THE DARKSIDE

DARK MATTER PROGRAM

LEPP JOURNAL CLUB, CORNELL UNIVERSITY MARCH 13TH, 2012

> ALEX WRIGHT PRINCETON UNIVERSITY

Outline

Dark matter review

- Evidence & known properties
- Searching for dark matter
- Direct detection experiments
 The DarkSide experiment

Strategy

- Technical progress
- Future
- Testing the DAMA experiment

Evidence for Dark Matter

Evidence for Dark Matter

Image credits: WMAP Science Team, NASA

Dark Matter Properties

- ~23% of the energy density of the universe is "dark matter"
 - Gravitationally interacting
 - Neutral
 - Long lived
 - Non-baryonic
 - "Cold" (i.e. non-relativistic at early times)

Dark Matter Properties

- ~23% of the energy density of the universe is dark matter
 - Gravitationally interacting
 - Neutral
 - Long lived
 - Non-baryonic
 - "Cold" (i.e. non-relativistic at early times)

This excludes all Standard Model particles: strong evidence for physics beyond the Standard Model!

Fermilab 95-759

Dark Matter Candidates

Image credit: HEPAP/AAAC DMSAG Subpanel (2007)

Thermal Relics

The "WIMP Miracle"

Weak mass & coupling give just the right relic density for dark matter!

Searching for WIMPs

Aboveground

At Accelerators

Image credits: NASA, discovermagazine.com, atlas.ch

Local Dark Matter

- Galaxy embedded in a dark matter "halo"
 Local density ≈ 0.3 GeV/c²/cm³
- Independent galactic orbits
 - Typical v_{orbit} ≈ 220 km/s

WIMP "Wind"

- Motion of the sun around the galaxy induces a WIMP "wind"
- Rotation of the earth about the sun produces a seasonal modulation in the velocity of the wind

WIMP Direct Detection

- WIMPs scatter elastically from nuclei, inducing low energy nuclear recoils
 - <~100 keV
- Cross section of 10⁻⁴⁴ 10⁻⁴⁵
 cm² per nucleon for
 "standard" WIMP
 - ~10-100 interactions/tonne/yr

Central Challenge: Background

Internal Radioactivity ²³⁸U, ²³²Th, etc. Gamma Rays external and from shielding **Cosmic Muons Radiogenic Neutrons** from spontaneous fission and (α, n) , externally and in shielding **Fast Neutrons** from muons in the shield and beyond

Central Challenge: Background

WIMP signal: <100 ev/T-yr Dust: ~7000 decays/mg-yr Air: >300 decays/mL-yr Fingerprint: ~10 decays/yr

Ideal WIMP Detector

- Large mass, long exposure
- Low threshold
- Low background
- Background discrimination

WIMP Detection Experiments

Leading Experiments

Xenon100 S1 [PE] 5 10 15 2025 30 35 0.4 0.2log₁₀(S2/S1)-ER mean -1.2 20 50 30 40 10 Energy [keVnr]

Technique: Xe, scintillation + ionization Exposure: 1471 kg-days Expect: 1.8±0.6 background events Observe: 3 events

PRL 107:131302 (2011)

CDMS

Nature 327:1619 (2010)

Leading Experiments

Edelweiss

Technique: Ge, ionization + bolometric Exposure: 384 kg-days Expect: <3 background events **Observe:** 5 events

Cresst

Technique: CaWO₄, scintillation + bolometric Exposure: 730 kg-days **Observe:** 29.4^{+8.6}_{-7.7} (24.2^{+8.1}_{-7.2}) events above background of 42-48 events

arXiv:1109.0702

Leading Experiments

DAMA/LIBRA

Technique: Nal, scintillation **Exposure:** 4.3x10⁵ kg-days **Observe:** Annual modulation in event rate.

Eur. Phys. J. C 56:333-355 (2008)

Technique: Ge, ionization **Exposure:** 146 kg-days **Observe:** Excess events at low energy, probably an annual modulation

> PRL **106**:131301 (2011), PRL **107**:141301 (2011)

The Current Status

The Current Status

The Current Status

In dark matter searches, the trouble starts when you see something.

- All leading dark matter experiments expect background and they see it
- Progress contingent on achieving lower, better controlled backgrounds

DarkSide

- A dark matter program based on 2-phase underground argon time projection chambers (TPCs)
- First physics detector will be "DarkSide-50"

DarkSide Background Strategy

 Designed to have very low, very well understood background
 Underground argon and other novel technologies give very

- low background levelsFurther suppress
- backgrounds and assay them *in situ* using active background suppression techniques

Darkside Collaboration

Why Two-Phase Argon?

- Liquid argon is a great dark matter target
 - Good scintillator (~40,000 photons/MeV)
 - Very transparent to its own scintillation light
 - Easily purified
- Relatively inexpensive technology, could be scaled to multi-tonne detectors
 - Need to suppress ³⁹Ar
- Very powerful rejection capability for electron recoil background

2-Phase Argon TPC

"S1" Electron Recoil Discrimination

The ratio of light from singlet (~7 ns decay time) and triplet (1.6 µs decay time) depends on ionization density
 >10⁸ discrimination from pulse shape

"S2/S1" Electron Recoil Discrimination

The recombination probability (and hence the ratio of S2:S1 light) also depends on ionization density
 10²-10³ additional discrimination
 >10¹⁰ total electron recoil rejection in 2D

39**Ar**

- Radioactive, β-decay, T_{1/2} = 269 years
 Cosmogenic
 - ^{4°}Ar(n, 2n)³⁹Ar in the atmosphere
- ~1 Bq/kg in atmospheric argon
 - 3x10¹⁰ events in 1.0 tonyear!

Underground Argon

- Underground argon is shielded, so can contain less ³⁹Ar
- CO2 from Kinder Morgan Doe Canyon Complex (Cortez, CO) contains ~600 ppm Argon
 - 3 tons Ar produced/day
- ~75 kg of argon collected so far

For details: NIM A **587**:46-51 (2008), AIP Conf. Proc. 1338:217-220 (2011)

Underground Argon Counting

The "Low Background Detector"

Underground Argon Counting

- Detector operated both on surface (Princeton) and underground (KURF, 1400 m.w.e.)
- Background rate of 0.002 Hz in 300-400 keV at KURF
- ³⁹Ar depletion factor
 >100

Highly-Efficient Neutron Veto

- Neutron scattering events can be a "perfect" WIMP background
- Surround DarkSide with boron-loaded liquid scintillator
- Efficiently detect escaping neutrons and veto any associated nuclear recoil backgrounds
 - >99.5% efficiency for radiogenic neutrons
 - >95% efficiency for cosmogenic neutrons

Cosmogenic Neutrons

- Install DarkSide within the Borexino CTF tank in LNGS, Italy
 - Muon flux reduced by 10⁶
- Detect the Cerenkov light produced by the muons and other shower particles
 - Veto the neutron-induced background events
- CTF tank + neutron veto reduce cosmogenic backgrounds by >>10³

DarkSide-50 Background Estimates

Total WIMP background in (ev / 0.1 tonne-yr) for R11065 (QUPIDs):

Detector Element	Electron Recoil		Radiogenic Neutron		Cosmogenic Neutron			
	Backgrounds		Recoil Backgrounds		Recoil Backgrounds			
	Raw	After Cuts	Raw	After Cuts	Raw	After Cuts		
³⁹ Ar (<0.01 Bq/kg)	$< 6.3 \times 10^{6}$	$<4 \times 10^{-3}$	_	_	_	_		
Fused Silica	3.3×10^{4}	2.0×10^{-5}	0.17	4.3×10^{-4}	0.21	1.3×10^{-5}		
PTFE	4,800	3.0×10^{-6}	0.39	9.8×10^{-4}	2.7	1.6×10^{-4}		
Copper	4,500	2.8×10^{-6}	5.0×10^{-3}	$1.3 { imes} 10^{-5}$	1.5	9.0×10^{-5}	Surface Backgrounds	
R11065 PMTs	2.6×10^{6}	1.6×10^{-3}	19.4	4.8×10^{-2}	0.34	2.0×10^{-5}		
QUPIDs (1 mBq)	7.0×10^{4}	4.2×10^{-5}	0.31	7.8×10^{-4}	0.34	2.0×10^{-5}	Raw	After cuts
Stainless Steel	5.5×10^{4}	3.4×10^{-5}	2.5	6.3×10^{-3}	30	0.0018	4 5 X 10 ³	<0.01
Veto Scintillator	70	4.3×10^{-8}	0.030	7.5×10^{-5}	26	0.0016	4.7 × 20	
Veto PMTs	2.5×10^{6}	1.6×10^{-3}	0.023	5.8×10^{-5}	-	_		
Veto tank	1.7×10^{5}	1.1×10^{-4}	6.7×10^{-5}	1.7×10^{-7}	19	0.0071		
Water	6,100	3.8×10^{-6}	6.7×10^{-4}	1.7×10^{-6}	19	0.0071		
CTF tank	8,300	5.1×10^{-6}	3.5×10^{-3}	8.7×10^{-6}	0.068	2.6×10^{-5}		
LNGS Rock	920	5.7×10^{-7}	0.061	1.5×10^{-4}	0.31	0.012		
Total	-	0.007(0.006)	_	0.055(0.008)	-	0.030(0.030)		

Very conservative estimates: DarkSide should demonstrate background free ton-yr exposures!

DarkSide-50 Physics Reach

- Background free operation for 0.1 tonneyr gives 10⁻⁴⁵cm² sensitivity
- Background measurement from active suppression gives precise understanding of residual background rate
 - Credible detection claim possible based on a few observed events!

DarkSide-10 Prototype

Test key technical concepts for DarkSide-50 Practice running a 2phase TPC, investigate backgrounds 12+ months of operation since 2010 Initial runs at Princeton, now running underground at LNGS

DarkSide-10 Prototype

Test key technical concepts for DarkSide-50 Practice running a 2phase TPC, investigate backgrounds 12+ months of operation since 2010 Initial runs at Princeton, now running underground at LNGS

Two-Phase Operation!

LightYield

Shielded Operation

Event Rate in DarkSide-10 (without PSD)

DarkSide Future

- Continued DarkSide-10 operation to gain experience with 2-phase operation, study backgrounds
- DarkŠide-50 to deploy later this year
 - Reach 10⁻⁴⁵ cm² in 3 years background free operation
- Tonne-scale experiment could reach 10⁻⁴⁷ cm² using the same active shielding as DarkSide-50

- The DAMA experiment observes an annual modulation
 - >8σ effect
 - Amplitude ~1%
 - Period consistent with 1 yr
 - Phase peaks May 19 June 2
- DAMA collaboration attributes the oscillation to WIMP interactions
 - Phase agrees with June 1-2 predicted maximum for dark matter
- The WIMP interpretation is not widely accepted
 - Tension with other dark matter experiments
- So far, no definitive alternate explanation

Eur. Phys. J. C 56:333-355 (2008) Eur. Phys. J. C 67:39-59 (2010)

- The DAMA experiment observes an annual modulation
 - >8σ effect
 - Amplitude ~1%
 - Period consistent with 1 yr
 - Phase peaks May 19 June 2
- DAMA collaboration attributes the oscillation to WIMP interactions
 - Phase agrees with June 1-2 predicted maximum for dark matter
- The WIMP interpretation is not widely accepted
 - Tension with other dark matter experiments
- So far, no definitive alternate explanation

- To definitively test DAMA need Nal experiment with lower, better controlled backgrounds
 - 'Bump' at 3keV from K xrays and Auger electrons following ⁴°K electron capture
 - Source of continuum at ~1cpd/kg/keV unclear
 - Internal Nal backgrounds too low
 - Maybe background from (glass) PMTs?

- Suspend the Nal in a scintillator veto
 - Completely controlled background environment
 - Scintillator can be much cleaner than passive shielding
 - Suppress ⁴ K backgrounds (PMT gammas) by factors of 10 (30) using the veto anti-coincidence
 - New metal bulb PMTs further reduce backgrounds (<0.002 cpd/ keV/kg after veto)
- SNOLAB
 - ~100 times lower muon rate

SNOLAB

- ~100 times lower muon rate
- Suspend the Nal in a scintillator veto
 - Completely controlled background environment
 - Scintillator can be much cleaner than passive shielding
 - Suppress ⁴°K backgrounds (PMT gammas) by factors of 10 (30) using the veto anti-coincidence
 - New metal bulb PMTs further reduce backgrounds (<0.002 cpd/ keV/kg after veto)

Reducing background by a factor of 10 changes a 2% modulation into a 20% modulation!

Testing Dama

- Need clean Nal!
 - <20 ppb K, <10 ppt U & Th</p>
- DAMA crystal purification procedure (San Gobain) is proprietary
- Working with industry to develop our own Nal purification techniques
 - Promising results from first purification tests
 - Improved techniques to assay K in Nal developed
 - Clean crystal growth being investigated
- Clean Nal will (finally!) allow a direct test of DAMA

Hope for positive results by summer!

Dark Matter at Cornell

- Continue with argon-based dark matter searches
 - DarkSide-50, planning for DarkSide-5T, in the near term
 - Discovery potential in the heart of "WIMP Miracle" parameter space
 - Good chance of consolidation within the global (argon) dark matter program in the next few years
 - DarkSide technology will play a key role in eventual multitonne detector(s)
- Test the DAMA annual modulation
 - Finally a model-independent test of this intriguing result