year survey on 
Gemini (0.3 < z < 0.8 )
(PI:Stubbs), also VLT at (z 
> 0.8) 

42

Hubble (Optical)

XMM (X-ray)

Magellan (Optical)

 Multi-wavelength Observations:
Mass Calibration 
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SZ Significance-Mass Calibration

Use X-ray (Yx-M) relation to calibrate SZ significance-mass relation:
• X-ray masses are calibrated with 10% accuracy using measurements of 
low-redshift relaxed clusters assuming hydrostatic equilibrium (and cross-
checked by weak lensing observations)

Benson et al 2011Vikhlinin et al 2009

1 10
YX [1014 Msun keV]
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X-ray Pressure, Yx(=MgasTx) X-ray Pressure, Yx
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Cosmological Analysis: 
Test X-ray Method on 18 clusters (<10% of survey)

Combine Vanderlinde et al 2010 SPT survey results (180 deg2, 18 
clusters) with Andersson, Benson, et al 2010 X-ray (Yx) measurements 
(15 clusters)

Andersson, Benson, et al 2010
Vanderlinde et al 2010

Cluster SZ Images Cluster X-ray Images
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6 Cosmology Parameters 
(plus extension parameters)
• CDM Cosmology 

- mh2, bh2, As, ns, , s
• Extension Cosmology 

- w, m, fNL, Neff

9 Scaling Relation Parameters
• X-ray (Yx-M) and SZ (-M) 
relations (4 and 5 parameters): 

A) normalization, 
B) slope, 
C) redshift evolution, 
D) scatter, 
F) correlated scatter

Developed Markov-Chain Monte Carlo (MCMC) method to vary 
cosmology and cluster observable-mass relation simultaneously, 
while accounting for SZ selection in a self-consistent way

Cosmological Analysis: 
Test X-ray Method on 18 clusters (<10% of survey)

Benson et al 2011
Saturday, March 3, 2012



CDM Constraints

46

•SPTCL+H0+BBN CDM fit 
best constrains:
-σ8(m/0.25)0.30=0.785 +/- 0.037

•Adding SPTCL to CMB 
improves σ8 and m 
constraint by factor of 1.5: 
-σ8 = 0.795 +/- 0.016
-m= 0.255 +/- 0.016

σ8, m - 68, 95% Confidence Contours
H0 = 73.8 +/- 2.4 km / s Mpc (Riess et al 2011)
CMB: WMAP7 + SPT (Komatsu et al 2011, Keisler et al. 2011)
BBN:  bh2 = 0.022 +/- 0.002 (Kirkman et al. 2003)
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wCDM Constraints

47

w, σ8, m - 68, 95% Confidence Contours
CMB: WMAP7 + SPT (Komatsu et al 2011, Keisler et al. 2011)
BAO: (Percival et al. 2011)
SNe: (Amanullah et al. 2010)

SPTCL data improves dark energy (w,m) constraints by factor of 1.5
• reduces SNe systematic uncertainty (from +/-0.060 to +/-0.026)

Benson et al 2011

σ8, Amplitude of Matter Power Spectrum
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Neutrino Mass (m) Constraints

σ8

σ
8


m

(e
V)

H0 σ8 m(eV)

m(eV)

Constraints on neutrino mass from the CMB are improved most 
significantly by breaking degeneracies with H0  and σ8
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w, σ8, m - 68, 95% Confidence Contours
CMB: WMAP7 + SPT (Komatsu et al 2011, Keisler et al. 2011)
BAO: (Percival et al. 2011)
H0 = 73.8 +/- 2.4 km / s Mpc (Riess et al 2011)
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Benson et al 2011

•  95% upper limit on the sum of 
the neutrino masses (m) of: 

CMB                       < 1.1 eV
 +H0+BAO              < 0.45 eV
 +H0+SPTCL                  < 0.28 eV

 •With CMB+H0+SPTCL data       
1-sigma standard deviation of   
+/- 0.09 eV 
• Nearing > 0.05 eV mass limit 
from neutrino oscillations!  

Neutrino Mass (m) Constraints
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Neutrino Mass and the Number of Species

50Benson et al 2011

CMB “damping tail” 
constrains effective 
number of relativistic 
species:

• Neff = 3.91 +/- 0.42
• m < 0.63 eV (at 95% 
confidence)
• m = 0.34 +/- 0.17 eV

2-sigma preference for 
non-zero neutrino mass 
and an extra neutrino 
species!

Neff
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wCDM: 
Error budget for 18 cluster SPT sub-sample

51

With 18 clusters (<10% of SPT survey), we are limited by statistical 
uncertainty - both by the sample size and SZ-Yx calibration.

To make improvements, we can:
1) Add more clusters - SPT becomes X-ray mass calibration 
limited with ~60 clusters to  w = +/- 0.15
2) Improve mass calibration - improve calibration of mass 
normalization and its evolution with redshift, each contributes an 
uncertainty of w = +/- 0.10

Benson et al 2011
Saturday, March 3, 2012



SPT XVP-80 Sample

52

• 2.1 Msec Proposal (PI: Benson), 
~1% of Chandraʼs total lifetime
• More then double high-z sample 
from Vikhlinin et al 2009 (80 vs 36)
• Primary Cosmology Goals:

1) Dark Energy, w - Calibrate SPT 
cluster mass with 10% accuracy 
to obtain systematics limited 
constraint on w of ~15%

2) Angular Diameter Distance 
relation - Combine Ysz, Yx to use 
clusters as “standard ruler”, 
constrain geometry of universe to 
high-z

Chandra X-ray observations of 80 most significant 
clusters from first 2000 deg2 from SPT survey
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Weak Lensing: Magellan, HST

53

Weak lensing observations with Hubble Space 
Telescope (HST), and Magellan / Megacam

HST Weak Lensing Sample (PI: High) •Magellan - 19 clusters      
(0.3 < z < 0.6) 

•HST - 14 clusters                
(0.6 < z < 1.4)

•Primary Goals
1. Mass Calibration of the 
SPT survey (~5% mean, ~5% 
redshift evolution)

2. Distribution of Stars and 
Galaxies, Hot Gas, Dark 
Matter in the most massive 
clusters in universe from       
(0.3 < z < 1.3) using Spitzer, 
HST, Chandra, SPT
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SPT Cosmological Constraints (projected)

54

SPT 2500 deg2 survey will detect ~450 clusters (with S/N > 5).  
Assuming mass calibration uncertainty of 5% mean and 10% 
evolution (0 < z < 1):

- will constrain w to +/-5%, *independent* of geometric 
cosmological constraints from SNe, BAO

Projected Constraints Projected Constraints
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Dark Energy Survey (DES) and SPT
• Wide field (2.2 deg2) optical camera for 
4-meter Blanco telescope (Chile)

• 5-year optical survey (2012-2016) to 
cover ~5000 deg2 which will detect 
~100,000 clusters out to z~1

•  Multiple probes of dark energy (cluster 
survey, weak lensing, BAO, SN)
–Coordinated to overlap with SPT 

Survey Area
–X-ray and weak lensing SPT 

follow-up will improve 
calibration of DES Richness-
Mass relation

–Combined DES + SPT Cluster 
Survey will improve DES figure-of-
merit by ~3 (Wu, Rozo, Wechsler 
2009)

55

Blanco 4-meter 
(Chile)
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1. CMB Anisotropy
2. Clusters

3. CMB Lensing

Cosmology from the CMB
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17°x17°

from Alex van Engelen

Lensing of the CMB
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17°x17°

from Alex van Engelen

Lensing of the CMB
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Unlensed
CMB looks like a
pure gradient.

~1’

Small-scale wiggles are correlated with 
large-scale gradient.

not lensed lensed

massive 
bodiesobserver

Spatial Correlations in the CMB
CMB is a unique source for lensing:

• Gaussian, well-understood power 
spectrum
• From a redshift which is: (a) unique, (b) 
known, and (c) highest
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van Engelen et al 2012, astro-ph/1202.0546

SPT Lensing Power Spectrum

van Engelen et al. 2012

Das et al. 2011

• high significance 
detection of non-
Gaussianity in the 
CMB induced by 
gravitational 
lensing

• based on ~1/5 of 
SPT area, single-
frequency only, 
heavily-filtered

• project >30  
detection with 2500 
deg2 survey
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Neutrinos & CMB Lensing

61

Neutrino masses

• Perturbations are 
washed out on 
scales smaller than 
neutrino free-
streaming scale 

• current upper bounds from 
CMB are WMAP: mnu < 1.3 
eV ; WMAP+BAO+H0: mnu < 
0.56 eV

d ∼ Tν/mν × 1/H

Neutrino masses

• Perturbations are 
washed out on 
scales smaller than 
neutrino free-
streaming scale 

• current upper bounds from 
CMB are WMAP: mnu < 1.3 
eV ; WMAP+BAO+H0: mnu < 
0.56 eV

d ∼ Tν/mν × 1/H

• Peaks at l=40 (keq  =[300 Mpc]-1 at z = 2): 
coherent over ~several degree scales

• Lensing signal comes from structure over 
a broad redshift range (~0.5 < z < ~6 )

0.1 eV <=> 5%

CMB Lensing 
Kernal
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CMB Lensing X Galaxies

CMB convergence map
(no noise)

Galaxy number density
from DES mocks

(i<23)

16 o

(sims from Matt Becker & DES)
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Lensing X Tracers of 
Large Scale Structure

• DES (overlap with full SPT-SZ 2500 sq deg)

• SUMSS (equivalent of NVSS for southern sky)

• (23h,-55d) 100 sq deg deep field:

• Spitzer IRAC
- 3.6, 4.5 µm - data being taken!

• Herschel SPIRE 
- 250, 350, 500 µm - survey about to start
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1. CMB Anisotropy
2. Clusters

3. CMB Lensing

Cosmology from the CMB
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Cosmology from Growth of Structure

65

Credit: Vikhlinin et al 2009

•From the CMB -to- 
Lensing of CMB -to- 
Clusters:
•Traces matter power 
spectrum, and growth of 
structure or 8(z), from 
400,000 to 14 billion 
years after Big Bang

•Powerful test of 
cosmology, both a 
systematic check and 
complementary to  
distance-relation based 
tests (BAO, SNe)  

CMB
Clusters

CMB Lensing
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• Quadrupole anisotropy introduces a 
polarization from Thomson scattering 
near surface of last scattering

• Polarization pattern can be 
decomposed into “E” and “B” modes, 
that have only grad and curl 
components

• Density fluctuations produce only “E” 
modes, no handedness

•“B” modes can be created by: 
–primordial gravity waves from 

Inflation 
–lensing of the CMB from 

large scale structure

The Next Frontier for CMB Lensing:
The Polarization of the CMB

66Smith et al 2008 

10o
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Small 
Changes

Big 
Changes!!!

The Effect of Lensing on the CMB Power Spectrum:
B-modes from Lensing
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Inflation and High Energy Physics

HyperPhysics (©C.R. Nave, 2010)
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• Inflation is the only 
mechanism expected to 
create primordial B-modes

• If Inflation related to physics 
at GUT energy scale: Einf 

~1016 GeV and r > 0.01
• r = tensor-pertubations              

l.      scalar-pertubations 

• Current measurements of       
ns ~ 0.97 imply r ~ 0.15

• CMB currently constrains    
r < 0.17 at 95% confidence 
(SPT, Keisler et al. 2011)

Einf
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E-modes

B-modes
(lensed)

B-modes
(Inflation)

r=0.1

r=0.001

r=0.01

Smith et al. 2008, 0811.3916

The Polarization of the CMB:
Neutrinos

A ~0.1 eV neutrino mass will shift the normalization of the 
lensed B-mode spectrum by ~5%
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see (QUAD) Brown et al., arXiv:0906.1003 & (BICEP) Chiang et al., arXiv:0906.1181 

100 nK

CMB Measurements so far:
Closing in on Inflation!

B-modes
(inflation)

B-modes
(lensed)

EE Power
Spectrum

BB Power
Spectrum
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Science from SPTpol -
“B-mode” Polarization:

1. Neutrino mass from CMB lensing
2. Energy scale of inflation

Temperature Survey:
3. Deeper cluster survey 188 100 GHz 

pixels, (Argonne)

588 150 GHz pixels, (NIST)

SPTpol: Measuring the Polarization of the CMB
SPTpol Receiver
Deployment Team

SPTpol:
•New polarization-sensitive camera for 
the SPT, first light Jan. 26, 2012!

•  I just returned from 2 months at the 
South Pole leading the SPTpol 
Receiver team: 
- Liz George (UC-Berkeley), Abby Crites (U. 

Chicago), Jason Henning (U. Colorado)
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SPTpol: Measuring the Polarization of the CMB

Argonne 90 GHz Pixel Argonne 90 GHz array
• 192x single pixels
• Individually machined 
contoured horns
• Crossed absorbers
• 0.50 K Mo/Au TES6 

m
m

90 and 150 GHz Focal Plane:
• 90 GHz detectors made at Argonne 

National Labs 
• 150 GHz detectors made at NIST, 

Boulder
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SPTpol: Measuring the Polarization of the CMB

NIST pixel

90 and 150 GHz Focal Plane:
• 90 GHz detectors made at Argonne 

National Labs 
• 150 GHz detectors made at NIST, 

Boulder
NIST 150 GHz array

• 588x pixels total in 7x arrays
• Monolithic silicon platelet 
corrugated horn array
• Crossed OMT antenna
• Micro-strip to 0.50 K Al/Mn TES

TES detector array

Silicon Platelet 
horn array

4 m
m
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2001: ACBAR
16 detectors

2005: BICEP
~100 detectors

2007: SPT
960 detectors

ACBAR was the first experiment to 
make a “background limited” detector, 
since then weʼve just been trying to 
make more of them

2012: SPTpol
~1600 detectors

Evolution of Detector Focal Planes
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2001: ACBAR
16 detectors

2005: BICEP
~100 detectors

2007: SPT
~800 detectors

2012: SPTpol
~1600 detectors

NET 
(noise equivalent 

temperature)

(uK CMB s0.5)

SZ Mapping
Speed

ACBAR 90 1

BICEP 57 5

ACT 30 9

SPT 18 30

SPTpol ~12 65

Evolution of Detector Focal Planes
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SPTpol Projected B-mode Power Spectrum

 SPTpol expects to make first-ever detection of B-modes ~few months!

 From B-mode spectrum measurements, 3-year 600 deg2 SPTpol survey will 
constrain r < 0.03 at 95% confidence and (m)=0.10 eV 

Projected SPTpol B-mode Spectrum
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Upcoming Results!
Chandra XVP-80 / Cluster Results:

2012 - Cosmology from XVP-80 sample: constrain w=0.10-0.15, measure 
angular diameter distance relation
2012 - Combine XVP-80 with SPT power spectrum measurements: 
constrain Neff=0.2 and (m)~0.08 eV 
2013 - Combine with 500 cluster SPT-SZ survey and weak lensing 
observations: constrain w=0.05 from clusters-alone, growth based test of 
dark energy!  Put first significant constraints on time evolution of w when 
combined with CMB+BAO+SNe
2013 - Combine X-ray, Weak Lensing, SZ, Spitzer, Optical 
measurements: study mass and redshift evolution of baryon, gas mass, and 
stellar mass fractions - look for “missing” baryons, study feedback and star 
formation history of massive clusters
2013+ - Layout framework to combine X-ray, Weak Lensing, SZ cluster 
observations with DES survey.  Dark energy figure of merit of > 100!

77
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Upcoming Results!
SPTpol:

2012 - First detection of B-mode power spectrum! 
2012+ - Combine SPTpol deep field with 100 deg2 Herschel and Spitzer 
survey, hopefully DES.  Put constraints on σ8(z) out to z ~ 4
2013 - First SPTpol power spectrum constraints 
2014 - SPTpol survey finishes: Hopefully detect inflation and neutrino 
mass!
2014 - Need a new camera!

78
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E-modes

B-modes
(lensed)

B-modes
(Inflation)

r=0.1

r=0.001

r=0.01

Smith et al. 2008, 0811.3916

The Polarization of the CMB:
Inflation signal could still be very small

In the next ~3 years several experiments (e.g. - SPTpol, BICEP2+KECK,  
ACTpol, Polarbear, ...) promise 95% limits on r < ~0.02
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Future CMB Experiments:
Definitive CMB Lensing Experiment

Re-design SPT optics for higher-
throughput, and make ~2,000+ 
polarization sensitive multi-chroic 
pixels at 80-240 GHz
• Plan for “definitive” CMB lensing 
experiment: cover ~1/2 sky with      
~1 uK-arcmin senstivity 

Fraction of Sky
(


m
)

 (
eV

)

0.05 eV

C
redit: K. W

u

• Survey of high-z structure growth
• CMBʼs final word on: inflation    
(r ~ 0.003), neutrino mass (m 
~ 0.05 eV), curvature (k ~ 
0.003), scalar tilt (ns ~ 0.003), 
test for early dark energy, ...

Berkeley

NIST 
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